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Graph Theory Preliminaries A graph G, formally speaking, is a pair (V (G), E(G))
where the elements v ∈ V (G) are called vertices and the elements of E(G), called edges,
are two element subsets {v,w} of V (G). When {v,w} ∈ E(G) we say v,w are adjacent.
(In standard graph theory terminology our graphs are undirected and have no loops and
no multiple edges.) Pictorially, we often display the v ∈ V (G) as points and draw an arc
between v and w when they are adjacent. We call V (G) the vertex set of G and E(G)
the edge set of G. (When G is understood we shall write simply V and E respectively.
We also often write v ∈ G or {v,w} ∈ G instead of the formally correct v ∈ V (G) and
{v,w} ∈ E(G) respectively.) A set S ⊆ V is called a clique if all pairs x, y ∈ S are adjacent.
The clique number, denoted by ω(G), is the largest size of a clique in G. The complete
graph on k vertices, denoted by Kk, consists of a vertex set of size k with all pairs x, y
adjacent.

1 Lecture 1: Random Graphs

1.1 What is a Random Graph

Let n be a positive integer, 0 ≤ p ≤ 1. The random graph G(n, p) is a probability space
over the set of graphs on the vertex set {1, . . . , n} determined by

Pr[{i, j} ∈ G] = p (1)

with these events mutually independent.
Random Graphs is an active area of research which combines probability theory and

graph theory. The subject began in 1960 with the monumental paper On the Evolution
of Random Graphs by Paul Erdős and Alfred Rényi. The book Random Graphs by Béla
Bollobás is the standard source for the field. The book The Probabilistic Method by Noga
Alon and this author contains much of the material in these notes, and more.

There is a compelling dynamic model for random graphs. For all pairs i, j let xi,j be
selected uniformly from [0, 1], the choices mutually independent. Imagine p going from 0
to 1. Originally, all potential edges are “off”. The edge from i to j (which we may imagine
as a neon light) is turned on when p reaches xi,j and then stays on. At p = 1 all edges
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are “on”. At time p the graph of all “on” edges has distribution G(n, p). As p increases
G(n, p) evolves from empty to full.

In their original paper Erdős and Rényi let G(n, e) be the random graph with n vertices
and precisely e edges. Again there is a dynamic model: Begin with no edges and add edges
randomly one by one until the graph becomes full. Generally G(n, e) will have very similar
properties as G(n, p) with p ∼ e

(n
2)

. We will work on the probability model exclusively.

1.2 Threshold Functions

The term “the random graph” is, strictly speaking, a misnomer. G(n, p) is a probability
space over graphs. Given any graph theoretic property A there will be a probability that
G(n, p) satisfies A, which we write Pr[G(n, p) |= A]. When A is monotone Pr[G(n, p) |= A]
is a monotone function of p. As an instructive example, let A be the event “G is triangle
free”. Let X be the number of triangles contained in G(n, p). Linearity of expectation
gives

E[X] =

(

n

3

)

p3 (2)

This suggests the parametrization p = c/n. Then

lim
n→∞

E[X] = lim
n→∞

(

n

3

)

p3 = c3/6 (3)

We shall see that the distribution of X is asymptotically Poisson. In particular

lim
n→∞

Pr[G(n, p) |= A] = lim
n→∞

Pr[X = 0] = e−c3/6 (4)

Note that
lim
c→0

e−c3/6 = 1 (5)

lim
c→∞

e−c3/6 = 0 (6)

When p = 10−6/n, G(n, p) is very unlikely to have triangles and when p = 106/n, G(n, p)
is very likely to have triangles. In the dynamic view the first triangles almost always
appear at p = Θ(1/n). If we take a function such as p(n) = n−.9 with p(n) ≫ n−1 then
G(n, p) will almost always have triangles. Occasionally we will abuse notation and say,
for example, that G(n, n−.9) contains a triangle - this meaning that the probability that it
contains a triangle approaches 1 as n approaches infinity. Similarly, when p(n) ≪ n−1, for
example, p(n) = 1/(n ln n), then G(n, p) will almost always not contain a triangle and we
abuse notation and say that G(n, 1/(n ln n)) is trianglefree. It was a central observation
of Erdős and Rényi that many natural graph theoretic properties become true in a very
narrow range of p. They made the following key definition.

Definition 1. r(n) is called a threshold function for a graph theoretic property A if

1. When p(n) ≪ r(n), limn→∞ Pr[G(n, p) |= A] = 0

2. When p(n) ≫ r(n), limn→∞ Pr[G(n, p) |= A] = 1
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or visa versa.

In our example, 1/n is a threshold function for A. Note that the threshold function,
when one exists, is not unique. We could equally have said that 10/n is a threshold function
for A.

Lets approach the problem of G(n, c/n) being trianglefree once more. For every set
S of three vertices let BS be the event that S is a triangle. Then Pr[BS ] = p3. Then
“trianglefreeness” is precisely the conjunction ∧BS over all S. If the BS were mutually
independent then we would have

Pr[∧BS] =
∏

[BS ] = (1 − p3)(
n
3) ∼ e−(n

3)p3
→ e−c3/6 (7)

The reality is that the BS are not mutually independent though when |S ∩T | ≤ 1, BS and
BT are mutually independent. This is quite a typical situation in the study of random
graphs in which we must deal with events that are “almost”, but not precisely, mutual
independent.

1.3 Variance

Here we introduce the Variance in a form that is particularly suited to the study of random
graphs. The expressions ∆ and ∆∗ defined in this section will appear often in these notes.

Let X be a nonnegative integral valued random variable and suppose we want to bound
Pr[X = 0] given the value µ = E[X]. If µ < 1 we may use the inequality

Pr[X > 0] ≤ E[X] (8)

so that if E[X] → 0 then X = 0 almost always. (Here we are imagining an infinite sequence
of X dependent on some parameter n going to infinity. This is the standard situation with
the random graph G(n, p(n)).) But now suppose E[X] → ∞. It does not necessarily follow
that X > 0 almost always. For example, let X be the number of deaths due to nuclear
war in the twelve months after reading this paragraph. Calculation of E[X] can make for
lively debate but few would deny that it is quite large. Yet we may believe - or hope -
that Pr[X 6= 0] is very close to zero. We can sometimes deduce X > 0 almost always if
we have further information about V ar[X].

