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1 Introduction

The aim of this lecture is to elucidate a basic mathematical structure that
provides a plasma with microscopic complexity and, at the same time, some
ordered structures on macroscopic scale. To describe a theory of the co-
existence of microscopic complexity (disorder) and macroscopic order, we
must start by asking what scale hierarchy is. Here, we formulate scale hier-
archy invoking the notion of phase-space foliation —macroscopic hierarchy is
a leaf immersed in the total microscopic phase-space; macroscopic descrip-
tion of mechanics is non-canonical, while the microscopic world is canonical
(as we lean in basic physics courses).

The problem is the “geometry” that dictates the mechanics. In com-
parison with some complicated Hamiltonians invoked to describe strongly
coupled systems such as various condensed matters (a typical example is the
Ginzburg-Landau energy of superconductivity), “normal” (weakly coupled)
a fluid or plasma assumes a simple Hamiltonian (basically a quadratic func-
tion on phase space, which parallels the norm of the metric). Therefore,
the conventional Hamiltonian does not describe a “program” that enables a
plasma to produce nontrivial structures or dynamics on macroscopic scales,
i.e. the mechanism creating a non-trivial structure (which is typically vor-
tical) is not due to some structure written in a Hamiltonian. The creation
mechanism must be, then, found in the geometry of space time that hosts
the matter, rather than the energy, the matter itself.

Let us start by a simple example. A charged particle’s Hamiltonian H is
the sum of the kinetic energy |P —qA|?/2m (P is the canonical momentum,



A is the vector potential, m is the mass, and ¢ is the charge) and the poten-
tial energy gé. The Boltzmann distribution is nge #7 = nge_(v2/2m+q¢),
where V = P — gA. Hence, the magnetic field does not influence the equi-
librium distribution (this is simply because magnetic force does not change
energy). If we assume charge neutrality and put ¢ = 0, we obtain a spa-
tially homogeneous density distribution. Needless to say, this simple model
does not apply to describe rich structures (inhomogeneous distributions of
various physical quantities) of plasmas created by magnetic fields. We thus
proffer a theory that attributes creation mechanism to “space”. The notion
of particle (an element sitting in space) is, then, deformed to some “quasi-
particle” that better describes macroscopic hierarchy of a plasma. In Sec. 2,
we will construct a mathematical framework which enables us to formulate
an appropriate space = macroscopic hierarchy on which a plasma creates a
significant structure.

2 Scale hierarchy and self-organization

2.1 Co-existence of order and disorder

Superficially, the process of self-organization of a structure may appear to
be an antithesis of the maximum entropy ansatz. And yet various non-
linear systems display what may be viewed as the simultaneous existence
of order and disorder. This co-existence will begin to make sense if the
self-organization processes and the entropy principle were to manifest on
different scales; disorder can still develop at a microscopic scale while an
ordered structure emerges on some appropriate macroscopic scale. Writing
a theory of self-organization, then, will be an exercise in delineating and
understanding the characteristic scale hierarchy of the physical system.
Here we introduce a mathematical framework to describe a theory of
self-organization on hierarchical phase space. To delineate the emergence of
a clear and distinct scale hierarchy, we adopt an approach by Hamiltonian
mechanics; we will investigate a magnetospheric plasma as a typical example
of systems in which ordered structures can emerge while maximizing entropy.
Magnetospheric plasmas (the naturally occurring ones such as the plane-
tary magnetospheres, as well as their laboratory simulations[24, 16, 17, 27])
are self-organized around the dipole magnetic fields in which charged par-
ticles cause a variety of interesting phenomena: the inward diffusion (or
up-hill diffusion) is of particular interest. This process is driven by some
spontaneous fluctuations (symmetry breaking) that violate the constancy
of angular momentum. In a strong enough magnetic field, the canonical



angular momentum Py is dominated by the magnetic part gi: the charge
multiplied by the flux function (in the r-6-z cylindrical coordinates, ¢ = r Ay,
where Ay is the # component of the vector potential). The conservation of
Py = qi, therefore, restricts the particle motion to the magnetic surface
(level-set of v)). It is only via randomly-phased fluctuations that the parti-
cles can diffuse across magnetic surfaces. Although the “diffusion” is nor-
mally a process that diminishes gradients, numerical experiments do exhibit
preferential inward shifts through random motions of test particles[3, 21].
Detailed specification of the fluctuations or the microscopic motion of par-
ticles is not the subject of present effort. We plan to construct, instead,
a clear-cut description of equilibria that maximize entropy simultaneously
with bearing steep density gradients [27].

