
2369-12

CIMPA/ICTP Geometric Structures and Theory of Control 

Daniel Gomez

1 - 12 October 2012

IAFE, Buenos Aires 
Argentina

Magnetohydrodynamics in solar and space physics

 



Accepted Manuscript

Magnetohydrodynamics in solar and space physics

Daniel Gómez, Luis N. Martı ´n, Pablo Dmitruk

PII: S0273-1177(12)00588-1

DOI: http://dx.doi.org/10.1016/j.asr.2012.09.016

Reference: JASR 11105

To appear in: Advances in Space Research

Received Date: 2 November 2011

Revised Date: 3 September 2012

Accepted Date: 13 September 2012

Please cite this article as: Gómez, D., Martı ́n, L.N., Dmitruk, P., Magnetohydrodynamics in solar and space physics,

Advances in Space Research (2012), doi: http://dx.doi.org/10.1016/j.asr.2012.09.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



  

Magnetohydrodynamics in solar and space physics
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Abstract

Because of its proximity, our Sun provides a unique opportunity to perform
high resolution observations of its outer layers throughout the whole electro-
magnetic spectrum. We can also theoretically model most of the fascinating
physical phenomena taking place on the Sun, as well as their impact on the
solar system.

Many of these phenomena can be properly studied within the frame-
work of magnetohydrodynamics. More specifically, we assume a fully ionized
hydrogen plasma and adopt the more comprehensive two-fluid magnetohy-
drodynamic approximation. For problems such as the solar wind or magnetic
loops in the solar corona, which are shaped by a relatively strong mean mag-
netic field, the reduced magnetohydrodynamic approximation is often used.

We will review the basic features of both two-fluid and one-fluid mag-
netohydrodynamics, and focus on two particular applications: the turbulent
heating of coronal active regions and the dynamics of the solar wind.
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1. Introduction

Magnetohydrodynamics (MHD) is a reasonable theoretical framework to
describe the large-scale dynamics of a plasma, which is also known as one-
fluid MHD. Two-fluid effects can be considered through a generalized Ohm’s
law which includes the Hall current, which is required for phenomena with
characteristic length scales comparable or smaller than the ion skin depth
c/ωpi (c:speed of light, ωpi: ion plasma frequency). In an ideal plasma, the
Hall current causes the magnetic field to become frozen in the electron flow
instead of being carried along with the bulk velocity field. Another relevant
feature of the ideal Hall MHD description is the self-consistent presence of
parallel (to the magnetic field) electric fields, which can therefore accelerate
particles.

In astrophysical plasmas, a strong external magnetic field is often present,
thus breaking down the isotropy of the problem and eventually causing im-
portant changes in the dynamics of these plasmas. For one-fluid MHD, the
presence of an external magnetic field gave rise to the so-called reduced
MHD approximation (RMHD, see Strauss (1976); Montgomery (1982)). The
RMHD equations have been used in a variety of astrophysical applications,
such as current sheet formation (van Ballegooijen, 1986; Longcope, & Su-
dan, 1994), non-stationary reconnection (Hendrix, & van Hoven, 1996; Mi-
lano et al., 1999), the dynamics of coronal loops (Gómez, & Ferro Fontán,
1992; Dmitruk, & Gómez, 1999) or the development of turbulence (Dmitruk,
Gómez, & Matthaeus, 2003). Dmitruk, Matthaeus, & Oughton (2005) have
numerically confirmed the validity of the RMHD equations by directly com-
paring its predictions with the compressible MHD equations in a turbulent
regime. More recently, Gómez, Mahajan & Dmitruk (2008) extended the “re-
duced” approximation to include two-fluid effects, giving rise to the reduced
Hall-MHD description (RHMHD, see also Bian & Tsiklauri (2009)). A com-
parative study of numerical simulations of the compressible three-dimensional
Hall-MHD equations and the reduced approximation, has recently confirmed
the validity of the RHMHD description in the asymptotic limit of strong
external magnetic fields (Mart́ın, Dmitruk, & Gómez, 2010).