Theorem 1.1.

Pr[X = 0] ≤
V ar[X]

E[X]2
(9)

Proof. Set λ = µ/σ in Chebyschev’s Inequality. Then

Pr[X = 0] ≤ Pr[|X − µ| ≥ λσ] ≤
1

λ2
=

σ2

µ2
(10)

We generally apply this result in asymptotic terms.
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Corollary 1.2. If V ar[X] = o(E[X]2) then X > 0 a.a.

The proof of Theorem 1.3 actually gives that for any ǫ > 0

Pr[|X − E[X]| ≥ ǫE[X]] ≤
V ar[X]

ǫ2E[X]2
(11)

and thus in asymptotic terms we actually have the following stronger assertion:

Corollary 1.3. If V ar[X] = o(E[X]2) then X ∼ E[X] a.a.

Suppose again X = X1 + . . . + Xm where Xi is the indicator random variable for event
Ai. For indices i, j write i ∼ j if i 6= j and the events Ai, Aj are not independent. We set
(the sum over ordered pairs)

∆ =
∑

i∼j

Pr[Ai ∧ Aj] (12)

Note that when i ∼ j

Cov[Xi,Xj ] = E[XiXj ] − E[Xi]E[Xj ] ≤ E[XiXj ] = Pr[Ai ∧ Aj] (13)

and that when i 6= j and not i ∼ j then Cov[Xi,Xj ] = 0. Thus

V ar[X] ≤ E[X] + ∆ (14)

Corollary 1.4. If E[X] → ∞ and ∆ = o(E[X]2) then X > 0 almost always. Furthermore
X ∼ E[X] almost always.

Let us say X1, . . . ,Xm are symmetric if for every i 6= j there is an automorphism of
the underlying probability space that sends event Ai to event Aj . Examples will appear
in the next section. In this instance we write

∆ =
∑

i∼j

Pr[Ai ∧ Aj] =
∑

i

Pr[Ai]
∑

j∼i

Pr[Aj |Ai] (15)

and note that the inner summation is independent of i. We set

∆∗ =
∑

j∼i

Pr[Aj |Ai] (16)

where i is any fixed index. Then

∆ =
∑

i

Pr[Ai]∆
∗ = ∆∗

∑

i

Pr[Ai] = ∆∗E[X] (17)

Corollary 1.5. If E[X] → ∞ and ∆∗ = o(E[X]) then X > 0 almost always. Furthermore
X ∼ E[X] almost always.

The condition of Corollary 1.4 has the intuitive sense that conditioning on any specific
Ai holding does not substantially increase the expected number E[X] of events holding.
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1.4 Appearance of Small Subgraphs

What is the threshold function for the appearance of a given graph H. This problem was
solved in the original papers of Erdős and Rényi. We begin with an instructive special
case.

Theorem 1.6. The property ω(G) ≥ 4 has threshold function n−2/3.

Proof. For every 4-set S of vertices in G(n, p) let AS be the event “S is a clique” and XS

its indicator random variable. Then

E[XS ] = Pr[AS ] = p6 (18)

as six different edges must all lie in G(n, p). Set

X =
∑

|S|=4

XS (19)

so that X is the number of 4-cliques in G and ω(G) ≥ 4 if and only if X > 0. Linearity of
Expectation gives

E[X] =
∑

|S|=4

E[XS ] =

(

n

4

)

p6 ∼
n4p6

24
(20)

When p(n) ≪ n−2/3, E[X] = o(1) and so X = 0 almost surely.
Now suppose p(n) ≫ n−2/3 so that E[X] → ∞ and consider the ∆∗ of Corollary 1.5.

(All 4-sets “look the same” so that the XS are symmetric.) Here S ∼ T if and only if
S 6= T and S, T have common edges - i.e., if and only if |S ∩ T | = 2 or 3. Fix S. There
are O(n2) sets T with |S ∩ T | = 2 and for each of these Pr[AT |AS ] = p5. There are O(n)
sets T with |S ∩ T | = 3 and for each of these Pr[AT |AS ] = p3. Thus

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

since p ≫ n−2/3. Corollary 1.5 therefore applies and X > 0, i.e., there does exist a clique
of size 4, almost always.

The proof of Theorem 1.6 appears to require a fortuitous calculation of ∆∗. The
following definitions will allow for a description of when these calculations work out.

Definition 2. Let H be a graph with v vertices and e edges. We call ρ(H) = e/v the
density of H. We call H balanced if every subgraph H ′ has ρ(H ′) ≤ ρ(H). We call H
strictly balanced if every proper subgraph H ′ has ρ(H ′) < ρ(H).

Examples. K4 and, in general, Kk are strictly balanced. The graph

r

r

r

r

r�
�
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@

@

is not balanced as it has density 7/5 while the subgraph K4 has density 3/2. The graph
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is balanced but not strictly balanced as it and its subgraph K4 have density 3/2.

Theorem 1.7. Let H be a balanced graph with v vertices and e edges. Let A(G) be the
event that H is a subgraph (not necessarily induced) of G. Then p = n−v/e is the threshold
function for A.