Such an equilibrium will be formulated as a grand-canonical distribution
on a leaf of “foliated phase space” that represents a macroscopic hierarchy.
Heterogeneity is created by the distortion of the metric (invariant measure)
dictating equipartition on the leaf. In a strongly inhomogeneous magnetic
field (typically a dipole magnetic field), the phase-space metric of magnetized
particles is distorted; thus the projection of the equipartition distribution
onto the flat space of the laboratory frame yields peaked profile because of
the connecting inhomogeneous Jacobian weight.

2.2 Hamiltonian of charged particle

The Hamiltonian of a charged particle is a sum of the kinetic energy and
the potential energy:

H = 20 + g9, M

where v := (P—qA)/m is the velocity, P is the canonical momentum, (¢, A)
is the electromagnetic 4-potential, m (q) is the particle mass (charge). In the
present work, we may treat electrons and ions equally (in later discussion, we
will neglect ¢ assuming charge neutrality, but generalization to a non-neutral
plasma will be interesting [24, 5]). Denoting by v and v the parallel and
perpendicular (with respect to the local magnetic field) components of the
velocity, we may write

m m
H= Evi + 51}ﬁ + q¢. (2)

The velocities are related to the mechanical momentum as p := mv, p|| :=
mv)|, and p; = mv,.

In a strong magnetic field, v; can be decomposed into a small-scale
cyclotron motion v, and a macroscopic guiding-center drift motion v4. The



periodic cyclotron motion v, can be quantized to write (m/2)v? = pw.(z)
in terms of the magnetic moment p and the cyclotron frequency w.(x); the
adiabatic invariant ;4 and the gyration phase 9. := w.t constitute an action-
angle pair. In the standard interpretation, in analogy with the Landau
levels in quantum theory, w. is the energy level and p is the number of
quasi-particles (quantized periodic motions) at the corresponding energy
level.

For an axisymmetric system with a poloidal (but no toroidal) magnetic
field, let (¢, (,0) be a magnetic coordinate system such that B = Vi x V6
(@ is the toroidal angle). An approximately-vacuum magnetic field may also
be written as B = V& = BV(. For a point dipole of magnetic moment M,

P(r,z) = MTZ(TQ—FzZ)_?’/Z,
E(r,z) = Mz(r? + 22732

The magnetic field strength is

B = M\/(r% + 5r222 + 42%) /(r2 + 22)5.

The macroscopic part of the perpendicular kinetic energy is expressed
as mv3/2 = (Pp — q)?/(2mr?), where Pp is the angular momentum in the
0 direction and r is the radius from the geometric axis. In terms of the
canonical-variable set z = (J, i1, ¢, p||, 0, Pp) the Hamiltonian of the guiding
center (or, the quasi-particle) becomes

1 (Py— qib)?
%%_Fq(ﬁ_ (3)

1
He = pwe + 5 —pij +
m
Note that the energy of the cyclotron motion has been quantized in term
of the frequency w.(x) and the action u; the gyro-phase 1, has been coarse
grained (integrated to yield 2).

2.3 Boltzmann distribution

The standard Boltzmann distribution function is derived when we assume
that d®vd3z is an invariant measure and the Hamiltonian H is the deter-
minant of the ensemble. Maximizing the entropy S = — [ flog fd3vd3x
keeping the total energy E = [ H fd?vd®z and the total particle number
N = ffd?’vd% constant, we obtain

flx,v) = Z e BH (4)



where Z is the normalization factor (log Z — 1 is the Lagrange multiplier on
N) and S is the inverse temperature (the Lagrange multiplier on E). The
corresponding configuration-space density,

o) = / fd o o P15, (5)

becomes constant for a charge neutral system (¢ = 0).

Needless to say that the Boltzmann distribution or the corresponding
configuration-space density, with an appropriate Jacobian multiplication, is
independent of the choice of phase-space coordinates. Moreover, the density
is invariant no matter whether we quantize the cyclotron morion or not. Let
us confirm this fact by a direct calculation. For the Boltzmann distribution
of the “guiding-center plasma”

fluvg o) = Z le P

1B (e (@) +mo /24mof /2449 (w))

; (6)

the density is given by

plx) = /fd3v = /f 27Mcd,udvaldvu oc e P, (7)

m
exactly reproducing (5).

2.4 Equilibrium on macroscopic hierarchy

Now we formulate the “macroscopic hierarchy” on which the thermal equilib-
rium creates a structure. The adiabatic invariance of the magnetic moment
u (the number of the quantized quasi-particles) imposes a topological con-
straint on the motion of particles; it is this constraint that is the root-cause
of a macroscopic hierarchy and of structure formation. Mathematically, the
scale hierarchy is equivalent to a foliation of the phase space. To explain
how the scale hierarchy is formulated, we start by the general (micro-macro
total) formulation, and then separate the microscopic action-angle pair u-v.;
the macroscopic phase space is the remaining sub-manifold immersed in the
general phase space, which we delineate as a leaf of the foliation in terms of
a Casimir invariant (if there is a nontrivial function C satisfying {G,C} =0
for every GG, we say that the Poisson bracket { , } is non-canonical, and call
C a Casimir invariant;[13]).