We organize the paper as follows. After introducing the Hall-MHD set of
equations in §2, we perform the asymptotic expansion corresponding to the
dynamics of a plasma embedded in a strong external magnetic field in §3,
and derive the set of RHMHD equations. In §4 we integrate the RHMHD to
simulate the development of turbulence in the solar wind. More specifically,
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we show that the presence of the Hall effect causes non-negligible changes
in the energy power spectrum and also discuss the consequences of an elec-
tric field component which is parallel to the magnetic field. We also applied
the one-fluid version of these equations (i.e. the RMHD equations) to sim-
ulate the internal dynamics of loops of the solar corona. The main results
from these simulations are summarized in §5, showing the development of a
turbulent regime in these loops, which enhances Joule dissipation to levels
consistent with the energy requirements to heat active regions. Finally, in §6
we summarize our conclusions.

2. The Hall-MHD equations

The large-scale dynamics of a multispecies plasma can be described through
fluid equations for each species s (see for instance Goldston and Rutherford
(1995))

∂tns +∇ · (nsU s) = 0 (1)

msns

dU s

dt
= nsqs(E +

1

c
U s ×B)−∇ps +∇ · σs +

�

s�

Rss� (2)

where ms, qs are the individual mass and charge of particles of species s,
ns, U s, ps are their particle density, velocity field and scalar pressure respec-
tively, while σs is the viscous stress tensor and Rss� is the rate of momentum
(per unit volume) gained by species s due to collisions with species s

�. In the
presence of a strong magnetic field, pressure might depart from scalar and
become anisotropic (i.e. p� �= p⊥), but we are neglecting this effect through-
out this paper. The momentum exchange Rss� rate is proportional to the
relative speed between both species and is given by

Rss� = −msnsνss�(U s −U s�) (3)

where νss� is the collision frequency of an s-particle against particles of species
s
�. Since the total momentum must of course be conserved, the corresponding

exchange rates satisfy Rs�s = −Rss� , from which it follows that collision
frequencies must obey msnsνss� = ms�ns�νs�s. The electric current density for
a multi-species plasma is defined as

J =
�

s

qsnsU s (4)
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The equations of motion for a fully ionized hydrogen plasma, made of
protons of particle mass mp and electrons of negligible mass (since me � mp)
are given by (Krall & Trivelpiece, 1973)

mpn
dU

dt
= en(E +

1

c
U ×B)−∇pp +∇ · σ + R (5)

0 = −en(E +
1

c
U e ×B)−∇pe −R (6)

where U , U e are the ion and electron flow velocities. The viscous stress tensor
for electrons has been neglected, since it is proportional to the particle mass,
and the friction force between both species can be written as

R = −mpnνpe(U −U e) (7)

For the fully ionized hydrogen case, the electric current density (see equation
(4)) reduces to J = en(U − U e). Therefore, the friction force R can be
expressed as

R = −mpνpe

e
J (8)

The electron and ion pressures pe, pp are assumed to satisfy polytropic laws

pp ∝ n
γ (9)

pe ∝ n
γ (10)

where the particle densities for both species are assumed to be equal because
of charge neutrality (i.e. np = ne = n). The bulk flow in this two-fluid
description is given by the ion flow U , which satisfies

∂tn +∇ · (nU ) = 0 (11)

The electric current density relates with the magnetic field through Am-
pere’s law

J =
c

4π
∇×B = en(U −U e) (12)

By adding equations (5)-(6) and adopting a Newtonian prescription for the
viscous stress tensor (i.e. σij = µ(∂iUj + ∂jUi), µ: viscosity) we obtain

mpn
dU

dt
=

1

c
J ×B −∇p + µ∇2U (13)
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where p = pp + pe. On the other hand, after replacing U e = U − J/en and
equation (8) into equation (6), we obtain the so-called “generalized Ohm’s
law”

E +
1

c
U ×B =

1

nec
J ×B − 1

ne
∇pe +

mpνpe

e2n
J (14)

which also expresses the force balance satisfied by the massless electrons. In
the last term, we can recognize e

2
n/(mpνpe) as the electric conductivity of

a fully ionized hydrogen plasma. The electric and magnetic fields can be
cast in terms of the electrostatic potential φ and the vector potencial A. In
particular, the curl of equation (14) yields the induction equation

∂tB = ∇×
�
(U − 1

en
J)×B

�
−∇× (η∇×B) (15)

where

η =
mc

2
νpe

4πe2n
(16)

is the electric resistivity. Equations (13)-(15) provide the two-fluid descrip-
tion of magnetohydrodynamics. The set of equations is completed by the
continuity equation (equation (11)), the adiabatic conditions given by equa-
tions (9)-(10) and Ampere’s law (equation (12)).

