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Motivations

When we want to model a material for energy application, it is more than likely that we
want to know with good accuracy one or more of the following properties:

Electronic band gap
Level alignment

Optical band gap



Motivations

Idea: use Density Functional Theory:
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Motivations
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Result: disaster
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Figure 1.2: Comparison between the calculated DFT-LDA fundamental band gaps (circles, left scale) and the

experimental ones (bottom scale) for some sp semiconductors. This figure is adapted from Ref. [74]
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Our wish: model direct photoelectron spectroscopy

We want to calculate energies corresponding to particle 
addition and removal:

Electron removal

Vacuum level

before after
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Our wish: model inverse photoelectron 
spectroscopy

Electron addition

Vacuum level Vacuum level

before after
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Quasi-particle energies

electron removal:
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quasi particles energies stay are given by the poles of the one-
particle interacting Green’s function:
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5 Green’s functions
We consider a system of N interacting electrons in an external potential Vext ,

they are described through the Hamiltonian:
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Many Body Perturbation Theory

•rigorous framework
•in principles exact
•in practice improvable
•not only energy levels: neutral 
excitations, total energies
•good results for band-gaps

Gives a way for obtaining G



Many-Body Perturbation Theory

Idea: we start from a non-interacting Hamiltonian

then we switch on the e-e interaction:
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Ĥ = Ĥ0 +
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Many body perturbation theory

From the equation of motion for G:

The Self-energy gives access to the quasi-particle 
energies
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Ĥ0 (r) fs (r) + VH [n] (r) fs (r) +

ˆ
dr�Σ (r, r�;Es) = Esfs (r)

_

1
unperturbed one-body Hamiltonian



How to get the self-energy:

Hedin’s equations:

248 F Aryasetiawan and O Gunnarsson

2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:
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which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)
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Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have
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W(1, 2) = v(1, 2) +
�
d(34) v(1, 3)P (3, 4)W(4, 2) (46)

where P is given in equation (38). Like G, � and W satisfy Dyson-like equations. Starting
from a given approximation for � the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation
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peak) with a lifetime given by 1/ImEi(ωi ). It may happen that ω − ReEi(ω) is zero or
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get satellites. For a non-interacting system, � is Hermitian and therefore Ei is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition of G by
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L. Hedin, Phys. Rev. 139, A769  (1965)
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�
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)The GW method 249

W(1, 2) = v(1, 2) +
�
d(34) v(1, 3)P (3, 4)W(4, 2) (46)

where P is given in equation (38). Like G, � and W satisfy Dyson-like equations. Starting
from a given approximation for � the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation

G(r, r�
, ω) =

�

i

�i (r, ω)�
†
i
(r�

, ω)

ω − Ei(ω)
(47)

where �i are solutions to the quasiparticle equation:

H0(r)�i (r, ω) +
�
d3r�(r, r�

, ω)�i (r
�
, ω) = Ei(ω)�i (r, ω). (48)

In a crystal, the index i may be associated with the Bloch wavevector and band index.
The eigenvalues Ei are, in general, complex and the quasiparticle wavefunctions are not,
in general, orthogonal because � is not Hermitian but both the real and imaginary part of
� are symmetric. Suppose at some ω = ωi we find that ωi = ReEi(ωi ). If ImEi(ωi ) is
small, then the imaginary part of G is expected to have a peak at this energy (quasiparticle
peak) with a lifetime given by 1/ImEi(ωi ). It may happen that ω − ReEi(ω) is zero or
close to zero at some other energies and if the corresponding ImEi(ω) are small, then we
get satellites. For a non-interacting system, � is Hermitian and therefore Ei is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition of G by
inserting a complete set of (N ± 1)-electron states in between the field operators and
performing a Fourier transformation, keeping in mind that the field operators are in the
Heisenberg representation, i.e. ψ̂(t) = exp(iĤ t)ψ̂(0) exp(−iĤ t):

G(r, r�
, ω) =

�
µ

−∞
dω� A(r, r�

, ω�
)

ω − ω� − iδ
+

� ∞

µ

dω� A(r, r�
, ω�

)

ω − ω� + iδ
. (49)

The spectral function or density of states A is given by

A(r, r�
, ω) = − 1

π
ImG(r, r�

, ω)sgn(ω − µ)

=
�

i

hi(r)h
∗
i
(r�

)δ[ω − µ + e(N − 1, i)] (50)

+
�

i

p
∗
i
(r)pi(r

�
)δ[ω − µ − e(N + 1, i)] (51)

where

hi(r) = �N − 1, i|ψ̂(r, 0)|N� (52)
pi(r) = �N + 1, i|ψ̂†

(r, 0)|N� (53)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)

=0
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)The GW method 249

W(1, 2) = v(1, 2) +
�
d(34) v(1, 3)P (3, 4)W(4, 2) (46)

where P is given in equation (38). Like G, � and W satisfy Dyson-like equations. Starting
from a given approximation for � the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation

G(r, r�
, ω) =

�

i

�i (r, ω)�
†
i
(r�

, ω)

ω − Ei(ω)
(47)

where �i are solutions to the quasiparticle equation:

H0(r)�i (r, ω) +
�
d3r�(r, r�

, ω)�i (r
�
, ω) = Ei(ω)�i (r, ω). (48)

In a crystal, the index i may be associated with the Bloch wavevector and band index.
The eigenvalues Ei are, in general, complex and the quasiparticle wavefunctions are not,
in general, orthogonal because � is not Hermitian but both the real and imaginary part of
� are symmetric. Suppose at some ω = ωi we find that ωi = ReEi(ωi ). If ImEi(ωi ) is
small, then the imaginary part of G is expected to have a peak at this energy (quasiparticle
peak) with a lifetime given by 1/ImEi(ωi ). It may happen that ω − ReEi(ω) is zero or
close to zero at some other energies and if the corresponding ImEi(ω) are small, then we
get satellites. For a non-interacting system, � is Hermitian and therefore Ei is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition of G by
inserting a complete set of (N ± 1)-electron states in between the field operators and
performing a Fourier transformation, keeping in mind that the field operators are in the
Heisenberg representation, i.e. ψ̂(t) = exp(iĤ t)ψ̂(0) exp(−iĤ t):

G(r, r�
, ω) =

�
µ

−∞
dω� A(r, r�

, ω�
)

ω − ω� − iδ
+

� ∞

µ

dω� A(r, r�
, ω�

)

ω − ω� + iδ
. (49)

The spectral function or density of states A is given by

A(r, r�
, ω) = − 1

π
ImG(r, r�

, ω)sgn(ω − µ)

=
�

i

hi(r)h
∗
i
(r�

)δ[ω − µ + e(N − 1, i)] (50)

+
�

i

p
∗
i
(r)pi(r

�
)δ[ω − µ − e(N + 1, i)] (51)

where

hi(r) = �N − 1, i|ψ̂(r, 0)|N� (52)
pi(r) = �N + 1, i|ψ̂†

(r, 0)|N� (53)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)

=iG(1,2)v(1,2)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)The GW method 249

W(1, 2) = v(1, 2) +
�
d(34) v(1, 3)P (3, 4)W(4, 2) (46)

where P is given in equation (38). Like G, � and W satisfy Dyson-like equations. Starting
from a given approximation for � the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation

G(r, r�
, ω) =

�

i

�i (r, ω)�
†
i
(r�

, ω)

ω − Ei(ω)
(47)

where �i are solutions to the quasiparticle equation:

H0(r)�i (r, ω) +
�
d3r�(r, r�

, ω)�i (r
�
, ω) = Ei(ω)�i (r, ω). (48)

In a crystal, the index i may be associated with the Bloch wavevector and band index.
The eigenvalues Ei are, in general, complex and the quasiparticle wavefunctions are not,
in general, orthogonal because � is not Hermitian but both the real and imaginary part of
� are symmetric. Suppose at some ω = ωi we find that ωi = ReEi(ωi ). If ImEi(ωi ) is
small, then the imaginary part of G is expected to have a peak at this energy (quasiparticle
peak) with a lifetime given by 1/ImEi(ωi ). It may happen that ω − ReEi(ω) is zero or
close to zero at some other energies and if the corresponding ImEi(ω) are small, then we
get satellites. For a non-interacting system, � is Hermitian and therefore Ei is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition of G by
inserting a complete set of (N ± 1)-electron states in between the field operators and
performing a Fourier transformation, keeping in mind that the field operators are in the
Heisenberg representation, i.e. ψ̂(t) = exp(iĤ t)ψ̂(0) exp(−iĤ t):

G(r, r�
, ω) =

�
µ

−∞
dω� A(r, r�

, ω�
)

ω − ω� − iδ
+

� ∞

µ

dω� A(r, r�
, ω�

)

ω − ω� + iδ
. (49)

The spectral function or density of states A is given by

A(r, r�
, ω) = − 1

π
ImG(r, r�

, ω)sgn(ω − µ)

=
�

i

hi(r)h
∗
i
(r�

)δ[ω − µ + e(N − 1, i)] (50)

+
�

i

p
∗
i
(r)pi(r

�
)δ[ω − µ − e(N + 1, i)] (51)

where

hi(r) = �N − 1, i|ψ̂(r, 0)|N� (52)
pi(r) = �N + 1, i|ψ̂†

(r, 0)|N� (53)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)

=Vxc(1)δ(1,2)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)The GW method 249

W(1, 2) = v(1, 2) +
�
d(34) v(1, 3)P (3, 4)W(4, 2) (46)

where P is given in equation (38). Like G, � and W satisfy Dyson-like equations. Starting
from a given approximation for � the above set of equations can be used to generate higher-
order approximations. Although the equations are exact, a straightforward expansion for
the self-energy in powers of the screened interaction may yield unphysical results such
as negative spectral functions (Minnhagen 1974, Schindlmayr and Godby 1997). In fact,
the expansion itself is only conditionally convergent due to the long-range nature of the
Coulomb potential. So far there is no systematic way of choosing which diagrams to sum.
The choice is usually dictated by physical intuition.