The Poisson bracket on the total phase space, spanned by the canonical
variables z = (J¢, 1, ¢, p||, 0, Pp), is

{F,G} := (0. F, J.0.G),

where (u,v) := [ ujvj d®z is the inner-product and 7 is the canonical sym-
plectic matrix (Poisson tensor):

0 O
0 J. 0 |, chz(_ol é) (8)
0o 0 J.

Je
Je =

The equation of motion for the Hamiltonian H,. is written as dz//dt =
{H.,%7}. Notice that the quantization of the cyclotron motion suppresses
change in p. Liouville’s theorem determines the invariant measure d°z, by
which we obtain the Boltzmann distribution (6).

To extract the macroscopic hierarchy, we “separate” the microscopic
variables (., 1) by modifying the symplectic matrix as

0 0
jnc = 0 J (9)
0

0

)
nkcoo

The Poisson bracket
{F’ G}Tw = <8zFa jncazG>

determines the kinematics on the macroscopic hierarchy; the corresponding
kinetic equation Oyf + {He, f}ne = 0 reproduces the familiar drift-kinetic
equation (for example [14]).

The nullity of 7,. makes the Poisson bracket {, },. non-canonical [13].
Evidently, p is a Casimir invariant (more generally C' = g(u) with g being
any smooth function). The level-set of u, a leaf of the Casimir foliation,
identifies what we may call the macroscopic hierarchy. By applying Liou-
ville’s theorem to the Poisson bracket {, },., the invariant measure on the
macroscopic hierarchy is d*z = d%z/(2rdyu), the the total phase-space mea-
sure modulo the microscopic measure. The most probable state (statistical
equilibrium) on the macroscopic ensemble must maximize the entropy with
respect to this invariant measure. The variational principle is set up follow-
ing the standard procedure —immersing the macroscopic hierarchy into the
general phase space, and incorporating the constraints through the Lagrange
multipliers: We maximize entropy S = — [ flog f d®z for a given particle



(A) (B)

Figure 1: Density distribution (contours) and the magnetic field lines (level-
sets of ) in the neighborhood of a point dipole. (A) The equilibrium on
the leaf of u-foliation. (B) The equilibrium on the leaf of ;1 and J-foliation.

number N = [ fd®z, a quasi-particle number M = [ fd®z, and an energy
E = [ H.fd®:, to obtain the distribution function

f=fo:= 2z lem(PHeton), (10)

where «, 3, and log Z —1 are, respectively the Lagrange multipliers on M, F,
and N. In this “grand-canonical” distribution function, o/ is the chemical
potential associated with the quasi-particles.

We can also derive (10) by an energy-Casimir function. With a Casimir
element p, we can transform the Hamiltonian as H, — H, := H. + ap («
is an arbitrary constant) without changing the macroscopic dynamics; H,
is called an energy-Casimir function[13]. The Boltzmann distribution with
respect to Hy, is equivalent to (10).

The factor e in f, yields a direct w. dependence of the configuration-
space density:

we(x)

Buwe(x) + o’ (11)

p= /fa %dudvddvn x
m
which may be compared with the density (7) evaluated for the Boltzmann
distribution (¢ = 0 assuming charge neutrality). Notice that the Jacobian
(27w, /m)dp multiplying the macroscopic measure d*z reflects the distortion
of the macroscopic phase space (Casimir leaf) caused by the magnetic field.
Figure 1-(A) shows the density distribution and the magnetic field lines.



2.5 Macro-scale action-angle pair

In an axisymmetric system, the quasi-particle motion, periodic in both the
parallel and € directions, may be described in terms of the macroscopic
action-angle pairs: Jj-0) (:= sin*I(C/EH); €| is the bounce orbit length) and
Py (= q1)-0 (for a hierarchy of adiabatic invariants, see [9] and papers cited
there). To find explicit expressions for the parallel action-angle variables,
we invoke the Hamiltonian H, of (3). Neglecting the curvature effect and
putting ¢ = 0, the equation of the parallel motion reads as

2

d
m&C = —puV)we. (12)

In the vicinity of ( = 0, where w, has a minimum on each magnetic surface,
we may expand