Proof. We follow the argument of Theorem 1.6. For each v-set S let AS be the event that
G|S contains H as a subgraph. Then

pe ≤ Pr[AS ] ≤ v!pe (21)

(Any particular placement of H has probability pe of occuring and there are at most v!
possible placements. The precise calculation of Pr[AS ] is, in general, complicated due to
the overlapping of potential copies of H.) Let XS be the indicator random variable for AS

and
X =

∑

|S|=v

XS (22)

so that A holds if and only if X > 0. Linearity of Expectation gives

E[X] =
∑

|S|=v

E[XS ] =

(

n

v

)

Pr[AS ] = Θ(nvpe) (23)

If p ≪ n−v/e then E[X] = o(1) so X = 0 almost always.
Now assume p ≫ n−v/e so that E[X] → ∞ and consider the ∆∗ of Corollary 1.5. (All

v-sets look the same so the XS are symmetric.) Here S ∼ T if and only if S 6= T and S, T
have common edges - i.e., if and only if |S ∩T | = i with 2 ≤ i ≤ v− 1. Let S be fixed. We
split

∆∗ =
∑

T∼S

Pr[AT |AS ] =
v−1
∑

i=2

∑

|T∩S|=i

Pr[AT |AS ] (24)

For each i there are O(nv−i) choices of T . Fix S, T and consider Pr[AT |AS ]. There are
O(1) possible copies of H on T . Each has - since, critically, H is balanced - at most ie

v
edges with both vertices in S and thus at least e − ie

v other edges. Hence

Pr[AT |AS ] = O(pe− ie
v ) (25)

and

∆∗ =

v−1
∑

i=2

O(nv−ipe− ie
v ) =

v−1
∑

i=2

O((nvpe)1−
i
v ) (26)

so that

∆∗ ==

v−1
∑

i=2

o(nvpe) = o(E[X]) (27)

as nvpe → ∞. Hence Corollary 1.5 applies.
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Theorem 1.8. In the notation of Theorem 1.7 if H is not balanced then p = n−v/e is not
the threshold function for A.

Proof. Let H1 be a subgraph of H with v1 vertices, e1 edges and e1/v1 > e/v. Let α satisfy
v/e < α < v1/e1 and set p = n−α. The expected number of copies of H1 is then o(1) so
almost always G(n, p) contains no copy of H1. But if it contains no copy of H1 then it
surely can contain no copy of H.

The threshold function for the property of containing a copy of H, for general H,
was examined in the original papers of Erdős and Rényi. Let H1 be that subgraph with
maximal density ρ(H1) = e1/v1. (When H is balanced we may take H1 = H.) They
showed that p = n−v1/e1 is the threshold function. This will follow fairly quickly from the
methods of theorem 1.7.

We finish this section with two strengthenings of Theorem 1.7.

Theorem 1.9. Let H be strictly balanced with v vertices, e edges and a automorphisms.
Let X be the number of copies of H in G(n, p). Assume p ≫ n−v/e. Then almost always

X ∼
nvpe

a
(28)

Proof. Label the vertices of H by 1, . . . , v. For each ordered x1, . . . , xv let Ax1,...,xv be the
event that x1, . . . , xv provides a copy of H in that order. Specifically we define

Ax1,...,xv : {i, j} ∈ E(H) ⇒ {xi, xj} ∈ E(G) (29)

We let Ix1,...,xv be the corresponding indicator random variable. We define an equivalence
class on v-tuples by setting (x1, . . . , xv) ≡ (y1, . . . , yv) if there is an automorphism σ of
V (H) so that yσ(i) = xi for 1 ≤ i ≤ v.Then

X =
∑

Ix1,...,xv (30)

gives the number of copies of H in G where the sum is taken over one entry from each
equivalence class. As there are (n)v/a terms

E[X] =
(n)v

a
E[Ix1,...,xv ] =

(n)vp
e

a
∼

nvpe

a
(31)

Our assumption p ≫ n−v/e implies E[X] → ∞. It suffices therefore to show ∆∗ = o(E[X]).
Fixing x1, . . . , xv,

∆∗ =
∑

(y1,...,yv)∼(x1,...,xv)

Pr[A(y1,...,yv)|A(x1,...,xv)] (32)

There are v!/a = O(1) terms with {y1, . . . , yv} = {x1, . . . , xv} and for each the conditional
probability is at most one (actually, at most p), thus contributing O(1) = o(E[X]) to ∆∗.
When {y1, . . . , yv} ∩ {x1, . . . , xv} has i elements, 2 ≤ i ≤ v − 1 the argument of Theorem
1.7 gives that the contribution to ∆∗ is o(E[X]). Altogether ∆∗ = o(E[X]) and we apply
Corollary 1.5
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Theorem 1.10. Let H be any fixed graph. For every subgraph H ′ of H (including H itself)
let XH′ denote the number of copies of H ′ in G(n, p). Assume p is such that E[XH′ ] → ∞
for every H ′. Then

XH ∼ E[XH ] (33)

almost always.

Proof. Let H have v vertices and e edges. As in Theorem 4.4 it suffices to show ∆∗ =
o(E[X]). We split ∆∗ into a finite number of terms. For each H ′ with w vertice and f
edges we have those (y1, . . . , yv) that overlap with the fixed (x1, . . . , xv) in a copy of H ′.
These terms contribute, up to constants,

nv−wpe−f = Θ

(

E[XH ]

E[XH′ ]

)

= o(E[XH ])

to ∆∗. Hence Corollary 1.5 does apply.

1.5 Connectivity

In this section we give a relatively simple example of what we call the Poisson Paradigm:
the rough notion that if there are many rare and nearly independent events then the
number of events that hold has approximately a Poisson distribution. This will yield
one of the most beautiful of the Erdős- Rényi results, a quite precise description of the
threshold behavior for connectivity. A vertex v ∈ G is isolated if it is adjacent to no w ∈ V .
In G(n, p) let X be the number of isolated vertices.

Theorem 1.11. Let p = p(n) satisfy n(1 − p)n−1 = µ. Then

lim
n→∞

Pr[X = 0] = e−µ (34)

Proof. We let Xi be the indicator random variable for vertex i being isolated so that
X = X1 + . . . + Xn. Then E[Xi] = (1 − p)n−1 so by linearity of expectation E[X] = µ.
Now consider the r-th factorial moment E[(X)r ] ((X)r :=

∏

i = 0r−1(X− i)) for any fixed
r. By the symmetry E[(X)r ] = (n)rE[X1 · · ·Xr]. For vertices 1, . . . , r to all be isolated
the r(n − 1) −

(r
2

)

pairs {i, x} overlapping 1, . . . , r must all not be edges. Thus

E[(X)r ] = (n)r(1 − p)r(n−1)−(r
2) ∼ nr(1 − p)r(n−1) ∼ µr (35)

(That is, the dependence among the Xi was asymptotically negligible.) All the moments
of X approach those of P (µ). This implies (a nonobvious result in probability theory) that
X approaches P (µ) in distribution.