2.4. Quasiparticles

From the classical theory of the Green functions the solution to equation (10) can be written
in a spectral representation

G(r, r�
, ω) =

�

i

�i (r, ω)�
†
i
(r�

, ω)

ω − Ei(ω)
(47)

where �i are solutions to the quasiparticle equation:

H0(r)�i (r, ω) +
�
d3r�(r, r�

, ω)�i (r
�
, ω) = Ei(ω)�i (r, ω). (48)

In a crystal, the index i may be associated with the Bloch wavevector and band index.
The eigenvalues Ei are, in general, complex and the quasiparticle wavefunctions are not,
in general, orthogonal because � is not Hermitian but both the real and imaginary part of
� are symmetric. Suppose at some ω = ωi we find that ωi = ReEi(ωi ). If ImEi(ωi ) is
small, then the imaginary part of G is expected to have a peak at this energy (quasiparticle
peak) with a lifetime given by 1/ImEi(ωi ). It may happen that ω − ReEi(ω) is zero or
close to zero at some other energies and if the corresponding ImEi(ω) are small, then we
get satellites. For a non-interacting system, � is Hermitian and therefore Ei is real so that
the quasiparticle has an infinite lifetime.

The spectral representation can also be obtained directly from the definition of G by
inserting a complete set of (N ± 1)-electron states in between the field operators and
performing a Fourier transformation, keeping in mind that the field operators are in the
Heisenberg representation, i.e. ψ̂(t) = exp(iĤ t)ψ̂(0) exp(−iĤ t):

G(r, r�
, ω) =

�
µ

−∞
dω� A(r, r�

, ω�
)

ω − ω� − iδ
+

� ∞

µ

dω� A(r, r�
, ω�

)

ω − ω� + iδ
. (49)

The spectral function or density of states A is given by

A(r, r�
, ω) = − 1

π
ImG(r, r�

, ω)sgn(ω − µ)

=
�

i

hi(r)h
∗
i
(r�

)δ[ω − µ + e(N − 1, i)] (50)

+
�

i

p
∗
i
(r)pi(r

�
)δ[ω − µ − e(N + 1, i)] (51)

where

hi(r) = �N − 1, i|ψ̂(r, 0)|N� (52)
pi(r) = �N + 1, i|ψ̂†

(r, 0)|N� (53)
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2.2. The polarization and response function

The response function is an important quantity in the evaluation of the self-energy. It is
related to the inverse dielectric function �−1 as follows:

�−1 = δV

δφ

= 1+ v
δρ

δφ

= 1+ v
δρ

δV

δV

δφ
. (33)

The response function is defined as

R(1, 2) = δρ(1)
δφ(2)

(34)

which gives the change in the charge density upon a change in the external field. We
note that the above response function is a time-ordered one which is related to the physical
(causal) response function RR by (Fetter and Walecka 1971)

ReR(ω) = ReRR(ω) ImR(ω)sgnω = ImRR(ω). (35)
The polarization function is defined as

P(1, 2) = δρ(1)
δV (2)

(36)

which gives the change in the charge density upon a change in the total (external+ induced)
field. Noting that

ρ(1) = −iG(1, 1+) (37)
we can write

P(1, 2) = −i
�
d3 d4G(1, 3)�(3, 4, 2)G(4, 1+). (38)

In summary, we have
�−1 = 1+ vR (39)
� = 1− vP (40)
R = P + PvR (41)
W = v + vPW

= v + vRv. (42)

2.3. The Hedin equations

Summarizing the results in the previous sections, we arrive at the well known set of coupled
integral equations (Hedin 1965a, Hedin and Lundqvist 1969). From equations (25), (31),
(29) and (42) we have

�(1, 2) = i
�
d(34) G(1, 3+)W(1, 4)�(3, 2, 4) (43)

G(1, 2) = G0(1, 2) +
�
d(34) G0(1, 3)�(3, 4)G(4, 2) (44)

�(1, 2, 3) = δ(1− 2)δ(2− 3) +
�
d(4567)

δ�(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)�(6, 7, 3) (45)

irreducible polarizability

screened Coulomb’s interaction

Equations to be solved self-consistently 



Approximations: G0W0  aka one-shot GW

•We start from a first guess for G0 from DFT (or HF)
•perturbative, non self-consistent scheme 

Random phase approximation (RPA)
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Approximations: diagonal G0W0
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G0W0 Approximation: the entire scheme

M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett 55, 1418 (1985)

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

GWA

M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett 55, 1418 (1985)
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2π

�
dω�G◦(r, r�;ω − ω�)W ◦(r, r�;ω�)
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ω − �i ± iδ

For accurate(?) calculations: analytic continuation method
M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

Paolo Umari GW quasi-particle spectra from occupied states only:

latest developments
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It works!

the equation. The perturbative evaluation of quasiparticle energies is based on two observations: on

the one hand, the form of the quasiparticle equation Eq. (1.52) is similar to that of the Kohn-Sham

equation Eq. (1.15), with the only difference that in Eq. (1.15) the self-energy Σ is replaced with

the exchange-correlation potential Vxc; on the other hand, for systems where they are known, quasi-

particle amplitudes are found to be close to Kohn-Sham orbitals [82]. The approximation used in

Eq. (1.93) is actually a diagonal approximation, since only the diagonal matrix elements of the self-

energy are considered. One can also calculate the off-diagonal matrix elements of the self-energy

with respect to the Kohn-Sham states, which would lead to the off-diagonal approximation. How-

ever, since this usually involves the evaluation of a large number of matrix elements resulting from

the consideration of a not-so-small number of Kohn-Sham empty states, performing such calcula-

tions could be expensive, especially for large systems.

experimental gap (eV)
0 2 4 6 8

Figure 1.4: Comparison between the fundamental band gaps calculated by DFT-LDA (circles, left scale), cal-

culated by GW at the G0W0 level (squares, left scale), and from experiment (bottom scale) for some sp semi-

conductors. This figure is taken from Ref. [74]

Even it’s at the very first iteration, the G0W0 approximation has been shown to be very success-

ful in many cases for describing electronic excitations [73, 76, 77]. One success is that the calculated

fundamental band gaps of semiconductors and insulators are often in good agreement with experi-
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Several codes Quantum-Espresso friendly

www.yambo-code.org

www.sax-project.org

http://www.yambo-code.org
http://www.yambo-code.org
http://www.yambo-code.org
http://www.yambo-code.org


The GWL code

•Implemented in the Quantum-Espresso DFT package

•pw4ggw.x and gww.x codes

•mixed OPENMP/MPI

•O(N3 )-O(N4 )

•large use of BLAS/LAPACK routine

•balance memory usage/communications

•tested up to 4096 computing cores

Available on gww.qe-forge.org through the GNU-GPL license



Integration schemes:

•Plasmon pole approximation: use a model for W

✓Analytic continuation of self-energy: calculate G,P,W on imaginary frequency/time

M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

•Contour integration

E =
�

i=1,N

�ψi| T̂ + V̂ion |ψi�+
1

2

ˆ
drdr�

n(r)n(r�)

|r− r�| + Exc [n]

dσ
dΩdω =

�
k�

4πω4
SV

c5

���
�

ijk β
k�

ijk (α) e
S
i e

L
j e

L
k

���
2

h
2ωk�

(nk� + 1) δ (ω − ωS)

βijk =
√
V

�
1
2!