2
e = 0,(9) + W)
where Q.(3) is the minimum of w, and Q(¢)) := d*w./d¢?|y. In terms of
the length
n = (Gi)
which scales the variation of w. along ¢, (12) is integrated to identify the cor-
responding action-angle variables: ¢ = /) sind|, ¥ = wyt with the bounce
frequency
. (ﬂz(wu)l” oL
b = = .
m Ly(4)
The bounce amplitude £ = [QEH/(me)]I/Q is evaluated in terms of the

parallel energy Ej := (mvﬁ)/2|<:0. Assuming F)| = E| := uf)., we estimate

EH ~ L”. The action
1
LWngmWK

is related to Ej = Jjwy, and

W w \! /2
mWZ(gE>¢ﬂ=<5;m> dJj

The latter, using the relation wy/(mv)) = v /(L mv)|) = 1/(mL)), becomes

1

8



The quantization of the parallel action-angle pair .Jj-9|, adds an addi-
tional constraint leading to a new equilibrium distribution function:

fap = 2t Glletantali), (13)

and the corresponding density

2rwedp dJ))
d
/fm m mLy(¢)

s / Jiﬁwm)#du (14)
ﬁ 2wc,u/m+'yL||

Through L;(¢), the density p acquires a dependence on 1. We may estimate
Ly(i) ~ 4! (= r at z = 0). Numerical integration of (14) gives a density
profile depicted in Fig. 1-(B).

3 Non-canonical mechanics structured by “vortex”

3.1 Symplectic geometry

Vortex is the universal structure that dictates any dynamics of matter en-
compassing from the canonical particle mechanics (either classical or quantum-
mechanical) to the non-canonical macroscopic fluid/plasma mechanics.

The symplectic geometry is the canonical example: Hamiltonian flow in
a phase space (cotangent bundle of some smooth manifold) can be viewed as
a “canonical” form of vortex implemented to the system by the symplectic
(Poisson) matrix: its simplest form

r=(2 ) (15)

is the generator of the rotation group

A0) < cos sin9>‘

—sinf cosf
Identifying an ezterior derivative of a 1-form to be a vorticity (general-
izing the conventional vorticity € = V x V of a three-dimensional vector
V'), the symplectic 2-form (the determinant of a canonical Hamiltonian me-
chanics) is, indeed, the vorticity of a canonical 1-form: Invoking a local
coordinate on a smooth n-dimensional manifold M, the canonical 1-form is

(16)

- ijdqj (e T*M). (17)



4

The symplectic 2-form is the “vorticity” of ©:

w:=dO = idqj A dpj. (18)
j=1
Denoting 29 1 = ¢qj, 22 =p; (j =1,---,n), and
7= (" o). (19)
we may write
w= %jckgdzk A dzy. (20)

Given a Hamiltonian H(z), the Lagrangian L = © — Hdt determines the
equation of motion by the variational principle:

dz 0H
ked<e
— =——. (k=1,---,2 21
T =50 (k=120 (21)
By multiplying 7, ! = — 7., we obtain
— = — (k=1,---,2 22
LGN (b= 2), (22)

which is the canonical Hamilton’s equation. Defining a Poisson bracket ! by
{a,b} := (d.a, J.0-a) = (0,,a) TF(9.,b), (23)

we may evaluate the rate of change of an observable f(z) by equation

d
Sf =5 ). (24)

A remarkable point of the canonical Hamiltonian mechanics is that the
vortical motion, generated by the canonical Poisson matrix 7., is limited
between the canonical pairs ¢; and p;. Hamilton-Jacobi equation p = —V.S
(S is the action) implies V x p = 0 (in general dimension, dp = 0), i.e. the
momentum vector is irrotational.

'Regarding 9., as the basis of the tangent space, ad(a) := J* (0-, H)O., is a vector field
(Hamiltonian flow) on the phase space (ad(a) is the adjoint representation of the Poisson
algebra). We may also regard ad(a) as a differential operator applying to functions on X,
which constitute a non-commutative ring D(X). The Lie bracket [ad(a),ad(b)] defines a
Lie algebra A; D(X) is the enveloping algebra of A.

10



Note 1 (Heisenberg algebra) The Poisson algebra of Hamiltonian me-
chanics is quantized by the correspondence principle:

{F modh,G modh} = h™'[F,G] modh, (25)

where F and G are some g-numbers (operators), [F,G| = FG — GF, {f,g}
is a Poisson bracket, and modh is the principal symbol of the preceding
operator. The “vortical motion” on the “space” of quantized variables §;
and py, (corresponding to q; and py) is then translated into the commutation
rule of such that

[G,P6] = ih 6, [dj,dk) =0, [pj,Pk] =0, (26)

which defines a Heisenberg algebra. Here again, the vortical motion (non-
commutativity) is limited a to the canonical pairs ¢; and pj.

3.2 Non-canonical Hamiltonian system

We consider a “generalized” Hamiltonian mechanics governed by

= 7(2)0.H(2) 1)
dt
where 7 (2) is some anti-symmetric operator (may depend on z), 2 H(z)
is a Hamiltonian (a real value regular function on the phase space X), and
0. H(z) is the gradient of H(z) in X (we endow X with an inner product
to define gradients).