We now turn to a dimensionless version of the preceding set of equations
using a typical longitudinal length scale L0, an ambient density n = n0, a
typical value for the magnetic field B0, a typical velocity equal to the Alfven
speed vA = B0/

�
4πmpn0, and a reference pressure p0. The equation of

motion becomes

n
dU

dt
= (∇×B)×B − β∇p +

1

Re
∇2U (17)

while the induction equation can be written as

∂tB = ∇×
�
(U − �

n
∇×B)×B

�
+

1

Rm
∇2B (18)

The various dimensionless coefficients in these equations measure the relative
importance of different competing physical effects. The plasma “beta”

β =
p0

mpn0v
2
A

(19)
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is the approximate ratio of gas to magnetic pressure, while the kinetic (Re =
vAL0/(µ/mpn0)) and magnetic (Rm = vAL0/η) Reynolds numbers express
the ratio of convective to dissipative effects in each equation. The Hall pa-
rameter

� =
c

ωpiL0
=

�
mpc

2

4πe2n0L
2
0

(20)

expresses the relative importance of the Hall effect. For �→ 0, the induction
equation (18) reduces to the one for one-fluid magnetohydrodynamics.

Equations (17)-(18) are also known as the Hall-MHD (HMHD) equations.
The HMHD system has been extensively studied in recent years, both an-
alytically and numerically. For instance, Hall-MHD has been applied to
advance our understanding of dynamo mechanisms (Mininni, Gómez, & Ma-
hajan, 2003), magnetic reconnection (Mozer, Bale, & Phan, 2002; Smith,
2004; Morales, Dasso, & Gómez, 2005), accretion (Wardle, 1999; Balbus, &
Terquem, 2001) or the physics of turbulent regimes (Matthaeus et al., 2003;
Mininni, Gómez, & Mahajan, 2005; Galtier, 2006; Dmitruk, & Matthaeus,
2006). Potential limitations in the validity of Hall-MHD from the more com-
prehensive framework of Vlasov-Maxwell kinetic theory have been recently
pointed out by Howes (2009) and also by Schekochihin et al. (2009). In par-
ticular, Howes (2009) shows that Hall-MHD is a valid limit of kinetic theory
whenever the electron temperature is larger than the ion temperature.

3. Hall-MHD in a strong magnetic field

In the presence of a strong external magnetic field, velocity and magnetic
field fluctuations tend to develop fine scale spatial structures across it, while
parallel gradients remain comparatively smoother (Shebalin, Matthaeus, &
Montgomery, 1983; Oughton, Priest, & Matthaeus, 1994; Matthaeus et al.,
1998; Oughton, Matthaeus, & Ghosh, 1998). Assuming the external field to
point along �ez, the total (dimensionless) magnetic field is

B = �ez + δB , |δB| ≈ α� 1 (21)

where α = L⊥/L� represents the typical tilt of magnetic field lines with
respect to the �ez-direction. Therefore, one expects (assuming L0 = L⊥ to be
the typical lengthscale of the problem)

∇⊥ ≈ 1 , ∂z ≈ α� 1 (22)
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To ensure that B remains solenoidal, we assume

B = �ez +∇× (a�ez + g�ex) (23)

The velocity field instead, is decomposed into a solenoidal plus an irrotational
flow, i.e.

U = ∇× (ϕ�ez + f �ex) +∇ψ (24)

where the potentials a(r, t), g(r, t), ϕ(r, t) and f(r, t) are all assumed of
order α � 1 and ψ(r, t) is of order α

2 (see details in Gómez, Mahajan &
Dmitruk (2008); and also Bian & Tsiklauri (2009)).

The standard RMHD approximation (Strauss, 1976) only considers the
potentials a and ϕ, which restrict the dynamics to velocity and magnetic
field components perpendicular to the external magnetic field. When the
Hall effect becomes relevant (i.e. the term proportional to � in equation
(18)), potentials f , g and ψ should be added to allow nonzero dynamical field
components along �ez and therefore capture the helical behavior introduced
by this effect.