∂χ2
ijk

∂rIγ

vk�,q
Iγ√
MI

+ 1
3!χ

3
ijklE

k�,q
l

�

Ek�,q = − 4π
�∞Z

∗
Iγ,jqj

vk�,q
Iγ√
MI

τ = 2
Ωn

IP(V ) = IP(∞) + a
V

Es = E(N + 1; i)− E(N ; 0)

Es� = E(N ; 0)− E(N − 1; i)

G (r1, r2;ω) =
�

s
fs(r1)f

∗
s (r2)

ω−Es±iη

H0 (r) fi (r) +
´
dr�Σ (r, r�;Ei) fi (r�) = Eifi (r)

�ψi|Σc (iω) |ψi� =
�

n
ai
n

iω−bin

�ψi|Σc (ω) |ψi� =
´∞
−∞ �ψi|G0 (ω − iω�)Wc (iω�) |ψi�+

�
j

´
ψ∗
i (r)ψj (r)ψ∗

j (r
�)Wc (r, r�; �j − E)ψi (r) drdr� [θ (ω − �j)− θ (�F − �j)]

1

Multipole expansion of the expectation values of the self-energy operator:
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A. Fleszar and W. Hanke, Phys. Rev. B 56, 10228 (1997).

✓Contour integration, with analytic continuation of pole terms

•Real frequency integration



Large systems: two challenges

Two big challenges:

•Computational cost:

We must represent operators

prohibitive for large systems

•Sums over empty states

In principles sums over all empty states

prohibitive for large systems 

analogous to DFPT



How many empty states do I need?

RAPID COMMUNICATIONS

FRIEDRICH, MÜLLER, AND BLÜGEL PHYSICAL REVIEW B 83, 081101(R) (2011)

pseudopotential approximation nor a plasmon-pole model for
the dielectric matrix. Instead, the screened interaction

W (r,r′; ω) = v(r,r′) +
∫ ∫

v(r,r′′)P (r′′,r′′′; ω)

×W (r′′′,r′; ω) d3r ′′d3r ′′′ (2)

is calculated explicitly within the random-phase approxima-
tion for the polarization function

P (r,r′; ω) = − i

2π

∑

σ

∫ ∞

−∞
Gσ (r,r′,ω′)

×Gσ (r′,r,ω′ − ω) dω′ , (3)

where the Green function Gσ (r,r′,ω) is constructed from
Kohn-Sham energies and wave functions. The frequency
convolution of the self-energy

$σ (r,r′; ω) = i

2π

∫ ∞

−∞
Gσ (r,r′; ω + ω′)W (r,r′; ω′)eiηω′

dω′

(4)

(η is a positive infinitesimal) is evaluated analytically for
v(r,r′) [see Eq. (2)], and with a contour integration4,13 on
the complex frequency plane for the remainder W (r,r′; ω) −
v(r,r′). The nonlinear equation (1) is solved on an energy
mesh around εσ

nq with a cubic spline interpolation between
the mesh points. Thus, no additional Taylor expansion of the
self-energy is needed. Details of the implementation can be
found in Ref. 14.

We carefully converged the number of empty bands for the
calculation of both the polarization function and the correlation
self-energy as well as the parameters for the all-electron mixed
product basis,14,15 in which we represent the dielectric matrix.
While the ground-state electron density was converged with
a standard LAPW basis with moderate cutoff parameters
(lmax = 8, Gmax = 4.3a−1

0 , where a0 is the Bohr radius), we
had to employ much larger cutoffs to generate enough wave
functions for the GW calculation: a linear momentum cutoff
of Gmax = 8.0a−1

0 and an angular momentum cutoff in the
muffin-tin (MT) spheres of lmax = 12. Furthermore, in order
to avoid linearization errors in the MT part of the LAPW
basis,16,17 we added local orbitals18,19 (LOs) with different
angular momentum quantum numbers and energy parameters
distributed over the relevant energy range: 292 LOs for Zn
(five LOs for each lm channel with l = 0–3, three for l = 4,
two for l = 5, and one for l = 6) and 186 for O (four
LOs for l = 0–3, two for l = 4, and one for l = 5). We
also treat the 3s and 3p semicore states of Zn explicitly
with LOs.

For the mixed product basis we found an angular mo-
mentum cutoff of 4 in the spheres and a suprisingly small
linear momentum cutoff of 2.4a−1

0 in the interstitial region
to be sufficient. However, we had to take into account many
product functions in the MT spheres, which after optimization
led to 177 MT functions for Zn (ten, eight, eight, seven, and
six radial functions per lm channel for l = 0–4, respectively)
and 127 for O (eight, six, six, five, and four radial functions
for l = 0–4, respectively). Obviously, the rapid variations
close to the atomic nuclei must be accurately described.
Within the all-electron mixed product basis this is possible

with a relatively modest number of MT functions, while in
a pure plane-wave approach a very large number of plane
waves is necessary to resolve the variations adequately. This
explains the finding of Shih et al. that the dielectric matrix
must be converged to very large energy cutoffs. The total
number of mixed product basis functions in the calculations
is less than 700 per k point. This number is further reduced
to around 490 by constructing linear combinations that are
continuous in value and radial derivative at the MT sphere
boundaries.20

Figure 1 shows the quasiparticle band gap of ZnO as a
function of the number of states included in the calculation
of the polarization function and the correlation self-energy.
The calculations were performed with a 4 × 4 × 4 k-point
sampling of the Brillouin zone. There is a large difference
between calculations with (pluses) and without the LOs for
unoccupied states (crosses), which shows the importance of
eliminating the linearization error of the conventional LAPW
basis. As the linearization error becomes larger for higher
and higher bands, it is not surprising that the difference
between the convergence curves grows toward increasing
numbers of bands. We find an asymptotic difference of 0.5 eV.
The calculations without LOs for unoccupied states already
converge with a few hundred bands, which could have led
the authors of the previous all-electron studies to believe that
their calculations are sufficiently converged. In fact, when the
converged value of 2.27 eV is corrected with respect to finer
k-point samplings, we arrive at 2.44 eV, which lies at the upper
edge of the range of the all-electron GW band gaps published
so far.

The linear momentum cutoff allows the interstitial part of
the LAPW basis to be converged in a systematic way. In the
MT spheres, however, the basis is linearized around predefined
energy parameters, which gives rise to the linearization error
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FIG. 1. Band convergence of the quasiparticle band gap of ZnO
employing a 4×4×4 k-point set and calculated with (pluses) and
without local orbitals (LOs) (crosses) for high-lying states. The solid
lines show the hyperbolical fits. We also indicate results with finer
k-point samplings (stars) calculated with LOs and 500 bands. The
dashed lines show the hyperbolical fit shifted to align with these
results. The fit asymptote for the 8×8×8 k-point set at 2.99 eV (dotted
line) is considered the best estimate for the all-electron one-shot GW

band gap.
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GW without empty states: Linear responseIntroduction The scheme Application to DNA TPP

The solution I

Sternheimer approach for P

The polarizability matrix P
◦
µν(iω) :

P
◦
µν(iω) = −4�

�

v,c

�
drdr�Φµ(r)ψv(r)ψc(r)ψv(r�)ψc(r�)Φν(r�)

�c − �v + iω
.

the projector over the conduction manifold Qc:

Qc(r, r�) =
�

c

ψc(r)ψc(r�) = δ(r− r�)−
�

v

ψv(r)ψv(r�),

with the notation:
�r|ψiΦν� = ψi(r)Φν(r).

We can now eliminate the sum over c :

P
◦
µν(iω) = −4�

�

v

�Φµψv|Qc(H − �v + iω)−1
Qc|ψvΦν�,
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GW without empty states: Lanczos chains

We can strongly reduce the computational load  in three steps:

1. Through a block algorithm, starting from Wannier’s valence orbitals, we obtain a  reduced 
basis for:

2. The problem is now that of solving:

E =
�

i=1,N

�ψi| T̂ + V̂ion |ψi�+
1

2

ˆ
drdr�

n(r)n(r�)

|r− r�| + Exc [n]

dσ
dΩdω =

�
k�

4πω4
SV

c5

���
�

ijk β
k�

ijk (α) e
S
i e

L
j e

L
k

���
2

h
2ωk�

(nk� + 1) δ (ω − ωS)

βijk =
√
V

�
1
2!

∂χ2
ijk

∂rIγ

vk�,q
Iγ√
MI

+ 1
3!χ

3
ijklE

k�,q
l

�

Ek�,q = − 4π
�∞Z

∗
Iγ,jqj

vk�,q
Iγ√
MI

τ = 2
Ωn

IP(V ) = IP(∞) + a
V

Es = E(N + 1; i)− E(N ; 0)

Es� = E(N ; 0)− E(N − 1; i)

G (r1, r2;ω) =
�

s
fs(r1)f

∗
s (r2)

ω−Es±iη

H0 (r) fi (r) +
´
dr�Σ (r, r�;Ei) fi (r�) = Eifi (r)

�ψi|Σc (iω) |ψi� =
�

n
ai
n

iω−bin

�ψi|Σc (ω) |ψi� =
´∞
−∞ �ψi|G0 (ω − iω�)Wc (iω�) |ψi�

+
� ´

ψ∗
i (r)ψj (r)ψ∗

j (r
�)Wc (r, r�; �j − E)ψi (r) drdr� [θ (ω − �j)− θ (�F − �j)]

Qc |ψvΦµ� =
�

α Tvµ,α |tα�

�tα| (Ho − �v + iω)−1 |tβ�

1

3. This is achieved through a Lanczos chain algorithm
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GW without empty states: self-energy

We want to calculate the expectation values:

•Starting from the reducible polarizability:
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Figure 5. First (vertical) ionization potential of gas-phase caffeine,
as obtained from GW calculations. Full symbols indicate results
obtained by truncating the sum over virtual states in the calculation
of the irreducible polarizability (see equations (41) and (44)) to the
virtual energy reported on the abscissa. The data displayed as
diamonds have been used to fit the results to the expression:
IP(E !) = IP∞ − β/E !. The resulting fit is reported in orange. The
horizontal lines report the extrapolated IP, together with other
relevant data (experiments from [29]).