A non-canonical Poisson operator [J(z) may have a non-trivial kernel:

Ker(J(z)) = {w € X; J(z)w = 0}.
A function C(z) such that
0:C(z) € Ker(J(z))

is called a Casimir element, which constitutes the center of the Poisson
algebra induced by J(z). Since C(z) is a constant of motion (independent
to H), the phase space is foliated by the level sets of C(z). Viewing the
phase space as the dual of the Lie algebra, surfaces of constant Casimirs are
coadjoint orbits [7].

If the dimension v of Ker(.J(z)) does not change, Casimir elements may
be constructed by elements of Ker(J(z)); this is always true if v is an even
number (Lie-Darboux theorem).

2We usually demand that the corresponding Poisson bracket satisfies Jacobi’s relation.
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Note 2 (singular Casimir elements) Some w € Ker(J(z)) may not be
“integrated” to produce a Casimir element; the existence of a Casimir ele-
ment implies integrability to foliate the phase space. In general, Rank(J (z))
may change as a function of z. If a singularity (where Rank(J (z)) changes)
exists, we obtain singular Casimir elements. For example, let us consider
a one-dimensional system with J = iz (x € R). The differential equa-
tion J0,C(z) = 0 produces a hyperfunction solution C(x) =Y (v) (Heavi-
side’s step function). More generally, the analysis of the linear partial dif-
ferential equation J(2)0,C(z) = 0. with singularities leads us to the the-
ory of D-modules [2]; denoting P := J(z)0z, Casimir elements constitute
Ker(P) = Homp(Coker(P), F'), where D is the ring of partial differential op-
erators and F is the function space on which P operates; Coker(P) = D/DP
is the D-module corresponding to the equation PC(z) = 0.

3.3 Generalization to infinite-dimensional phase space

We extend the phase pace to be an infinite-dimensional function space; we
consider an evolution equation

Ou = J(u)0, H (u), (28)

where u is a state vector (a member of a Hilbert space V'; we denote by
(a,b) the inner product), H(u) is a Hamiltonian (a real functional on V'),
and 0, is the gradient in V'). The Poisson operator [ (u) is antisymmetric.
In some examples, one can show that formal Jacobi’s identity holds for a
Poisson bracket {F,G} := (9, F, J(u)9,G) on a sheaf of regular functions,
while we are not planning to depend much on Lie-Poisson algebra in the
present study.
A Casimir functional C'(u) is determined by

J (u)8,C(u) =0, (29)

which may be viewed as an infinite-dimensional linear partial differential
equation. If 7 is independent of u, (29) is a homogeneous equation —a
“linearized system” corresponds to this category (see Sec.3.4). We remark
that the “coefficients” of such a homogeneous first-order differential equation
are (differential) operators (Note 2,[25]).

3.4 Energy-Casimir functional and linearized system

In a canonical Hamiltonian system (Ker(7) = {0}), an equilibrium point of
the dynamics must be a stationary point of the Hamiltonian, i.e. 0, H (u) =

12



0. A noncanonical system may have a richer set of equilibrium points that
are parameterized by Casimir elements. Given a Casimir element C'(u), we
can transform the Hamiltonian H(u) as

Hy(u) = H(u) = pCu) (4 €R) (30)

without changing the dynamics (since J(u)9,C(u) = 0). The new Hamil-
tonian H,(u) is called an energy-Casimir functional, that have been used
to construct variational principles for equilibria and stability (the first clear
usage of the energy-Casimir method for stability appears to be [8]; see also
(13, 1]). For an equilibrium point given by d,H,(u) = 0, the parameter
1 may be regarded as an eigenvalue. When we determine p by matching
C(u) of the solution with some given number ¢, the solution (say u,) is
an equilibrium point on a Casimir leaf C'(u) = ¢. We note that a general
Hamiltonian system may have even larger class of equilibrium points that
may not be parameterized by Casimir elements.

The linearization of the system near an equilibrium point of an energy-
Casimir functional has a remarkable simplicity. For a perturbation u =
uy, + @ (we denote by ~ a perturbed quantity), we linearize the equivalent
evolution equation dyu = J(u)0,H,(u) as (indicating small perturbations
by ™) L

0t = 7 () Hy () + T () D (), = TiHots (31
where 7, := J(u,) and H, is the Hessian of H,(u) evaluated at u,, i.e.
H,(u, +u) ~ Hy(u,) + (4, H,a)/2. We have used [(%Hﬂ(u)]uzw = 0.
Notice that the Poisson operator 7, is independent of the state vector u,
hence (31) is a homogeneous linear equation.