Now we give the Erdős-Rényi famous “double exponential” result.

Theorem 1.12. Let

p = p(n) =
log n

n
+

c

n
+ o(

1

n
) (36)

Then
lim

n→∞
Pr[G(n, p) is connected] = e−e−c

(37)

8



Proof. For such p, n(1 − p)n−1 ∼ µ = e−c and by the above argument the probability
that X has no isolated vertices approaches e−µ. If G has no isolated vertices but is not
connected there is a component of k vertices for some 2 ≤ k ≤ n

2 . Letting B be this event

Pr[B] ≤

n/2
∑

k=2

(

n

k

)

kk−2pk−1(1 − p)k(n−1)−(k
2) (38)

The first factor is the choice of a component set S ⊂ V (G). The second factor is a choice
of tree on S. The third factor is the probability that those tree pairs are in E(G). The
final factor is that there be no edge from S to V (G)−S. Some calculation (which we omit
but note that k = 2 provides the main term) gives that Pr[B] = o(1) so that X 6= 0 and
connectivity have the same limiting probability.

1.6 The Janson Inequalities

In many instances we would like to bound the probability that none of a set of bad events
Bi, i ∈ I occur. If the events are mutually independent then

Pr[∧i∈IBi] =
∏

i∈I

Pr[Bi] (39)

When the Bi are “mostly” independent the Janson Inequalities allow us, sometimes, to
say that these two quantities are “nearly” equal.

Let Ω be a finite universal set and let R be a random subset of Ω given by

Pr[r ∈ R] = pr, (40)

these events mutually independent over r ∈ Ω. (In application to G(n, p), Ω is the set of
pairs {i, j}, i, j ∈ V (G) and all pr = p so that R is the edge set of G(n, p).) Let Ai, i ∈ I,
be subsets of Ω, I a finite index set. Let Bi be the event Ai ⊆ R. (That is, each point
r ∈ Ω “ flips a coin” to determine if it is in R. Bi is the event that the coins for all r ∈ Ai

came up “heads”.) Let Xi be the indicator random variable for Bi and X =
∑

i∈I Xi the
number of Ai ⊆ R. The event ∧i∈IBi and X = 0 are then identical. For i, j ∈ I we write
i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. Note that when i 6= j and not i ∼ j then Bi, Bj are
independent events since they involve separate coin flips. Furthermore, and this plays a
crucial role in the proofs, if i 6∈ J ⊂ I and not i ∼ j for all j ∈ J then Bi is mutually
independent of {Bj |j ∈ J}, i.e., independent of any Boolean function of those Bj . This is
because the coin flips on Ai and on ∪j∈JAj are independent. We define

∆ =
∑

i∼j

Pr[Bi ∧ Bj] (41)

Here the sum is over ordered pairs so that ∆/2 gives the same sum over unordered pairs.
(This will be the same ∆ as defined earlier.) We set

M =
∏

i∈I

Pr[Bi], (42)

the value of Pr[∧i∈IBi] if the Bi were independent.
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Theorem 1.13 (The Janson Inequality). Let Bi, i ∈ I, ∆,M be as above and assume all
Pr[Bi] ≤ ǫ. Then

M ≤ Pr[∧i∈IBi] ≤ Me
1

1−ǫ
∆
2 (43)

Now set
µ = E[X] =

∑

i∈I

Pr[Bi] (44)

For each i ∈ I
Pr[Bi] = 1 − Pr[Bi] ≤ e−Pr[Bi] (45)

so, multiplying over i ∈ I,
M ≤ e−µ (46)

It is often more convenient to replace the upper bound of Theorem 1.13 with

Pr[∧i∈IBi] ≤ e−µ+ 1
1−ǫ

∆
2 (47)

As an example, set p = cn−2/3 and consider the probability that G(n, p) contains no
K4. The Bi then range over the

(n
4

)

potential K4 - each being a 6-element subset of Ω.
Here, as is often the case, ǫ = o(1), ∆ = o(1) (as calculated previously) and µ approaches
a constant, here k = c6/24. In these instances Pr[∧i∈IBi] → e−k. Thus we have the fine
structure of the threshold function of ω(G) = 4.

As ∆ becomes large the Janson Inequality becomes less precise. Indeed, when ∆ ≥
2µ(1 − ǫ) it gives an upper bound for the probability which is larger than one. At that
point (and even somewhat before) the following result kicks in.

Theorem 1.14. (Generalized Janson Inequality) Under the assumptions of Theorem 1.13
and the further assumption that ∆ ≥ µ(1 − ǫ)

Pr[∧i∈IBi] ≤ e−
µ2(1−ǫ)

2∆ (48)

The Generalized Janson Inequality (when it applies) often gives a much stronger result
than Chebyschev’s Inequality as used earlier. We can bound V ar[X] ≤ µ + ∆ so that

Pr[∧i∈IBi] = Pr[X = 0] ≤
V ar[X]

E[X]2
≤

µ + ∆

µ2
(49)

Suppose ǫ = o(1), µ → ∞, µ ≪ ∆, and γ = µ2

∆ → ∞. Chebyschev’s upper bound on
Pr[X = 0] is then roughly γ−1 while Janson’s upper bound is roughly e−γ .