Having thus reduced the number off-diagonal matrix elements
of the resolvent of the Hamiltonian in equation (45), these
matrix elements can be efficiently calculated by a Lanczos-
chain algorithm, as explained in section 1.1. An analogous
approach can be applied to the calculation of the expectation
values of the self-energy [20]. More details on the present
Lanczos-GW approach can be found in [20].

3.1. An example

The theory described above has been implemented for norm-
conserving PPs [19, 20] in a module of the Quantum ESPRESSO

distribution [26]. As a demonstration of our methodology,
we have calculated the QP energies of the (isolated) caffeine
molecule7.

In figure 5 we display the values of the caffeine IPs
calculated using the method of [19] and limiting the sum over
virtual states in the calculation of the irreducible polarizability
to some specified energy range, together with the IP obtained
using the present approach, as well as with DFT-LDA
calculations and experiment [29]. The data reported in this
figure witness the slow convergence of the sums over virtual
states in equations (41) and (44) as well as the accuracy and
convenience of the Lanczos method described here. Also note
the great improvement of the predicted IP passing from a DFT-
LDA to an MBPT-GW description of QP states.

7 GW calculations were performed using the LDA XC functional,
pseudopotentials H.pz-vbc.UPF, C.pz-vbc.UPF, N.pz-vbc.UPF and
O.pz-mt.UPF from the Quantum ESPRESSO distribution, and a PW energy
cutoff of 60 and 240 Ryd for wavefunctions and the charge density,
respectively. The spectra were calculated at the same geometry used in our
TDDFPT calculation. The polarization basis is using the method of [19]
with a conduction energy cutoff E2

c = 26.15 eV, corresponding to 750
conduction states, a cutoff on the norm of Wannier products s1 = 0.1 a.u. and
a cutoff on the eigenvalues of the overlap matrix between Wannier products
s2 = 0.01 a.u., resulting in a polarization basis of about 1320 elements.

Figure 6. Convergence of the (vertical) ionization potential (IP) of
gas-phase caffeine as calculated with the present GW method, as a
function of the number of recursion steps, n, used in the Lanczos
chain for the evaluation of the irreducible polarizability and
self-energy operators.

Figure 7. (Colour online) Comparison of the density of states (DOS)
calculated for the caffeine molecule using the present GW method
(green line) and DFT-LDA calculations (red line) with the
photoemission spectrum reported in [29] (blue line). A Gaussian
broadening of 0.25 eV has been used to smear the molecular lines.

In figure 6 we display the dependence of the caffeine IP,
as calculated from the present GW method, using different
numbers of Lanczos steps to calculate matrix elements of
the one-electron propagator, such as in equation (48) The
calculated IPs converge very rapidly as a function of the
number of Lanczos steps, possibly also due to the fact that
the present implementation only requires the evaluation of the
relevant propagators at imaginary frequencies (hence, far from
any singularities that lie on the real axis).

In figure 7 we report the density of states (DOS) of
the caffeine molecule in the region of the valence energies,
as calculated from the present GW method and from DFT-
LDA, and compare them with a experimental photoemission
spectrum from [29]. Note that no features are found in the
experimental spectrum above 8.25 eV, as direct photoemission
probes only valence states. Although the relative intensity of
the peaks cannot be compared with experiments, due to our
complete neglect of any matrix-element effects, one sees that
their positions are quite well reproduced by GW, whereas LDA

7
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How to speed up GW: optimal polarizability basis

If an optimal representation of P◦ can be found:

if the basis is small then a high speed-up can be achieved 
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Optimal polarizability basis

• We consider the average polarizability in frequency: 
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•We take the basis formed by the most important eigenvectors: 
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•We can avoid any calculation of empty states, however the basis sets are quite large 

•It is better to consider the modified operator: 

•For avoiding the calculation of empty states we consider: 
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•Where      are planewaves defined by E* projected over the conduction manifold,
  and orthonormalized

�
µν �ψi (vΦµ)| (ω − iω� −H0)

−1 |(vΦν)ψi�Πµν (iω�)

�r| (vΦµ)� =
´
dr�v (r, r�)Φµ (r�)

|ψi (vΦµ)� ∼=
�

α Siµ,α |sα�

�sα| (ω − iω� −Ho)
−1 |sβ�

P (r, r�; iω) ∼=
�

µν Φµ (r)Pµν (iω)Φv (r�)

Π (r, r�; iω) ∼=
�

µν Φµ (r)Πµν (iω)Φv (r�)

Wc (r, r�; iω) ∼=
�

µν (vΦµ) (r)Πµν (iω) (vΦv) (r�)

P̃ (r, r�; t = 0) =
�

vc ψv (r)ψc (r)ψv (r�)ψc (r�)

P̃ (t = 0) |Φµ� = pµ |Φµ� pµ > q
∗

P̃
� (r, r�; t = 0) =

�
vc ψv (r)ψc (r)ψv (r�)ψc (r�) �v < E

∗

P̃ �� (r, r�; t = 0) =
�

vG̃ ψv (r) G̃ (r)ψv (r�) G̃ (r�)

G̃

2

�
µν �ψi (vΦµ)| (ω − iω� −H0)

−1 |(vΦν)ψi�Πµν (iω�)

�r| (vΦµ)� =
´
dr�v (r, r�)Φµ (r�)

|ψi (vΦµ)� ∼=
�

α Siµ,α |sα�

�sα| (ω − iω� −Ho)
−1 |sβ�

P (r, r�; iω) ∼=
�

µν Φµ (r)Pµν (iω)Φv (r�)

Π (r, r�; iω) ∼=
�

µν Φµ (r)Πµν (iω)Φv (r�)

Wc (r, r�; iω) ∼=
�

µν (vΦµ) (r)Πµν (iω) (vΦv) (r�)

P̃ (r, r�; t = 0) =
�

vc ψv (r)ψc (r)ψv (r�)ψc (r�)

P̃ (t = 0) |Φµ� = pµ |Φµ� pµ > q
∗

P̃
� (r, r�; t = 0) =

�
vc ψv (r)ψc (r)ψv (r�)ψc (r�) �c < E

∗

P̃ �� (r, r�; t = 0) =
�

vG̃ ψv (r) G̃ (r)ψv (r�) G̃ (r�)

G̃

state LDA GW Ref LDA Ref GW Expt
Γ1v -11.91 eV -11.59 eV -11.89 eV -11.57 eV -12.5 eV
X1v -7.77 eV -7.68 eV -7.78 eV -7.67 eV
X4v -2.82 eV -2.85 eV -2.82 eV -2.80 eV -2.9;-3.3 eV
Γ�
25v 0 eV 0 eV 0 eV 0 eV 0 eV
X1c 0.67 eV 1.44 eV 0.61 eV 1.34 eV 1.25 eV

2



Optimal polarizability basis: Benzene

convergence of first IP

•E=10Ry q∗ =0.035a.u. N = 2900
•E=10Ry q∗ =14.5a.u. N = 500
•Extrapolations
•Plane waves E = 5 Ry N = 1500
	 GW quasi-particle spectra from occupied states only	 24/29

convergence of IPs



Extension to extended systems

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Benzene

Extension to extended systems

Head(G = 0,G�
= 0) and wings (G = 0,G� �= 0) of the symmetric

dielectric matrix are calculated using Lanczos chains (k-points

sampling implemented)

Wings are projected over the polarizability basis vectors

Element G = 0 added to the polarizability basis

v(G) =
1
Ω

�
dq 1

|G+q|2

Grid on imaginary frequency can be denser around ω = 0

Paolo Umari GW quasi-particle spectra from occupied states only:
latest developments

25/37



Test: bulk Si

•64 atoms cell
•4x4x4 k-points mesh for head and wings
•E*=3Ry ;   q*=7.93 a.u.
•Polarizability basis: 2000 vectors
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Ref: M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)



Optimal polarizability basis vs Plane-waves: bulk-Si

8 atoms Si cell: Gamma only calculation

k-points integration only for long range terms

Optimal basis sets improve upon 
plane-waves



Applications: larger molecules

C44H30N4

Introduction The scheme Application to DNA TPP

Tetraphenylporphyrin

C44H30N4

IP
exp

=6.4 eV

IP
LDA

=5.0 eV

IP
GWA

=6.7 eV

G.Stenuit, C. Castellarin-Cudia, O.Plekan, V. Feyer, K.C. Prince, A. Goldoni, and P. Umari,

Phys. Chem. Chem. Phys., 12, 10812 (2010)

Paolo Umari Quasi-particle Spectra from Occupied States Only:

Application to Large Systems
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G.Stenuit, C. Castellarin-Cudia, O.Plekan, V. Feyer, K.C. Prince, A. Goldoni, and P. Umari, 
Phys. Chem. Chem. Phys., 12, 10812 (2010)



Tetraphenylporphyrin

Analysis
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Zn-Phthalocyanine

GW calculation w/o Zn(3s,3p) semicore in valence: 

IPexp=6.35 eV

IPGW=5.7eV

P.Umari and S.Fabris J. Chem. Phys, 136, 174310  (2012).