3.5 MHD model

We invoke an incompressible MHD model as a simple but sufficiently non-
trivial system by which we demonstrate the usefulness of the noncanonical
Hamiltonian description of dynamics and the corresponding phase-space fo-
liation. 3

The state vector is v := (V, B); V is the fluid velocity that is assumed
to be incompressible, and B is the magnetic field; they are normalized in the
standard Alfvén units. The plasma occupies a smoothly bounded domain
Q C R?. We impose boundary conditions (denoting by n the unit normal

vector onto the boundary 992)
n-V=0 n-B=N0. (32)

3The following material draws heavily on Ref. [26].

13



Let us specify the phase pace of the state vector. We denote by L?(Q) the
Hilbert space of Lebesgue-measurable, square-integrable real vector func-
tions on , which is endowed with the standard inner product (a,b) :=
Jqoa- bd3z and the norm |a| := (a,a)'/?. We will use the same ( , ) and
| || regardless of the dimensions of independent and dependent variables.
We will also use the standard notation of the Sobolev spaces. Both V' and
B are members of

L2(Q) :={u e L*(Q); V-u=0,n-u=0}. (33)

Hence our phase space is V := L2(Q) x L2(9).
Denoting by P, the projector onto the subspace L2(Q), the governing
equations are
OV = —P,(V-V)V + P, [(V x B) x B], (34a)
OB =V x (V x B). (34b)

The Hamiltonian and the Poisson operator are given by

1
H(u) := 3 (IVI*+1B?) - (35)
T(u) = ( _g”iv[of(‘g]x PV el < B ) (36)

where o implies insertion of the function to the right of the operator. It is
readily seen that inserting (35) and (36) into (28) yields the MHD equations
(34a) and (34b).

The operator 7 (u) has two independent Casimir elements

1
Ci(u) == 5/QA-B Bz, Ch(u) ::/QV-B d?z, (37)

which, respectively, represent the magnetic helicity and the cross helic-
ity. They impose topological constraints on the field lines[12]. The “Bel-
trami equilibrium” is an equilibrium point of the energy-Casimir functional
H(u)—p1C1(u) — p2Cs(u). Here we consider a subclass of equilibrium points
assuming o = 0. Then, the determining equation is (denoting py = )

V xB-—uB=0, (38)

which reads as an eigenvalue problem of the curl operator. The solution (to
be denoted by B,,) is nothing but the Taylor relazed state [19, 20], which
has the connotation of being a “minimum-energy state” on a Casimir leaf.

14



3.6 Flux condition: decomposition of the harmonic field

While the Beltrami equation (38) together with the homogeneous boundary
conditions (32) are seemingly homogeneous equations, there is a “hidden
inhomogeneity” when  is multiply connected [then, the boundary condi-
tions (32) are insufficient to determine a unique solution]. To delineate the
“topological inhomogeneity” of the Beltrami equation, we first make 2 into
a simply connected domain €2g by inserting cuts 3, across each handle of
2 Qg :=Q\ (Uj_3) (v is the genus of Q). The fluzes of B are given by
(denoting by deo is the surface element on ¥y)

dy(B) := B - do, (39)
>
which are constants of motion. To separate these fixed degrees of free-
dom, we invoke the Hodge-Kodaira decomposition L2(Q) = L% ()& L% (%),
where

LE(Q) = {u e L*(Q); V-u=0,n-u=0, 0(u)=0 (V/)}. (40a)
LH(Q) ={u e *(Q); Vxu=0,V-u=0n-u=0}. (40b)

The dimension of L% (), the space of harmonic fields (or cohomologies), is
equal to the genus v of . Now we decompose the total B € L2(() into
the fixed harmonic “vacuum” field By € L%(Q) (which carries the given
fluxes ®q,---,®,) and a residual component By, driven by currents within
the plasma volume (2,

B = Bs, + By, [Bx:=PxB cL4(Q), By € L}(Q)], (41)

where Py, denotes the orthogonal projector from L?(Q) onto L%(12).
Now the Beltrami equation (38) reads as an inhomogeneous equation
(denoting ¥V x by curl):

(curl — p) By, = puBy. (42)

When By and p are given, we solve (42) for By, (Lemmal) to obtain the
Beltrami magnetic field B, = By, + By. The harmonic field By is uniquely
determined by the fluxes ®,--- ,®,. We must also give the parameter pu
by some physical condition; here we determine p by matching the helicity
of B, to a prescribed value c¢; of C7. But the relation between p and C; is
somewhat involved and may not be unique; this is the root of the bifurcation
problem. In the next subsection, we will see how bifurcations occur in the
helicity-matching process.
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3.7 Helicity matching

The helicity-matching problem may have solutions under two different situ-
ations:

1. If the inhomogeneous equation (42) determines a unique By, for a given
By (# 0) and some g, then (37) evaluates the helicity as a function of
i, which we denote by Ca(p). For a given value ¢; of the helicity C,
we must choose an appropriate u to satisfy ¢; = Ca(u). The category
of these solutions will be called branch-(A).