1.7 The Proofs

The original proofs of Janson are based on estimates of the Laplace transform of an ap-
propriate random variable. The proof presented here follows that of Boppana and Spencer
[1989]. We shall use the inequalities

Pr[Bi| ∧j∈J Bj] ≤ Pr[Bi] (50)
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valid for all index sets J ⊂ I, i 6∈ J and

Pr[Bi|Bk ∧
∧

j∈J

Bj ] ≤ Pr[Bi|Bk] (51)

valid for all index sets J ⊂ I, i, k 6∈ J . The first follows from general Correlation Inequali-
ties. The second is equivalent to the first since conditioning on Bk is the same as assuming
pr = Pr[r ∈ R] = 1 for all r ∈ Ak. We note that Janson’s Inequality actually applies to
any set of events Bi and relation ∼ for which (50,51) apply.

Proof. (Thm. 1.13) The lower bound follows immediately. Order the index set I =
{1, . . . ,m} for convenience. For 1 ≤ i ≤ m

Pr[Bi| ∧1≤j<i Bj] ≤ Pr[Bi] (52)

so
Pr[Bi| ∧1≤j<i Bj ] ≥ Pr[Bi] (53)

and

Pr[∧i∈IBi] =
m
∏

i=1

Pr[Bi| ∧1≤j<i Bj ] ≥
m
∏

i=1

Pr[Bi] (54)

Now the upper bound. For a given i renumber, for convenience, so that i ∼ j for
1 ≤ j ≤ d and not for d + 1 ≤ j < i. We use the inequality Pr[A|B ∧ C] ≥ Pr[A ∧ B|C],
valid for any A,B,C. With A = Bi, B = B1 ∧ . . . ∧ Bd, C = Bd+1 ∧ . . . ∧ Bi−1

Pr[Bi| ∧1≤j<i Bj] = Pr[A|B ∧ C] ≥ Pr[A ∧ B|C] = Pr[A|C]Pr[B|A ∧ C] (55)

From the mutual independence Pr[A|C] = Pr[A]. We bound

Pr[B|A ∧ C] ≥ 1 −
d

∑

j=1

Pr[Bj |Bi ∧ C] ≥ 1 −
d

∑

j=1

Pr[Bj|Bi] (56)

from the Correlation Inequality. Thus

Pr[Bi| ∧1≤j<i Bj] ≥ Pr[Bi] −
d

∑

j=1

Pr[Bj ∧ Bi] (57)

Reversing

Pr[Bi| ∧1≤j<i Bj] ≤ Pr[Bi] +

d
∑

j=1

Pr[Bj ∧ Bi] (58)

≤ Pr[Bi]



1 +
1

1 − ǫ

d
∑

j=1

Pr[Bj ∧ Bi]



 (59)

since Pr[Bi] ≥ 1 − ǫ. Employing the inequality 1 + x ≤ ex,

Pr[Bi| ∧1≤j<i Bj] ≤ Pr[Bi]e
1

1−ǫ

Pd
j=1 Pr[Bj∧Bi] (60)
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For each 1 ≤ i ≤ m we plug this inequality into

Pr[∧i∈IBi] =

m
∏

i=1

Pr[Bi| ∧1≤j<i Bj] (61)

The terms Pr[Bi] multiply to M . The exponents add: for each i, j ∈ I with j < i and
j ∼ i the term Pr[Bj ∧ Bi] appears once so they add to ∆/2.

Proof. (Theorem 1.14) As discussed earlier, the proof of Theorem 1.13 gives

Pr[∧i∈IBi] ≤ e−µ+ 1
1−ǫ

∆
2 (62)

which we rewrite as

− ln[Pr[∧i∈IBi]] ≥
∑

i∈I

Pr[Bi] −
1

2(1 − ǫ)

∑

i∼j

Pr[Bi ∧ Bj] (63)

For any set of indices S ⊂ I the same inequality applied only to the Bi, i ∈ S gives

− ln[Pr[∧i∈SBi]] ≥
∑

i∈S

Pr[Bi] −
1

2(1 − ǫ)

∑

i,j∈S,i∼j

Pr[Bi ∧ Bj] (64)

Let now S be a random subset of I given by

Pr[i ∈ S] = p (65)

with p a constant to be determined, the events mutually independent. (Here we are using
probabilistic methods to prove a probability theorem!)

E
[

− ln[Pr[∧i∈SBi]
]

≥ E

[

∑

i∈S

Pr[Bi]

]

−
1

2(1 − ǫ)
E





∑

i,j∈S,i∼j

Pr[Bi ∧ Bj]



 (66)

Each term Pr[Bi] then appears with probability p and each term Pr[Bi ∧ Bj] with proba-
bility p2 so that

E
[

− ln[Pr[∧i∈SBi]
]

≥ pµ −
1

1 − ǫ
p2 ∆

2
(67)

We set

p =
µ(1 − ǫ)

∆
(68)

so as to maximize this quantity. The added assumption of Theorem 1.14 assures us that
the probability p is at most one. Then

E
[

− ln[Pr[∧i∈SBi]
]

≥
µ2(1 − ǫ)

2∆
(69)

Therefore there is a specific S ⊂ I for which

− ln[Pr[∧i∈SBi] ≥
µ2(1 − ǫ)

2∆
(70)
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That is,

Pr[∧i∈SBi] ≤ e−
µ2(1−ǫ)

2∆ (71)

But
Pr[∧i∈IBi] ≤ Pr[∧i∈SBi] (72)

completing the proof.

1.8 Appearance of Small Subgraphs Revisited

Generalizing the fine threshold behavior for the appearance of K4 we find the fine threshold
behavior for the appearance of any strictly balanced graph H.