Importance of semicore states

We must include semicore Zn 3s and 3p states in valence:

300Ry Plane-waves cutoff

IPexp=6.35 eV IPGW=5.7eV



Explanation

  1 0     1S 1( 2.00)      -700.1289      -350.0644     -9525.7378
     2 0     2S 1( 2.00)       -85.1358       -42.5679     -1158.3319
     2 1     2P 1( 6.00)       -73.7947       -36.8974     -1004.0283
     3 0     3S 1( 2.00)        -9.4984        -4.7492      -129.2319
     3 1     3P 1( 6.00)        -6.1299        -3.0650       -83.4022
     3 2     3D 1(10.00)        -0.7453        -0.3726       -10.1401
     4 0     4S 1( 2.00)        -0.4394        -0.2197        -5.9784
     4 1     4P 1( 0.00)        -0.0820        -0.0410        -1.1157
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Figure 1: Schematic representation of the density of states for a SWNT, showing the initial 

interpretation of single photon experiments and the density of states. Subsequent figures 

indicate two-photon excitation (blue arrows) with photon energy and fluorescence emission 

(red arrows) in the exciton and band pictures. In the band picture B, the threshold for two-

photon excitation lies at the band edge, where the relaxed fluorescence emission also takes 

place.  In the exciton picture (C), the 1s exciton state is forbidden under two-photon 

excitation. The 2p exciton and continuum states are excited. They relax to the 1s exciton state 

and fluoresce through a one-photon process. (D) The detailed picture of relative positions of 

excited exciton and continuum states for big diameter nanotubes. (E) The detailed picture of 

relative positions of excited exciton and continuum states for small  diameter nanotubes.  

 

 

 

The electronic band gap of Carbon nanotubes

dt

For semiconducting zig-zag CNTs we want to study
the dependance of the electronic band gap wrt the 
diameter dt

The electronic band gaps can be measured with 
great difficulties, optical band gap instead are 
measured with great accuracy:
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cont’ed

Eq. 6 combined with the data of Ref. [3] leads to the following expression for Ebind
1A2 :

Ebind
1A2 ≈ 0.55eV

dt
(7)

The electronic band gap E11 corresponding to optically allowed transition can now be

found from the Eqs. [1-4] through:

E11 = E11
op + Ebind

1A2 (8)

In Figure 1, we compare our GW results with combined theoretical-experimental esti-

mates using Eq.6 combined with either the experimental values from Ref. [3] or from Ref.

[2]. The latter are reported for the case of zig-zag semiconducting CNTs (α = 0) for both

m1 and m2 cases. We note a very good agreement of the calculated GW electronic gaps

with the previous estimates for the entire diameter range. It should be noted that LDA

results, not shown in the figure, would be very far from the theoretical/experimental lines

as can be seen from Tab.II. The GW results for the largest tubes we have considered here

are also in excellent agreement with the direct measurement of an electronic gap [14] which

in turn is in nice agreement with the experimental/theoretical lines.

As, usually, the nanotubes which are used in devices have diameters which are larger than

those studied here, it is interesting to fit our GW results for extrapolating the electronic

gap-diameter function. For the purpose of extrapolating our data for larger tubes we fitted

the GW results for tubes larger than 1.0 nm with the simple relation E11 = a/dt which goes

towards a closed gap in the large diameter limit as expected from the observed closed gap

in graphene. We find a value a of 1.54± 0.14 eV×nm. From Fig. 1, we see that our fitted

behavior agrees well with the previous mixed theoretical/experimental estimates. At smaller

diameters evidence of hybridization further reduces the band gap from this relationship[25,

31].

In conclusion, we have studied the electronic band gap of zig-zag semiconducting carbon

nanotubes using the GW approach and have found agreement with estimations from optical

measurements coupled with theoretical modelling for the exciton binding energies. We could

extrapolate the gap/diameter behavior for larger diameters with a 1/x function. As for larger

semiconducting CNTs the dependence of the gap on the tube chirality becomes smaller[2],

our relation Egap = 1.54 eV×nm can be used for providing estimates for electronic gaps of

8

closely. As before, different parameters apply according to
whether mod(n - m, 3) equals 1 or 2 (mod 1 or mod 2
species, respectively). The refined empirical functions for
first and second van Hove transition frequencies are (for dt
in nm)

These expressions mimic our experimental findings with
average errors of 10 cm-1 (1.3 meV) for νj11 and 40 cm-1 (5
meV) for νj22. Compared to the previous fit with integer
exponents, these expressions eliminate systematic fitting
discrepancies and reduce average errors by approximately
70 and 40%. It seems likely that this accuracy will be retained
on extrapolation to larger-diameter tubes, for which trigonal
warping and curvature exert smaller spectral effects. Al-
though extrapolation to smaller tube diameters is less secure,
we expect the expressions to be useful down to ca. 0.5 nm.
Table 1 lists all 127 semiconducting nanotube structures

having diameters between 0.48 and 2.00 nm (assuming a
C-C distance of 0.144 nm) in order of increasing n and m
values. Following the columns that show the diameter, chiral
angle, and mod(n - m, 3) values, we give the wavelengths,
frequencies, and photon energies for first van Hove emission
and second van Hove absorption as predicted by the
equations above. Note that first van Hove absorption energies
will be ca. 4 meV higher than the listed emission values.
In Figure 1, we plot the predicted and measured E11 and

E22 values for semiconducting SWNT with diameters be-
tween 0.48 and 2.5 nm. A small set of measured values for
E33 and E44 are also plotted. Empirical expressions for the
energies of E33 and E44 transitions, which can also be
important in resonance Raman studies of larger-diameter
nanotubes, await further experimental measurements and
analysis.
Discussion. Equations 1 and 2 are intended only as

empirical fitting functions, and we do not suggest that the
deduced parameters have any simple meaning within SWNT
electronic structure models. Instead, the peculiar exponents
deduced from fitting the data may reflect combinations of
effects such as trigonal warping, curvature, and exciton
binding.10-14 Our fits and predictions apply to samples of
individual SWNT in aqueous SDS suspension. Data mea-
sured by Lebedkin et al.9 and in our laboratory suggest that
small systematic spectral shifts of less than 2% can be

expected for individual SWNT suspended in other aqueous
surfactants. Note, however, that our spectral fits are not
applicable to bundled suspended nanotubes, for which strong
perturbations between tubes lead to significantly broadened
and red-shifted absorption spectra and quenched band-gap
luminescence.7
Although Figure 1 qualitatively resembles model-based

results, there are significant quantitative differences. To
illustrate these, Figure 2 shows plots of E11 and E22 computed
from a simple tight-binding model (as commonly used for
Kataura plots) overlaid with the empirically based values
from Figure 1. Both for E11 and E22 transitions, the tight-

νj11(mod 1) )
1 × 107 cm-1

157.5 + 1066.9dt
- 771 cm-1[cos(3R)]

1.374

dt
2.272

(1a)

νj11(mod 2) )
1 × 107 cm-1

157.5 + 1066.9dt
+ 347 cm-1[cos(3R)]

0.886

dt
2.129

(1b)

νj22(mod 1) )
1 × 107 cm-1

145.6 + 575.7dt
+ 1326 cm-1[cos(3R)]

0.828

dt
1.809

(2a)

νj22(mod 2) )
1 × 107 cm-1

145.6 + 575.7dt
- 1421 cm-1[cos(3R)]

1.110

dt
2.497

(2b) Figure 1. Optical transition energies vs diameter for semiconduct-
ing SWNT. Solid symbols are experimental data; open squares and
circles are predictions of E11 and E22, respectively, from the
empirical fitting functions.

Figure 2. Comparison between model-based and empirical values
of optical transition energies for semiconducting SWNT. Open
symbols were computed using a simple tight binding (TB) model
with γ0 ) 2.90 eV, and solid symbols were obtained from the
empirically based fitting functions.