Assuming also ∂t ≈ 1 (which corresponds to the fast timescale L⊥/vA),
we obtain, to first order in α in equations (17)-(18)

b + βp = constant (25)

φ + ϕ− �(b + βepe) = constant (26)

which are Bernoulli conditions constraining the pressures and the electrosta-
tic potential, and correspond to pressure equilibria established over typical
timescales of the fast magnetosonic mode. The coefficient βe in Equation
(26) is βe = p0e/mpn0v

2
A
.

To follow the evolution of the system on the much slower timescale L�/vA

(i.e. assuming ∂t ≈ α� 1), Eqs. (17)-(18) to order α
2 describe the dynami-

cal evolution of the potentials (i.e. a, ϕ, g and f)

∂ta = ∂z(ϕ− �b) + [ϕ− �b, a] +
1

Rm
∇2

a (27)

∂tω = ∂zj + [ϕ,ω]− [a, j] +
1

Re
∇2

ω (28)

∂tb = β∗∂z(u− �j) + [ϕ, b] + β∗[u− �j, a] + β∗
1

Rm
∇2

b (29)

∂tu = ∂zb + [ϕ, u]− [a, b] +
1

Re
∇2

u (30)
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where j = −∇2
⊥a and ω = −∇2

⊥ϕ are, respectively, the parallel current and
vorticity components, and [a, b] = ∂xa∂yb − ∂ya∂xb indicate the standard
Poisson brackets. The parallel component of the dynamical magnetic field is
b = −∂yg, and that of the velocity field is u = −∂yf . The coefficient β∗ is
(see also Bian & Tsiklauri (2009))

β∗ =
γβ

1 + γβ
(31)

where β is the coefficient defined in equation (19) and γ is the polytropic
index (see equations (9)-(10)). In summary, the set of equations (27)-(30)
describe the dynamical evolution of a Hall plasma embedded in a strong
external magnetic field.

Just as for three-dimensional Hall-MHD, this set of equations display three
ideal invariants: the energy

E =
1

2

�
d

3
r (|U |2 + |B|2) =

1

2

�
d

3
r (|∇⊥ϕ|2 + |∇⊥a|2 + u

2 + b
2) , (32)

the magnetic helicity

Hm =
1

2

�
d

3
r (A · B) =

�
d

3
r ab , (33)

and the hybrid helicity (Turner, 1983; Mahajan, & Yoshida, 2000)

Hh =
1

2

�
d

3
r (A + �U ) · (B + �Ω) =

�
d

3
r [ab + �(aω + ub) + �

2
uω)] (34)

where Ω = ∇×U is the vorticity vector field.

4. Application of RHMHD to solar wind turbulence

The relative importance of the Hall effect in the Hall-MHD equations (i.e.
equations (17)-(18)) is determined by the coefficient �, which is only present
in equation (18). From the expression of � in equation (20), we find that the
Hall effect must become non-negligible in sufficiently low density plasmas.
One of the many low-density astrophysical plasmas for which the Hall effect
is known to be relevant is the solar wind, and it becomes progressively more
important as we move away from the Sun. Also, the solar wind plasma is
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Figure 1: Energy power spectra for � = 0.0 (thick gray trace) and � = 0.1 (thick black

trace) for a 512×512×32 run at t = 20. The Kolmogorov slope is displayed for reference,

and the vertical dashed line indicates the location of k� = 1/� for � = 0.1. The thin lines

show the power spectra for the corresponding kinetic energies.
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permeated by an external magnetic field (although the magnetic fluctuations
can be a non-negligible fraction of the external field).

To study the role of the Hall effect on the energy power spectrum, we inte-
grate equations (27)-(30) numerically. We assume periodicity for the lateral
boundary conditions, and specify the velocity fields at the boundaries z = 0
and z = L (for a detailed description, see Dmitruk, Gómez, & Matthaeus
(2003)). These boundary motions pump energy into the system and drives it
into a turbulent regime. We use a pseudo-spectral technique with dealiasing
for the perpendicular spatial derivatives and finite differences for the (much
smoother) �ez-derivatives. We start all our simulations with trivial initial
conditions (i.e. a = ϕ = u = b = 0).

We performed a set of simulations with different values of the Hall pa-
rameter (see details in Gómez, Mahajan & Dmitruk (2008)). Among the
results arising from these simulations, we find that the fraction of kinetic to
total energy increases monotonically with the Hall coefficient �.

In the MHD limit (� = 0), the total energy reduces to (Eq.(32))

Eperp =
1

2

�
d

3
r (|∇⊥ϕ|2 + |∇⊥a|2) (35)

while for the general case (� �= 0) there is a fraction of the total energy
directly associated to the parallel degrees of freedom

Epar =
1

2

�
d

3
r (u2 + b

2) (36)

The fraction Epar/Etot is also observed to increase monotonically with
�, even though we are not pumping parallel energy from the boundaries.
Parallel fluctuations are generated by the perpendicular part of the dynamics
(i.e. by a and ϕ) via terms proportional to � in equation (29).