2. The homogeneous part of (42) may have a nontrivial solution (or solu-
tions) w for some special p = A, i.e., (curl — p)w = 0; this means that
A and w are, respectively, an eigenvalue and the corresponding eigen-
function(s) of the self-adjoint curl operator. (The exact definition of
the curl operator and its eigenvalues will be described in the next sub-
section; here we note that the eigenvalues are discrete numbers [22]).
If the inhomogeneous equation (42) still has a particular solution G,
then the general solution of (42) is given by

By, = aw + G, (43)

where « is an arbitrary real number. Substituting this By, we evaluate
the helicity (37) as a function of « (here, u is fixed at an eigenvalue \),
which we denote by Cg(«). The helicity matching ¢; = Cg(«) selects
an appropriate amplitude «. The category of these solutions will be
called branch-(B).

We note that the branch-(B) can appear only if 1 is an eigenvalue of the
self-adjoint curl operator, and moreover, if the inhomogeneous equation (42)
has a particular solution G. As is to be shown later, the latter condition
does not always apply (depending on the symmetry of the system), i.e., at
some eigenvalues, (42) may be solvable only if By = 0. On the other hand,
it is known that the inhomogeneous equation (42) with a By # 0 is uniquely
solvable for every p € R excepting the eigenvalues of the curl [22], giving the
branch-(A) solution; at some eigenvalues, the branch-(B) bifurcates, while
for other eigenvalues, the inhomogeneous term By # 0 prevents a solution.

3.8 Bifurcation of Beltrami equilibrium

To elucidate the mathematical structure around the bifurcation point, we
need rigorous analysis of the eigenvalues of the curl operator — for this
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purpose we first define a self-adjoint curl operator S. This section draws
heavily on Ref. [22]. We introduce a space

Hin(Q) :={u € LE(Q) N HYQ); V x u € LE(Q)}, (44)

which is densely included in L%(€). The self-adjoint curl operator (which
we denote by S) is such that Su = V x u for every u in the operator domain
D(S) = H\, (). The inverse map S™' : L%(Q) — HL;(Q) is a compact
operator. We denote by 0,(S) the point spectrum (the set of eigenvalues)
of 8. Evidently, 0 € 0,(S). By the compactness of S7!, 7,(S) is a discrete
set on R. The eigenvalues of § are unbounded in both positive and negative
directions. The eigenfunctions of & constitute a complete orthogonal basis
of the Hilbert space L%(9).

To span L2((2), we add the finite-dimensional space L% () of “vacuum
fields” to the domain of curl, which is, then, regarded as the kernel of the
extended curl operator (that is no loner self-adjoint).

Now we solve the inhomogeneous Beltrami equation (42) for a given
By € L%(€). We start by reviewing the result of Ref. [22, Sec. 4] on defining
a curl operator 7 with range and domain extended to include L% (€2):

Lemma 1 Suppose that Q is a multiply connected smoothly bounded do-
main, thus L%(Q) has a finite dimension.

(1) For each By € L%(R) there is a vector potential Ay € L4(9Q), i.e.,
BH =V x AH.

(2) Ezxtending the range of curl to include all such By, and its domain to
include the corresponding Ay, we extend S to an operator T, the “non-self-
adjoint curl operator,” such that Tu =V X u for every w in the operator
domain

D(T) = Hy,(Q) = {u € L3(Q) N H*(Q); V x u € L2(Q)}. (45)
(3) For every p & op(S), the inhomogeneous equation
(T — p)Bs, = nBy (46)
has a unique solution By, = (T —pu)~ 'uBu, implying that (42) has a unique
solution By € L%4(9Q).

For pn = A\j € 0,(S), we have a nontrivial solution w; of the homogeneous
part (By = 0) of the Beltrami equation (42), i.e., w; is the eigenfunction
corresponding to the eigenvalue A;.

We are ready to study the existence of a particular solution G of (42)
for a given By # 0. As mentioned above, a nontrivial particular solution G
becomes the trunk from which the branch-(B) solution bifurcates. We have
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Theorem 1 Let \j € 0,(S) and Sw; = A\jw;. Iff
(A, wj) =0, (47)
the inhomogeneous Beltrami equation
(T = Xj)G = \jBu (48)
has a solution such that G € L%(Q) and (G,wj) = 0.

proof. Let V; be the eigenspace corresponding to A;. We define
L () = LL(Q)/V; and Hiy, | (Q) := HLs(Q)/V;, where H'(Q2) is the
Sobolev space of order 1 (i.e. the Hilbert space of functions in L? whose
first derivatives are also in L?). The restriction of S on Hiy (©2) will be
denoted by S . Evidently, Coker(S| — A;) = Vj. If the orthogonality con-
dition (47) holds, Ay € L% (©2). We solve (48) applying the method of
Proposition 1 of Ref.[22]. Let us write G = W + )\ Ag. Inserting this into

(48) yields
(T =)W = \2Ay (€ L2, (9). (49)

We can solve (49) by W = (SL—)\j)_lkgAH € Hl | (). Thus, the solution
of (48) is given by
G = (SJ_ — )\j)fl)\?AH + )\jAH (E L%L(Q)) (50)

In the space L% (£2), this solution is unique.