Nano Lett., Vol. 3, No. 9, 2003 1237

Electronic gaps could be obtained combing theoretical results for exciton binding 
energies with optical measurements:

R.B. Weisman and S.M. Bachilo Nano Lett. 3, 1235 (2003)

the final error bars are quite large [14].Therefore, accessing electronic band gaps usually

relies both on optical measurement and theoretical modeling. The edges for fluorescence

emission have been measured for several tubes and then their dependence with respect to

the diameter has been fitted with model functions[2, 3]. In Ref. [3], the authors report the

following behavior for the optical first emission gap E11
op :

E11
op =

1.11eV

dt + 0.11
(3)

where the diameter dt is expressed in nanometers. Slightly different values for E11
op are

reported in Ref. [2], where the dependence of the optical gap with respect to the tube

chirality is also considered. Indeed, the gap versus diameter function changes whether

mod(n−m, 3) equals 1 or 2 (m1 or m2 species, respectively):

E11
op(m1) =

1.241× 103eV

157.5 + 1066.9dt
− 0.0957 [cos(3α)]1.374

d2.272t

eV

E11
op(m2) =

1.241× 103eV

157.5 + 1066.9dt
+

0.0431 [cos(3α)]0.886

d2.129t

eV

(4)

where α is the chiral angle [20]. For zig-zag CNTs we have α = 0 . Among the tubes we

have examined, (7,0), (10,0), (13,0) and (16,0) are of m1 kind, while (8,0), (11,0),(14,0) are

of m2 kind. In Ref.[2], fits for the second fluorescence gap E22
op are also reported:

E22
op(m1) =

1.241× 103eV

145.6 + 575.7dt
+

0.1651 [cos(3α)]0.828

d1.809t

eV

E22
op(m2) =

1.241× 103

145.6 + 575.0dt
− 0.1764 [cos(3α)]1.110

d2.497t

eV

(5)

In Ref. [4], Deslippe and co-workers proposed a model for the electron-hole exciton

Hamiltonian which yields exciton binding energies in agreement with accurate GW-Bethe-

Salpeter[29] first-principles calculations. Moreover, they found for semiconducting CNTs

that the binding energy Ebind
1A2 for the lowest 1A2 exciton could be expressed as:

Ebind
1A2 ≈ 2.3

(
E22

op −E11
op

)
(6)

7

From theory:

generic semiconducting tubes.

Calculations where performed at the CINECA high-performance computing facility. This

work as part of the European Science Foundation EUROCORES Programme FoNE, was

supported by funds from the EPSRC and the EC Sixth Framework Programme, under

Contract No. ERAS-CT-2003-980409. OP gratefully acknowledges a visit to CINECA

funded by the HPC-Europa 2 program.
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GW+L results
(m,n) #cells #atoms #k-points dimensions (Bohr)

(7,0) 4 112 4 30.0 × 32.0 × 30.0

(8,0) 3 96 4 30.0 × 24.3× 30.0

(10,0) 3 120 6 34.0× 24.0 × 34.0

(11,0) 3 132 6 36.0 × 24.0 ×36.0

(13,0) 2 104 9 39.0 × 16.0 × 39.0

(14,0) 2 112 9 40.0 × 16.0 × 40.0

(16,0) 2 128 9 40.0 × 16.0 × 40.0

Table I: Parameters for the simulation cells adopted in the GW calculations: chirality indices (m,n),

number of primitive cells defining the cell (#cells), number of atoms in the cell (#atoms), number

of k-points (#k-points) used for sampling the Brillouin’s zone and dimensions of the cell.

Despite the apparent simplicity of this approach, its application requires a considerably

larger effort than the starting DFT calculation. Not only does it involve the evaluation of

operators at several frequencies but also the evaluations of G0 and W c
0 contain sums over a

large , in principle infinite, number of unoccupied Kohn-Sham states. These are the origins of

the difficulties in obtaining well converged GW calculations[11]. Recently, we could present

a GW scheme which permits to avoid these two difficulties: we express the bare and screened

polarizability operators through reduced (optimal) basis sets[12], retaining good accuracy,

and we eliminate any explicit sum over empty unoccupied states through an approached[13]

based on Lanczos’ chains. In this approach all the operators are first evaluated on imaginary

frequencies and then the expectation values of the self-energy operator are obtained upon

analytic continuation[19], avoiding the use of the so-called plasmon-pole approximation.

We have considered here the single-walled zig-zag CNTs with chirality indices[20]: (7,0),

(8,0), (10,0), (11,0), (13,0) (14,0), (16,0) which are semiconducting. We adopted periodic

simulation cells setting a distance of 10 Å between the next periodic replica of the tubes.

We considered simulation cells comprising from 2 to 4 replica of the primitive cell along the

tube direction. This choice led to a number of atoms in the simulation cells varying from

96 to 128. Details of the dimensions of the adopted simulation cells are reported on Tab.I.

The starting DFT calculations were performed using the local density approximation

(LDA) for the exchange and correlation functional as described in Ref. [21]. We used

4

(m,n) LDA (eV) GW(eV) Ref. GW(eV)

(7,0) 0.16 1.98 (1.47) (0.60a-1.12b)

(8,0) 0.5 2.24 (1.80) 2.54c (2.12-1.75c-1.51d)

(10,0) 0.80 1.72

(11,0) 0.95 1.66

(13,0) 0.65 1.52

(14,0) 0.74 1.36

(16,0) 0.56 1.21

Table II: Electronic band gaps from LDA, GW and reference literature values, for selected semi-

conducting zig-zag CNTs of chirality indices (m,n). The gaps are relative to optically allowed

transitions. When the electronic band gap for optically allowed transitions differs from the funda-

mental electronic band gap, we have reported also the latter in parenthesis also in the Reference

column . Literature data are from: (a) Ref. [9], (b) Ref. [27],(c) Ref.[1], and (d) Ref. [8].

the pw.x code of the Quantum-Espresso suite of DFT packages [22]. Within this package,

wave-functions and charge-densities are expressed through plane-waves basis sets and the

interaction between valence and core electrons is modeled through pseudo-potentials. We

applied a normconserving pseudopotential for the carbon atoms [23] and an energy cutoff

of 40 Ry. The G0W0 calculations have been performed with the GWL code which has been

implemented as a package in Quantum-Espresso. This code uses a k-point mesh for sampling

the Brillouin zone only for the long-range terms of the symmetric dielectric matrix. For this

reason we used supercells containing up to 4 primitive cells. The DFT charge densities

and the long-range terms of the symmetric dielectric matrix have been calculated using a

meshes from 4 to 9 k-points along the reciprocal direction of the tube (see Tab. I). For

the GW calculation we built a basis for the polarizability operators as described in Ref.[13],

using a cutoff E∗=3Ry and a threshold q∗ varying from 1.8 Bohr-3 to 8.6 Bohr-3 yielding

basis consisting of 4000 vectors in each case. The calculations were first carried out in

imaginary frequency[19] using a grid consisting of 256 steps on the positive imaginary axis

up to 20 Ry. Then the expectation values of the self-energy operator were obtained on real

frequency through analytic continuation using three-poles expansion. We estimate a final

global accuracy of 0.1 eV for the calculated quasi-particle energy levels.
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We can extrapolate the GW results:

Eq. 6 combined with the data of Ref. [3] leads to the following expression for Ebind
1A2 :

Ebind
1A2 ≈ 0.55eV

dt
(7)

The electronic band gap E11 corresponding to optically allowed transition can now be

found from the Eqs. [1-4] through:

E11 = E11
op + Ebind

1A2 (8)

In Figure 1, we compare our GW results with combined theoretical-experimental esti-

mates using Eq.6 combined with either the experimental values from Ref. [3] or from Ref.

[2]. The latter are reported for the case of zig-zag semiconducting CNTs (α = 0) for both

m1 and m2 cases. We note a very good agreement of the calculated GW electronic gaps

with the previous estimates for the entire diameter range. It should be noted that LDA

results, not shown in the figure, would be very far from the theoretical/experimental lines

as can be seen from Tab.II. The GW results for the largest tubes we have considered here

are also in excellent agreement with the direct measurement of an electronic gap [14] which

in turn is in nice agreement with the experimental/theoretical lines.

As, usually, the nanotubes which are used in devices have diameters which are larger than

those studied here, it is interesting to fit our GW results for extrapolating the electronic

gap-diameter function. For the purpose of extrapolating our data for larger tubes we fitted

the GW results for tubes larger than 1.0 nm with the simple relation E11 = a/dt which goes

towards a closed gap in the large diameter limit as expected from the observed closed gap

in graphene. We find a value a of 1.54± 0.14 eV×nm. From Fig. 1, we see that our fitted

behavior agrees well with the previous mixed theoretical/experimental estimates. At smaller

diameters evidence of hybridization further reduces the band gap from this relationship[25,

31].