We expect the Hall current to affect the dynamics of spatial patterns
whose sizes are of the order of the ion skin depth (i.e. c/wpi) or smaller.
According to Equation (20), this typical size corresponds to a k� = 1/�. In
Figure 1 we compare the spectral distributions of energy for � = 0.0 and
� = 0.1, once a stationary turbulent regime is reached for each of these
simulations. Even though these numerical simulations have only a moderate
spatial resolution of 512×512×32, the energy spectra are consistent with the
slope predicted by Kolmogorov (i.e. Ek ∝ k

−5/3) at intermediate and large
scales (i.e. intermediate and small values of k). We also find that both the

10



  

Figure 2: Spectral distribution of energy dissipation for simulations corresponding to

� = 0, 1/32, 1/16, 1/8, displayed in gradually lighter shades of gray.
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Figure 3: Energy power spectra for a 512× 512× 32 run with � = 0.1 at t = 20. Black full

trace corresponds to total energy, dotted (dot-dashed) trace to kinetic (magnetic) energy,

and the gray full trace shows the power spectrum of the electric field.
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Table 1: Hall and mean scales

Run � kHall kmean

1 0 ∞ 8.5
2 1/32 32 8.2
3 1/16 16 7.7
4 1/8 8 7.2

total and kinetic energy spectra for the simulation corresponding to � = 0.1,
strongly depart from the purely MHD run (i.e. � = 0.0) for k ≥ k�.

The spectral distribution of energy dissipation is given by 2ηk
2
E(k). Fig-

ure 2 shows energy dissipation spectra for different simulations correspond-
ing to � = 0, 1/32, 1/16, 1/8. We find that the spectral distribution of energy
dissipation shifts to larger wavelengths as � rises, which is quantitatively
confirmed by the corresponding values of the mean scale defined as

k
2
mean

=

�
dkk

2
E(k)�

dkE(k)
(37)

listed in the Table.
The scale kmean, also known as the Taylor scale, can be regarded as the

average curvature of magnetic fieldlines. Its gradual shift with the Hall effect
is consistent with a reduction of the energy transfer rate associated to the
direct energy cascade for k > k�, which in turn leads to smaller total dissi-
pation rates (Gómez, Mininni & Dmitruk (2010), see also Mininni, Alexakis
& Pouquet (2007)).

Another important feature of Hall-MHD in its ideal limit (i.e. for η → 0)
is the self-consistent presence of a component of the electric field parallel to
the total magnetic field, which is able to accelerate charged particles (see also
Bian & Kontar (2010) and Bian, Kontar, & Brown (2010)). Figure 3 shows
the power spectrum of the total electric field, superimposed to the corre-
sponding spectra of kinetic and magnetic energy, for � = 0.1. We can clearly
observe an excess of power in the electric field compared to the magnetic field
at large wavenumbers (i.e. k > k�).

The dimensionless version of the electric field (see Eqn (14)) is

E = −(U − �

n
∇×B)×B − �βe

n
∇pe + η∇×B (38)
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When computing the component of the electric field which is parallel to

the magnetic field (i.e. E� = E·B
|B|2

) only two terms contribute, the one

proportional to the electron pressure gradient and the one corresponding to
electric resistivity. To second order in the expansion coefficient α (see Eqn
(21)) and using that βepe = −βe

β
b, we obtain

E� = �
Te

Te + Tp

(∂zb + [b, a]) + ηj (39)

In Figure 4 we show two histograms corresponding to the terms proportional
to � (black) and η (gray) in Equation (39), assuming Te >> Tp. We can
clearly see that the contribution of the Hall effect to E�, which is actually
caused by the ∇�pe term in Equation (38), is markedly larger than the con-
tribution of the plasma resistivity. Note that the electron pressure is cast in
terms of the parallel magnetic field component b as a result of Equation (25).

We need simulations at much higher spatial resolution to make quantita-
tive asessments about power spectra or energy dissipation, but these simu-
lations at moderate resolution show that the behavior at small scales (i.e.
k > k�) is clearly affected by the presence of the Hall term. The RHMHD
framework has been numerically tested against the more general compress-
ible Hall-MHD description (Mart́ın, Dmitruk, & Gómez, 2010). The results
show that the degree of agreement between both sets of simulations is very
high when the various assumptions for RHMHD are satisfied, thus rendering
RHMHD as a valid approximation of Hall-MHD in the presence of strong
external magnetic fields.