Theorem 1.15. Let H be a strictly balanced graph with v vertices, e edges and a auto-
morphisms. Let c > 0 be arbitrary. Let A be the property that G contains no copy of H.
Then with p = cn−v/e,

lim
n→∞

Pr[G(n, p) |= A] = exp[−ce/a] (73)

Proof. Let Aα, 1 ≤ α ≤
(n
v

)

v!/a, range over the edge sets of possible copies of H and let
Bα be the event G(n, p) ⊇ Aα. We apply Janson’s Inequality. As

lim
n→∞

µ = limn→∞

(

n

v

)

v!pe/a = ce/a (74)

we find
lim

n→∞
M = exp[−ce/a] (75)

Now we examine (similar to Theorem 1.7)

∆ =
∑

α∼β

Pr[Bα ∧ Bβ] (76)

We split the sum according to the number of vertices in the intersection of copies α and
β. Suppose they intersect in j vertices. If j = 0 or j = 1 then Aα ∩ Aβ = ∅ so that α ∼ β
cannot occur. For 2 ≤ j ≤ v let fj be the maximal |Aα ∩ Aβ | where α ∼ β and α, β
intersect in j vertices. As α 6= β, fv < e. When 2 ≤ j ≤ v − 1 the critical observation is
that Aα ∩ Aβ is a subgraph of H and hence, as H is strictly balanced,

fj

j
<

e

v
(77)

There are O(n2v−j) choices of α, β intersecting in j points since α, β are determined, except
for order, by 2v − j points. For each such α, β

Pr[Bα ∧ Bβ] = p|Aα∪Aβ | = p2e−|Aα∩Aβ | ≤ p2e−fj (78)

Thus

∆ =
v

∑

j=2

O(n2v−j)O(n− v
e
(2e−fj)) (79)
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But

2v − j −
v

e
(2e − fj) =

vfj

e
− j < 0 (80)

so each term is o(1) and hence ∆ = o(1). By Janson’s Inequality

lim
n→∞

Pr[∧Bα] = lim
n→∞

M = exp[−ce/a] (81)

completing the proof.

The fine threshold behavior for the appearance of an arbitrary graph H has been
worked out but it can get quite complicated.

1.9 Some Very Low Probabilities

Let A be the property that G does not contain K4 and consider Pr[G(n, p) |= A] as p varies.
(Results with K4 replaced by an arbitrary H are discussed at the end of this section.) We
know that p = n−2/3 is a threshold function so that for p ≫ n−2/3 this probability is o(1).
Here we want to estimate that probability. Our estimates here will be quite rough, only up
to a o(1) additive factor in the hyperexponent, though with more care the bounds differ by
“only” a constant factor in the exponent. If we were to consider all potential K4 as giving

mutually independent events then we would be led to the estimate (1−p6)(
n
4) = e−n4+o(1)p6

.
For p appropriately small this turns out to be correct. But for, say, p = 1

2 it would give

the estimate e−n4+o(1)
. This must, however, be way off the mark since with probability

2−(n
2) = e−n2+o(1)

the graph G could be empty and hence trivially satisfy A.
Rather than giving the full generality we assume p = n−α with 2

3 > α > 0. The result
is:

Pr[G(n, p) |= A] = e−n4−6α+o(1)
(82)

for 2
3 > α ≥ 2

5 and

Pr[G(n, p) |= A] = e−n2−α+o(1)
(83)

for 2
5 ≥ α > 0.
The upper bound follows from the inequality

Pr[G(n, p) |= A] ≥ max
[

(1 − p6)(
n
4), (1 − p)(

n
2)

]

(84)

This is actually two inequalities. The first comes from the probability of G not containing
a K4 being at most the probability as if all the potential K4 were independent. The second
is the same bound on the probability that G doesn’t contain a K2 - i.e., that G has no
edges. Calculation shows that the “turnover” point for the two inequalities occurs when
p = n−2/5+o(1).

The upper bound follows from the Janson inequalities. For each four set α of vertices
Bα is that that 4-set gives a K4 and we want Pr[∧Bα]. We have µ = Θ(n4p6) and
− ln M ∼ µ and (as shown earlier) ∆ = Θ(µ∆∗) with ∆∗ = Θ(n2p5 + np3). With p = n−α

and 2
3 > α > 2

5 we have ∆∗ = o(1) so that

Pr[∧Bα] ≤ e−µ(1+o(1)) = e−n4−6α+o(1)
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When 2
5 > α > 0 then ∆∗ = Θ(n2p5) (somewhat surprisingly the np3 never is significant

in these calculations) and the extended Janson inequality gives

Pr[∧Bα] ≤ e−Θ(µ2/∆) = e−Θ(µ/∆∗) = e−n2−α

The general result has been found by T.  Luczak, A. Rucinski and S. Janson (1990).
Let H be any fixed graph and let A be the property of not containing a copy of H. For
any subgraph H ′ of H the correlation inequality gives

Pr[G(n, p) |= A] ≤ e−E[XH′ ] (85)

where XH′ is the number of copies of H ′ in G. Now let p = n−α where we restrict to those
α for which p is past the threshold function for the appearance of H. Then

Pr[G(n, p) |= A] = eno(1)
min
H′

e−E[XH′ ] (86)

2 Lecture II: The Phase Transition

2.1 Branching Processes

Paul Erdős and Alfred Rényi, in their original 1960 paper, discovered that the random
graph G(n, p) undergoes a remarkable change at p = 1/n. Speaking roughly, let first
p = c/n with c < 1. Then G(n, p) will consist of small components, the largest of which
is of size Θ(ln n). But now suppose p = c/n with c > 1. In that short amount of “time”
many of the components will have joined together to form a “giant component” of size
Θ(n). The remaining vertices are still in small components, the largest of which has size
Θ(ln n). They dubbed this phenomenon the Double Jump. We prefer the descriptive term
Phase Transition because of the connections to percolation.

To better understand the Phase Transition we make a lengthy detour into the subject of
Branching Processes. Imagine that we are in a unisexual universe and we start with a single
organism. Imagine that this organism has a number of children given by a given random
variable Z. (For us, Z will be Poisson with mean c.) These children then themselves
have children, the number again being determined by Z. These grandchildren then have
children, etc. As Z = 0 will have nonzero probability there will be some chance that the
line dies out entirely. We want to study the total number of organisms in this process,
with particular eye to whether or not the process continues forever.