In conclusion, we have studied the electronic band gap of zig-zag semiconducting carbon

nanotubes using the GW approach and have found agreement with estimations from optical

measurements coupled with theoretical modelling for the exciton binding energies. We could

extrapolate the gap/diameter behavior for larger diameters with a 1/x function. As for larger

semiconducting CNTs the dependence of the gap on the tube chirality becomes smaller[2],

our relation Egap = 1.54 eV×nm can be used for providing estimates for electronic gaps of
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Extension to extended systems

72 atoms -SiO2

•Egap(GW)=8.9eV
•Egap(exp)=8.9-9.7eV

152 atoms -Si3N4

•Egap(GW)=4.5eV
•Egap(exp)=∼5eV
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The paper is organized as follows. Computational details of95

our calculations are given in Sec. II. Real-space representations96

of optimal polarizability basis are displayed in Sec. III. We97

then report convergence benchmark in Sec. IV. In Sec. V,98

we present QP energies and inverse lifetimes as well as the99

entire QP spectra for all five DNA and RNA bases, including100

guanine (G), adenine (A), cytosine (C), thymine (T), and101

uracil (U). Vertical ionization potentials (VIPs) and vertical102

electron affinities (VEAs) are compared to experimental data103

and other theoretical results. Two types of VEAs are reported104

using plane-wave basis, including valence-bound (VB, also105

called covalent-bound) VEA and dipole-bound (DB) VEAs. In106

Sec. VI, we reveal the role of exchange and correlation in GW107

self-energy corrections to the DFT Kohn-Sham eigenvalues.108

Finally, we summarize our work in Sec. VII.109

II. COMPUTATIONAL DETAILS110

Ground-state DFT calculations are performed in a cubic111

supercell of 18.03 Å3, using the Perdew-Burke-Ernzerhof’s112

(PBE) exchange-correlation functional, Troullier-Martins’s113

norm-conserving pseudopotentials, and a plane-wave basis114

set with a cutoff of 544 eV. Structures are optimized with a115

residual force threshold of 0.026 eV/Å. A truncated Coulomb116

potential with radius cutoff of 7.4 Å is employed to remove117

artificial interactions from periodic images. The vacuum level118

is corrected by an exponential fitting of EHOMO with respect to119

the supercell volume. The polarizability basis sets have been120

obtained using a parameter E∗ of 136.1 eV and a threshold q∗
121

of 0.1 a.u., giving an accuracy of 0.05 eV for the calculated122

QP energies (E∗ and q∗ will be explained in the next section).123

The final accuracy including the errors from the analytic124

continuation is about 0.05 to 0.1 eV. The structures of five125

DNA and RNA bases are shown in Fig. 1. Here the effect of126

gas-phase tautomeric forms15 of guanine and cytosine on QP127

properties are beyond the scope of this work, and we only focus128

on the G9K form of guanine and the C1 form of cytosine.15
129

III. OPTIMAL POLARIZABILITY BASIS130

The key quantity in many-body GW calculations is the131

irreducible dynamic polarizability P̂0 in the random-phase132

approximation133

P̂0(ω) = −i
∑

v,c

|ψvψc〉〈ψcψv|
ω + iη − (εc − εv)

, (1)

where η is an infinitesimal positive real number. |ψvψc〉134

denotes the direct product of a valence state ψv and a135

conduction state ψc in real space and ψv and ψc are considered136

to be real. A strategy was proposed in Refs. 27 and 28137

Guanine Adenine Cytosine UracilThymine

FIG. 1. (Color online) Ground-state structures of five DNA and
RNA bases including G9K-guanine, adenine, C1-cytosine, thymine,
and uracil.

for obtaining a compact basis set, referred to as optimal 138

polarizability basis, to represent P̂0 at all frequencies. First, we 139

consider the frequency average of P̂0(ω) which corresponds 140

to the element at time t = 0 of its Fourier transform ˜̂P 0(t), 141

without considering the constant (−i) 142

˜̂P 0(t = 0) =
∑

v,c

|ψvψc〉〈ψcψv|. (2)

We not that ˜̂P 0(t = 0) is positive-definite. Then, the optimal 143

polarizability basis, {%µ}, is built from the most important 144

eigenvectors of ˜̂P 0(t = 0), corresponding to the largest eigen- 145

values qµ above a given threshold q∗
146

˜̂P 0(t = 0) |%µ〉 = qµ|%µ〉. (3)

It must be noted that this does not require any explicit 147

calculation of empty (i.e., conduction) states as we can use 148

the closure relation 149

P̂c = 1 − P̂v, (4)

together with an iterative diagonalization scheme. However, 150

the latter procedure would build polarizability basis sets which 151

are larger than what is necessary for a good convergence of 152

the quasiparticle energy levels. This stems from treating all 153

the one-particle excitations on the same footing, independent 154

of their energy. A practical solution would be to limit the 155

sum in Eq. (2) on the conduction states below a given energy 156

cutoff E∗
157

˜̂P
′
0 =

εc<E∗∑

v,c

|ψvψc〉〈ψcψv|. (5)

However, limiting the sum over the empty states laying in the 158

lower part of the conduction manifold does not allow to use 159

the closure relation alluded to above. 160

Thus, to keep avoiding the calculation of empty states 161

we replace them in Eq. (5) with a set of plane waves {G} 162

with their kinetic energies lower than E∗, which are first 163

projected onto the conduction manifold using Eq. (4) and then 164

orthonormalized. We indicate these augmented plane-waves 165

as {G̃} and arrive at the following modified operator: 166

˜̂P
′′
0 =

∑

v,G̃

|ψvG̃〉〈G̃ψv|, (6)

which is also positive-definite. An optimal polarizability basis 167

{%µ} is finally obtained by replacing ˜̂P 0(t = 0) in Eq. (3) 168

with ˜̂P
′′
0. 169

It should be stressed that the above approximation is 170

used only for obtaining a set of optimal basis vectors for 171

representing the polarization operators and not for the actual 172

calculation of the irreducible dynamic polarizability at finite 173

frequency in Eq. (1); the latter is performed using a Lanczos- 174

chain algorithm.28 Moreover, due to the completeness of the 175

eigenvectors of ˜̂P
′′
, for any value of E∗ the GW results will 176

converge to the same values by lowering the threshold q∗, and 177

eventually reach the same results as those obtained by directly 178

using a dense basis of plane waves. However, compared to 179

the pure plane waves, which are completely delocalized in 180

real space, the optimal polarizability basis is particularly 181
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FIG. 2. (Color online) Eigenvalue distribution of the optimal
polarizability basis for cytosine. The inset plot shows the eigenvalues
in a log scale.

convenient for isolated systems since the most important182

eigenvectors of ˜̂P
′′
0 will be mostly localized in the regions183

with higher electron density. Thus, converged results can be184

obtained using much smaller optimal-polarizability basis sets185

than plane-waves basis sets.186

Now, we want to have a closer look at the optimal187

polarizability basis. The eigenvalue distribution of ˜̂P
′′
0 for188

cytosine is displayed in Fig. 2. We only show the largest 1600189

eigenvalues with E∗ = 136.1 eV in the plot since these provide190

well-converged results. It is clearly seen that the eigenvalues191

of the optimal polarizability basis decay exponentially and192

change by almost four orders of magnitude from the first to193

the last basis. In Fig. 3 we show the real-space representations194

of a few selected elements. The first five, corresponding to195

the five largest eigenvalues, are strongly localized around the196

chemical bonds of the molecule. The second row contains five197

elements which are more delocalized, and those in the last row198

are completely delocalized. This indicates that even though199

localized optimal bases like those shown in the first two rows200

can be easily captured by localized basis sets, the delocalized201

ones with smaller eigenvalues qµ (like those in the last row) are202

more difficult to capture if diffuse functions are not employed.203

204

IV. CONVERGENCE BENCHMARK205

The number of optimal-polarizability basis elements NP206

and the energy cutoff of the augmented plane waves E∗ are two207

critical parameters used in our G0W0 calculations to achieve208

both efficiency and accuracy. Therefore, we performed a series209

of calculations to benchmark the convergence with respect to210

these two parameters. In Fig. 4, we present the convergence211

behavior of VIPs and VB-VEAs of five DNA and RNA bases212

for the highest-occupied molecular orbital (HOMO) and the213

lowest-unoccupied molecular orbital (LUMO), respectively:214

VIP ≡ −Re(εQP
HOMO) and VEA ≡ −Re(εQP

LUMO). We find that215

for both VIPs and VEAs convergence within 0.1 eV is achieved216

with ∼600 optimal basis elements for E∗ = 95.2 eV and with217

∼750 optimal basis elements for E∗ = 136.1 eV. Indeed,218

similar trends were reported in Ref. 27. VIPs and VEAs219

reported in the following sections are calculated using the220

most strict parameters (NP = 2400 and E∗ = 136.1 eV).221

FIG. 3. (Color online) Real-space representation of optimal-
polarizability basis elements for cytosine, labeled with their eigen-
value indexes. Due to the delocalized nature of the optimal basis in the
third row, the images in the third row were generated with a smaller
isovalue and shown at a larger scale than those in the first two rows.