Next, we show that (Am,w;) # 0 is in contradiction with the solvability
of (48). It suffices to assume that Vj is of one dimension. Projecting both
sides of (49) onto Vj}, we obtain

(T = X)W, w;) = (T = \)Wi,w;) = (TWi,w;j) = \Am,w)), (51)

where W, is the projection of W onto L% (). For this relation to hold,
there must be an element w € L% () such that Tw = cw; (¢ # 0).
Substituting cw; = (¢/Aj)Tw;, we obtain T[w — (¢/Aj)w;] = 0. Since
Ker(7T) = {0}, we deduce w — (¢/)j)w; = 0, which contradicts the assump-
tion w € L | (). Therefore, if (Ag,w;) # 0, (49) cannot have a solution.

4 Concluding remarks

In this series of lectures, we have encountered some generalized concepts of
“state” and “space”. Conventionally, a state is represented by a point in
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some phase space X. For example, classical mechanics describes motion of a
particle as a curve drawn by a point in phase space. Different recognition of
state can be more appropriate to describe macroscopic dynamics and struc-
tures of various physical systems. In Sec.2, we introduced a “quasi-particle”
that is a gyro-motion-coarse-grained state moving on a leaf of adiabatic-
invariants; this “scale hierarchy” is immersed in a foliated phase space. In
Sec. 3, we described the state of a fluid/plasma by Eulerian-variable func-
tions, by which we delineated the space of fluid motion. The phase space
(Hilbert space) is foliated by a Casimir = helicity. Back-tracking the argu-
ment of Sec. 2, one may interpret a Casimir as an adiabatic invariant (action
of integrable cyclic motion). Helicity is, then, an action corresponding to a
hidden symmetry in fluid-mechanical representation.

Mathematically, a state can be identified with an operator acting on
functions defined on X —this concept forms the basis of quantum mechan-
ics (see for example [4]). A pure state 7, corresponding to a single point
¢ € X, is the operation of o-function, i.e. an operator n¢(f) = f(§) (for
every continuous function f(x)) is represented by [ f(x)d(z — &) dz. The
set of operators, endowed with algebraic structures enabling linear-algebra
manipulations, is called a C* ring. A commutative C* ring is represented by
a ring of (complex valued) continuous functions on X; hence a commutative
ring of functions represents some space X. * Generalizing a state form a
point to some “geometrical object” and considering a more general class of
operators (constituting a non-commutative C* ring), we may describe a far
richer phenomena.

Here we describe a simple example in which a “loop” L(s) moving in
the Minkowski space-time (s is the proper time) plays the role of “state”.
Corresponding observable is represented by a 1-form P = P%dxzg+-- - P3dxs,
and the corresponding physical quantity is evaluated by

O(L(s)) = ]i( )P.

Physically C'(L(s)) is the circulation of the 1-form (co-vector) P. Denoting
by U = U,0" := dx,/ds the flow velocity (vector field) that transports the
loop L(s). We observe

iC(L(s)) :7{ LyP :74 ipdP.
ds L(s) L(s)

“The pure state 7 is the quotient ring C°(X)/Je, where J¢ is the maximal ideal
generated by ||z — &[]
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Denoting MH := gt PY — 9V P* (anti-symmetric field tensor), we may write

d
—C(L(s :j{ U,M*.
HOWEN = Uy

In an ideal magnetofluid, the canonical momentum P* = (h/c)U* + qAH
(h is the enthalpy, ¢ is the charge, A* is the electromagnetic 4-potential)
obeys U,P* =T0"S, where T is the temperature and S is the entropy [10].
In a barotropic fluid, we may write T0¥S = 00O with a scalar function
©, thus the circulation C'(L(s)) conserves, giving an “identity” to the state
L(s). This conservation law is a relativistic generalization of Kelvin’s cir-
culation law; see [11]. By the relativity, the “loop” is no longer included
in a time-slice (reference-time = constant level set) of space-time. Hence,
the conventional circulation ¢(L(t)) = fL(t) P ceases to be constant. The
change of ¢(L(t)) will, then, be recognized as creation (or annihilation) of
non-relativistic (frame dependent) circulation = “vorticity”.
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