5. Application of RMHD to coronal heating

Another application of the reduced approximation to an astrophysical
problem, is the simulation of magnetic loops of the solar corona, to study
the heating of the plasma confined in coronal magnetic structures. To model
the internal dynamics of coronal loops in solar (or stellar) active regions, we
assume these loops to be relatively homogeneous bundles of fieldlines, with
their footpoints deeply rooted into the photosphere. Individual fieldlines are
moved around by subphotospheric convective motions, which in turn generate
magnetic stresses in the coronal portion of the loop. We therefore consider
a magnetic loop with length L and cross section 2πlph × 2πlph, where lph

is the lengthscale of typical subphotospheric motions. For elongated loops,
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Figure 4: Histograms of the terms proportional to � (black) and η (gray) for E� (see Eqn

(39) for a 512× 512× 32 run with � = 0.1 and t = 20.
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  Figure 5: Energy and dissipation rate time series. Upper panel: Kinetic energy (thin),

and total energy (thick). Lower panel: Energy dissipation rate (thick) and Poynting flux

(thin).

i.e. such that 2πlph << L, we neglect toroidal effects. The main magnetic
field B0 is assumed to be uniform and parallel to the axis of the loop (the
z axis) and the perpendicular planes at z = 0 and z = L correspond to the
photospheric footpoints. For the coronal plasma, the Hall effect is actually
negligible, so we simply integrate the RMHD equations (i.e. � = 0.000).

As boundary conditions, we assume ψ(z = 0) = 0 and ψ(z = L) =
Ψ(x, y) where the stream function Ψ(x, y) describes stationary and incom-
pressible footpoint motions on the photospheric plane (see Dmitruk, Gómez,
& Matthaeus (2003)). We specify the Fourier components of Ψ(x, y) as
Ψk = Ψ0 inside the ring 3 < lph|k| < 4 on the Fourier plane, and Ψk = 0
elsewhere, to simulate a stationary and isotropic pattern of photospheric
granular motions of diameters between 2πlph/4 and 2πlph/3. The strength
Ψ0 is proportional to a typical photospheric velocity Vph ≈ 1 km.s

−1. The
typical timescale associated to these driving motions, is the eddy turnover
time, which is defined as tph = lph/Vph ≈ 103

sec. We choose a narrowband
and non-random forcing to make sure that the broadband energy spectra and
the signatures of intermittency that we obtain are exclusively determined by
the nonlinear nature of the MHD equations.

In Figure 5 we show the results obtained from a simulation extending
from t = 0 to t = 100 tA, where tA = L/vA is the Alfven time of the
loop. The upper panel shows the kinetic (EU , thin trace) and total energy
(E = EU +EB, thick trace). We can see that after about ten Alfven times, the
energy reaches a stationary regime, since the work done by footpoint motions

16



  

statistically (i.e. in time average) reaches an equilibrium with the dissipative
processes (electric resistivity and fluid viscosity). In this stationary regime
most of the energy is magnetic, while kinetic energy is only about 5% of the
total. In the lower panel, we show the dissipation rate (D, thick trace) and
the incoming Poynting flux (P , thin trace), showing that their time averages
are approximately equal.

The observed stationary equilibrium has been shown to correspond to a
turbulent regime (Gómez, & Ferro Fontán, 1988, 1992), and therefore the
associated energy cascade bridges the gap between the large spatial scales
where energy is injected by footpoint motions, to the much smaller scales
where it dissipates (see Dmitruk, & Gómez (1997)). The dependence of the
stationary dissipation rate < D >=< P > (< . . . >: time average) with the
physical parameters of the loop is (Dmitruk, & Gómez (1999))

< D >∝
ρl

2
ph

t
3
A

(
tA

tph

)
3
2 (40)

In Figure 5 we can clearly observe the spiky nature of these time series,
which is the result of the intermittency arising in turbulent regimes. Dmitruk,
Gómez, & DeLuca (1998) associated these spikes of energy dissipation with
Parker’s nanoflares (see Parker (1988)) and studied the statistical distrib-
ution of these dissipation events. A detailed description of that statistical
study is beyond the scope of this presentation, but the main result (see also
Gómez, & Dmitruk (2008)) is that the number of nanoflares (or spikes) as a
function of their energies N(E) follows a power law N(E) ≈ E

−3/2, which is
remarkably comparable to the result obtained for larger dissipation events.
The statistics of large energy dissipation events such as microflares and flares,
has been reported by Aschwanden (2004), gathering a large number of ob-
servational studies.