Now lets be more precise. Let Z1, Z2, . . . be independent random variables, each with
distribution Z. Define Y0, Y1, . . . by initial value Y0 = 1 and the recursion

Yi = Yi−1 + Zi − 1 (87)

and let T be the least t for which Yt = 0. If no such t exists (the line continuing forever)
we say T = +∞. The Yi and Zi mirror the Branching Process as follows. We view all
organisms as living or dead. Initially there is one live organism and no dead ones. At
each time unit we select one of the live organisms, it has Zi children, and then it dies.
The number Yi of live organisms at time i is then given by the recursion. The process
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stops when Yt = 0 (extinction) but it is a convenient fiction to define the recursion for all
t. Note that T is not affected by this fiction since once Yt = 0, T has been defined. T
(whether finite or infinite) is the total number of organisms, including the original, in this
process. (A natural approach, found in many probability texts, is to have all organisms of
a given generation have their children at once and study the number of children of each
generation. While we may think of the organisms giving birth by generation it will not
affect our model.)

We shall use the major result of Branching Processes that when E[Z] = c < 1 with
probability one the process dies out (T < ∞) but when E[Z] = c > 1 then there is a
nonzero probability that the process goes on forever (T = ∞).

When a branching process dies we call H = (Z1, . . . , ZT ) the history of the process.
A sequence (z1, . . . , zt) is a possible history if and only if the sequence yi given by y0 =
1, yi = yi−1 + zi − 1 has yi > 0 for 0 ≤ i < t and yt = 0. When Z is Poisson with mean λ

Pr[H = (z1, . . . , zt)] =

t
∏

i−1

e−λλzi

zi!
=

e−λ(λe−λ)t−1

∏t
i=1 zi!

(88)

since z1 + . . . + zt = t − 1.

Definition 3. We call d < 1 < c a conjugate pair if

de−d = ce−c (89)

The function f(x) = xe−x increases from 0 to e−1 in [0,1) and decreases back to 0 in
(1,∞) so that all c 6= 1 have a uniqe conjugate. Let c > 1 and y = Pr[T < ∞] so that
y = ec(y−1). Then (cy)e−cy = ce−c so

d = cy (90)

For future use we note that if c = 1 + ǫ then its dual d satisfies

d = 1 − ǫ + O(ǫ2) (91)

as ǫ → 0+.

Theorem 2.1. (Duality Principle) Let d < 1 < c be conjugates. The Branching Process
with mean c, conditional on extinction, has the same distribution as the Branching Process
with mean d.

Proof. It suffices to show that for every history H = (z1, . . . , zt)

e−c(ce−c)t−1

y
∏t

i=1 zi!
=

e−d(de−d)t−1

∏t
i=1 zi!

(92)

This is immediate as ce−c = de−d and ye−d = ye−cy = e−c.
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2.2 The Giant Component

Now let’s return to random graphs. We define a procedure to find the component C(v)
containing a given vertex v in a given graph G. We are motivated by Karp [1990] in which
this approach is applied to random digraphs. In this procedure vertices will be live, dead or
neutral. Originally v is live and all other vertices are neutral, time t = 0 and Y0 = 1. Each
time unit t we take a live vertex w and check all pairs {w,w′}, w′ neutral, for membership
in G. If {w,w′} ∈ G we make w′ live, otherwise it stays neutral. After searching all neutral
w′ we set w dead and let Yt equal the new number of live vertices. When there are no live
vertices the process terminates and C(v) is the set of dead vertices. Let Zt be the number
of w′ with {w,w′} ∈ G so that Y0 = 1 and

Yt = Yt−1 + Zt − 1 (93)

With G = G(n, p) each neutral w′ has independent probability p of becoming live.
Here, critically, no pair {w,w′} is ever examined twice so that the conditional probability
for {w,w′} ∈ G is always p. As t − 1 vertices are dead and Yt−1 are live

Zt ∼ B[n − (t − 1) − Yt−1, p] (94)

Let T be the least t for which Yt = 0. Then T = |C(v)|. As in Section 2.1 we continue the
recursive definition of Yt, this time for 0 ≤ t ≤ n.

Theorem 2.2. For all t

Yt ∼ B[n − 1, 1 − (1 − p)t] + 1 − t (95)

Proof. It is more convenient to deal with

Nt = n − t − Yt (96)

the number of neutral vertices at time t and show, equivalently,

Nt ∼ B[n − 1, (1 − p)t] (97)

This is reasonable since each w 6= v has independent probability (1−p)t of staying neutral
t times. Formally, as N0 = n − 1 and

Nt = n − t − Yt = n − t − B[n − (t − 1) − Yt−1, p] − Yt−1 + 1
= Nt−1 − B[Nt−1, p]
= B[Nt−1, 1 − p]

the result follows by induction.

We set p = c/n. When t and Yt−1 are small we may approximate Zt by B[n, c/n]
which is approximately Poisson with mean c. Basically small components will have size
distribution as in the Branching Process. The analogy must break down for c > 1 as the
Branching Process may have an infinite population whereas |C(v)| is surely at most n.
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Essentially, those v for which the Branching Process for C(v) does not “die early” all join
together to form the giant component.

Fix c. Let Y ∗
0 , Y ∗

1 , . . . , T ∗, Z∗
1 , Z∗

2 , . . . ,H∗ refer to the Branching Process and let the
unstarred Y0, Y1, . . . , T, Z1, Z2, . . . ,H refer to the Random Graph process. For any possible
history (z1, . . . , zt)

Pr[H∗ = (z1, . . . , zt)] =

t
∏

i=1

Pr[Z∗ = zi] (98)

where Z∗ is Poisson with mean c while

Pr[H = (z1, . . . , zt)] =
t

∏

i=1

Pr[Zi = zi] (99)

where Zi has Binomial Distribution B[n−1−z1− . . .−zi−1, c/n]. The Poisson distribution
is the limiting distribution of Binomials. When m = m(n) ∼ n and c, i are fixed

lim
n→∞

Pr[B[m, c/n] = i] = lim
n→∞

(

m

z

)