6. Conclusions

In this presentation we reviewed the basic features of two-fluid magneto-
hydrodynamics as a valid theoretical framework for astrophysical and space
plasmas. Even though two-fluid MHD is aimed at theoretically describing
the relatively large-scale behavior of plasmas, it does nonetheless retain the
effects of the Hall current at scales comparable or smaller than the ion skin-
depth. For plasmas permeated by relatively strong external magnetic fields,
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we introduce the reader to the so-called reduced magnetohydrodynamic ap-
proximation, which takes advantage of the much smoother spatial structure
of these plasmas along magnetic fieldlines.

We also present new numerical results of the reduced MHD equations
which are relevant to the following two astrophysical problems: the turbulent
dynamics of the solar wind plasma and the turbulent heating of coronal active
regions. In the solar wind plasma, the Hall effect becomes progressively more
important as we move away from the Sun. Our RHMHD simulations show
that the Hall effect is able to produce measurable changes in the energy power
spectrum. In particular, the ratio of kinetic to total energy increases with the
Hall coefficient �, as well as the ratio of parallel to total energy, confirming
previous results (Gómez, Mahajan & Dmitruk, 2008) with smaller spatial
resolution. Moreover, the energy spectrum departs quite noticeably from the
� = 0.0 case.

We have also shown numerical results from RMHD simulations (the Hall
effect is not likely to be relevant in the coronal plasma) of the internal dy-
namics of magnetic loops of the solar corona. These simulations show the
development of a magnetically dominated and stationary turbulent regime
inside the loop, as a result of the persistent action of convective subpho-
tospheric motions. The mean value of the heating rate arising from these
simulations is of the same order of magnitude of the main cooling rates in
coronal active regions (Dmitruk, & Gómez, 1997), namely, radiative losses
and thermal conductivity to the chromosphere. Superimposed to this sta-
tionary heating rate, simulations also show the ubiquitous presence of spiky
heating events, as a result of the intermittent nature of turbulence. The sta-
tistics of these heating events or nanoflares (see Dmitruk, Gómez, & DeLuca
(1998)), is remarkably similar to the one obtained for the much larger dissi-
pation events, known as flares (see Aschwanden (2004)).
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Dmitruk and D.O. Gómez are members of the Carrera del Investigador Cient́ı
fico of CONICET. This research was supported by grants PIP 11220090100825
from CONICET and grant UBACyT 20020100100315 from the University of
Buenos Aires.

18



  

References

Aschwanden, M.J., in Physics of the Solar Corona. An Introduction,
Springer-Verlag (Berlin), 2004.

Balbus, S.A., & Terquem, C., Linear Analysis of the Hall Effect in Protostel-
lar Disks, Astrophys. J., 552, 235-247, 2001.

Bian, N.H., & Tsiklauri, D., Compressible Hall magnetohydrodynamics in a
strong magnetic field, Phys. Plasmas, 16, 064503, 2009.

Bian, N.H., & Kontar, E.P., A gyrofluid description of Alfvenic turbulence
and its parallel electric field, Phys. Plasmas, 17, 062308, 2010.

Bian, N.H., Kontar, E.P., & Brown, J.C., Parallel electric field generation by
Alfvén wave turbulence, Astron. Astrophys., 519, A114, 2010.

Dmitruk, P., & Matthaeus, W.H., A two-component phenomenology for ho-
mogeneous magnetohydrodynamic turbulence, Phys. Plasmas, 13, 042306,
2006.

Dmitruk, P., Matthaeus, W.H., & Oughton, S., Direct comparisons of com-
pressible magnetohydrodynamics and reduced magnetohydrodynamics tur-
bulence, Phys. Plasmas, 12, 112304, 2005.
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QSLs in a reduced magnetohydrodynamics model of a coronal loop, As-
trophys. J., 521, 889-897, 1999.

Mininni, P.D., Alexakis, A., & Pouquet, A., Energy transfer in Hall-MHD
turbulence: cascades, backscatter, and dynamo action, J. Plasma Phys.,
73, 377, 2007.
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