(
c

n
)z(1 −

c

n
)m−z = e−ccz/z! (100)

hence
lim

n→∞
Pr[H = (z1, . . . , zt)] = Pr[H∗ = (z1, . . . , zt)] (101)

Assume c < 1. For any fixed t, limn→∞ Pr[T = t] = Pr[T ∗ = t]. We now bound the
size of the largest component. For any t

Pr[T > t] ≤ Pr[Yt > 0] = Pr[B[n − 1, 1 − (1 − p)t] ≥ t] ≤ Pr[B[n, tc/n] ≥ t] (102)

as 1 − (1 − p)t ≤ tp and n − 1 < n. By Large Deviation Results

Pr[T > t] < e−αt (103)

where α = α(c) > 0. Let β = β(c) satisfy αβ > 1. Then

Pr[T > β ln n] < n−αβ = o(n−1) (104)

There are n choices for initial vertex v. Thus almost always all components have size
O(ln n).

Now assume c > 1. For any fixed t, limn→∞ Pr[T = t] = Pr[T ∗ = t] but what
corresponds to T ∗ = ∞? For t = o(n) we may estimate 1 − (1− p)t ∼ pt and n− 1 ∼ n so
that

Pr[Yt ≤ 0] = Pr[B[n − 1, 1 − (1 − p)t] ≤ t − 1] ∼ Pr[B[n, tc/n] ≤ t] (105)

drops exponentially in t by Large Deviation results. When t = αn we estimate 1− (1− p)t

by 1 − e−cα. The equation 1 − e−cα = α has solution α = 1 − y where y is the extinction
probability. For α < 1 − y, 1 − e−cα > α and

Pr[Yt ≤ 0] ∼ Pr[B[n, 1 − e−cα] ≤ αn] (106)

18



is exponentially small while for α > 1 − y, 1 − e−cα < α and Pr[Yt ≤ 0] ∼ 1. Thus almost
always Yt = 0 for some t ∼ (1 − y)n. Basically, T ∗ = ∞ corresponds to T ∼ (1 − y)n. Let
ǫ, δ > 0 be arbitrarily small. With somewhat more care to the bounds we may show that
there exists t0 so that for n sufficiently large

Pr[t0 < T < (1 − δ)n(1 − y) or T > (1 + δ)n(1 − y)] < ǫ (107)

Pick t0 sufficiently large so that

y − ǫ ≤ Pr[T ∗ ≤ t0] ≤ y (108)

Then as limn→∞ Pr[T ≤ t0] = Pr[T ∗ ≤ 0] for n sufficiently large

y − 2ǫ ≤ Pr[T ≤ t0] ≤ y + ǫ (109)

1 − y − 2ǫ ≤ Pr[(1 − δ)n(1 − y) < T < (1 + δ)n(1 − y)] < 1 − y + 3ǫ (110)

Now we expand our procedure to find graph components. We start with G ∼ G(n, p),
select v = v1 ∈ G and compute C(v1) as before. Then we delete C(v1) , pick v2 ∈ G−C(v1)
and iterate. At each stage the remaining graph has distribution G(m, p) where m is the
number of vertices. (Note, critically, that no pairs {w,w′} in the remaining graph have been
examined and so it retains its distribution.) Call a component C(v) small if |C(v)| ≤ t0,
giant if (1 − δ)n(1 − y) < |C(v)| < (1 + δ)n(1 − y) and otherwise failure. Pick s = s(ǫ)
with (y + ǫ)s < ǫ. (For ǫ small s ∼ K ln ǫ−1.) Begin this procedure with the full graph
and terminate it when either a giant component or a failure component is found or when
s small components are found. At each stage, as only small components have thus far
been found, the number of remaining points is m = n − O(1) ∼ n so the conditional
probabilities of small, giant and failure remain asymptotically the same. The chance of
ever hitting a failure component is thus ≤ sǫ and the chance of hitting all small components
is ≤ (y + ǫ)s ≤ ǫ so that with probability at least 1 − ǫ′, where ǫ′ = (s + 1)ǫ may be made
arbitrarily small, we find a series of less than s small components followed by a giant
component. The remaining graph has m ∼ yn points and pm ∼ cy = d, the conjugate
of c as defined earlier. As d < 1 the previous analysis gives the maximal components. In
summary: almost always G(n, c/n) has a giant component of size ∼ (1− y)n and all other
components of size O(ln n). Furthermore, the Duality Principle has a discrete analog.

Theorem 2.3. (Discrete Duality Principle) Let d < 1 < c be conjugates. The structure of
G(n, c/n) with its giant component removed is basically that of G(m,d/m) where m, the
number of vertices not in the giant component, satisfies m ∼ ny.

Well, this is not a pricisely stated theorem – but the concept is quite compelling.

2.3 A Static View

The small components of G(n, c/n) can also be examined from a static view. For a fixed
k let X be the number of tree components of size k. Then

E[X] =

(

n

k

)

kk−2pk−1(1 − p)k(n−k)+(k
2)−(k−1) (111)
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Here we use the nontrivial fact, due to Cayley, that there are kk−2 possible trees on a given
k-set. For c, k fixed

E[X] ∼ n
e−ckkk−2ck−1

k!
(112)

As trees are strictly balanced a second moment method gives X ∼ E[X] almost always.
Thus ∼ pkn points lie in tree components of size k where

pk =
e−ck(ck)k−1

k!
(113)

It can be shown analytically that pk = Pr[T = k] in the Branching Process with mean c.
Let Yk denote the number of cycles of size k and Y the total number of cycles. Then

E[Yk] =
(n)k

2k
(
c

n
)k ∼

ck

2k
(114)

for fixed k. For c < 1

E[Y ] =
∑

E[Yk] →
∞

∑

k=1

ck

2k
(115)

has a finite limit whereas for c > 1, E[Y ] → ∞. Even for c > 1 for any fixed k the number
of k-cycles has a limiting expectation and so do not asymptotically affect the number of
components of a given size.
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