The above benchmark indicates that, if basis-sets and 222

conduction states in DFT calculations are not properly tested, 223

one could easily obtain nonconverged results from G0W0 224

calculations, resulting in higher VIPs and lower VEAs for 225

all five bases. We also note that the choice of NP and E∗
226

remains the same for all the DNA and RNA bases, indicating 227

portability for these parameters. 228

V. IONIZATION POTENTIALS AND ELECTRON 229

AFFINITIES 230

VIPs and VB-VEAs from our G0W0 calculations and 231

experimental data are shown in Fig. 5 for all five bases, 232

together with the DFT-PBE eigenvalues for the HOMO and 233

LUMO levels. Only the mean values of experimental VIPs 234

and VEAs are plotted in Fig. 5. G0W0 dramatically improves 235

VIPs and VEAs compared to DFT-PBE eigenvalues, providing 236

VIPs of 7.64, 7.99, 8.18, 8.63, and 8.99 eV and VEAs of 237

−0.43, −0.25, −0.02, 0.24, and 0.23 eV for G, A, C, T, 238

and U, respectively. The experimental VIPs are compiled in 239

Table I, and span a range of 8.0 ∼ 8.3, 8.3 ∼ 8.5, 8.8 ∼ 8.9, 240

9.0 ∼ 9.2, and 9.4 ∼ 9.6 eV for G, A, C, T, and U. Compared 241

to the mean values of experimental VIPs, the mean absolute 242

error of the calculated VIPs for all five bases is 0.52 eV. 243

Furthermore, experimental VB-VEAs are negative for all five 244

bases, indicating that excited π∗ states are unstable upon 245

electron attachment. This leads to challenging measurements 246

of VEAs and a wide range of measured values12,14 listed in 247

Table I: −0.56 ∼ −0.45, −0.55 ∼ −0.32, −0.53 ∼ −0.29, 248

and −0.30 ∼ −0.22, for A, C, T, and U. Compared to 249

the mean values of experimental VEAs, the mean absolute 250

errors of the calculated VEAs for four bases is 0.45 eV. 251

Interestingly, the VEA of guanine has never been measured 252

successfully, possibly due to a large negative value. This is 253

clearly reflected in our calculated G0W0 VEA of −0.43 eV, 254

which is the most negative one among all five bases. Even 255

though the G0W0 VEAs of thymine and uracil are slightly 256

positive, the trend for all the calculated VEAs agrees well 257

with experiments. In addition, the DFT-PBE HOMO-LUMO 258

gaps for the five bases are about 45% of the G0W0 gaps. This 259

is in agreement with previous observations that DFT with the 260
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the five HOMO levels, are in good agreement with Faber’s271

G0W0 values calculated in localized basis sets. However,272

larger deviations are clearly observed in some of the lone-pair273

valence states. Their G0W0 VIPs are higher than our values274

by 0.30, 0.40, 0.38, and 0.37 eV for HOMO-1 (the first275

lone-pair state) of cytosine, HOMO-1 (the first lone-pair276

state) of thymine, and HOMO-1 and HOMO-3 (the first and277

second lone-pair states) of uracil, respectively. We plot in278

Fig. 6 the convergence behavior of VIPs with respect to279

the dimension of the polarizability basis for these lone-pair280

states to check whether convergence issues are present. But281

it is apparent that VIPs from our G0W0 calculations are282

fully converged. Another significant difference is found in283
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FIG. 4. (Color online) Convergence benchmark of VIP and VEA
of five DNA and RNA bases with respect to the number of
optimal-polarizability basis elements NP , and augmented plane-wave
cutoff E∗. Results using E∗ = 95.2 and 136.1 eV are plotted in
dashed-blue lines and solid-red lines, respectively.
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FIG. 5. (Color online) VIP and VB-VEA of five DNA and RNA
bases from our DFT and G0W0 calculations. Here we adopt the
mean values of various experimental data listed in Table I. The
experimental ranges are 8.0 ∼ 8.3, 8.3 ∼ 8.5, 8.8 ∼ 8.9, 9.0 ∼ 9.2,
and 9.4 ∼ 9.6 eV for G, A, C, T, and U, respectively.

the valence-bound VEAs for all five LUMO levels. Moreover, 284

Faber’s G0W0 VB-VEAs are lower than the present results 285

by 0.61, 0.39, 0.43, 0.38, and 0.34 eV for G, A, C, T, and 286

U, respectively. It is interesting to notice that similar trends 287

of increased VIPs and decreased VEAs are observed in the 288

previous convergence benchmark of Fig. 4, when a small 289

optimal polarizability basis was employed. However, since 290

we do not find significant difference in the G0W0 VIPs for 291

other QP states, the source of the above deviations is not 292

clear. Furthermore, as listed in Table I, the work by Faber 293

et al. demonstrated the importance of self-consistency of 294

QP energies in GW calculations with QP wave functions 295

unchanged. This self-consistent GW method increases the 296

G0W0 VIPs of the HOMO levels by 0.32, 0.32, 0.52, 0.41, 297

and 0.44 eV and decreases the G0W0 VEAs of the LUMO 298

levels by 0.54, 0.50, 0.46, 0.53, and 0.53 eV for G, A, C, T, 299

and U, respectively. Results from advanced quantum chemistry 300

methods are also listed in Table I, including complete active 301

space with second-order perturbation theory (CASPT2),13,14
302

coupled-cluster with singles, doubles, and perturbative triple 303

excitations [CCSD(T)],13,14 and equation of motion ioniza- 304

tion potential coupled-cluster (EOM-IP-CCSD).15 VIPs from 305

CASPT2, CCSD(T), and EOM-IP-CCSD for the HOMO 306

levels are very similar, and close to the experimental mean 307

values within 0.07, 0.07, and 0.05 eV, respectively. VEAs 308

from CASPT2 and CCSD(T) for the LUMO levels are also 309

close to each other; however, they are less close to the mean 310

experimental values (within 0.30 and 0.33 eV, respectively). 311

Among all the theoretical approaches, self-consistent GW and 312

quantum chemistry methods provide the VIPs and VEAs with 313

the smaller errors with respect to the experimental data. 314

Beside the VB-VEAs, there also exist dipole-bound (DB) 315

VEAs, which correspond to having the additional electron 316

weakly bound to the DNA and RNA bases by local electrostatic 317

dipoles.14 Both types of QP states are shown in Fig. 7. It is 318

clear that all five VB states are localized π∗ states, while 319

DB states present large lobes, highly extended outside the 320

molecules. These lobes are mainly located in the vicinity of 321

the N-H bond, and with a nonnegligible dipole moment along 322

their bond axis. The energy difference between the VB-VEAs 323
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FIG. 8. (Color online) (a) Experimental valence photoemission
spectrum (shaded gray area), DFT-PBE DOS (blue dashed lines), and
G0W0 DOS (red solid lines). Both DOS curves are shifted to match the
first VIP of experimental data. Experimental PES spectra of G, A, C,
T, and U are extracted from Refs. 37, 8, 8, 8, and 38, respectively. The
theoretical DOS have been obtained through a Lorentzian broadening
defined by a width of 0.4 eV. (b) G0W0 QP energies and inverse
lifetime for valence states (unit: eV).

valence states and from −9.2 to −0.2 eV for the 10 conduction371

states, while the G0W0 correlation energy !C
n decreases from372

7.1 down to 0.2 eV for the valence states and from −0.3 to373

−3.1 eV for the conduction states. This clearly shows that374

!X
n is always negative, stabilizing both electron and hole375

excitations; however, !C
n is positive for valence states and376

negative for conduction states, indicating that the effect of377

correlation is that of destabilizing hole excitations and of378

stabilizing electron excitations. Although !X
n and !C

n have379

opposite trends for hole excitations, exchange interactions380

eventually dominate due to their larger magnitude, leading381

to the negative !XC
n of Fig. 9(c). Interestingly, the G0W0!

XC
n382

is lower than the DFT-PBE εXC
n for the valence states, but383

higher than εXC
n for the conduction states. Consequently, the384

difference #XC
n between !XC

n and εXC
n , shown in Fig. 9(d),385

is negative for the valence manifold and positive for the386

conduction manifold, resulting in an increased HOMO-LUMO387
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FIG. 9. (Color online) The role of exchange and correlation in
the G0W0 self-energy corrections to Kohn-Sham eigenvalues of 25
valence states and 10 conduction states in adenine. (a) G0W0 exchange
energy !X

n , (b) G0W0 correlation energy !C
n , (c) the sum of G0W0

exchange and correlation energy !XC
n (filled symbols) and DFT XC

energy εXC
n (unfilled symbols), and (d) the difference between G0W0

and DFT exchange-correlation energy, #XC
n ≡ !XC

n − εXC
n . Four

types of molecular orbitals are illustrated in (a)–(d), corresponding
to σss , σsp , n, and π characters.

gap. The same behavior is observed for the other four bases as 388

well. 389

As shown in Fig. 9, we can recognize five major orbital 390

types among the valence and conduction orbitals of the 391

isolated adenine molecule: σss , σsp, n, π , and dipole-bound 392

states. The lowest six states correspond to σ orbitals due 393

to s-s hybridization, which have larger G0W0 exchange, 394

correlation, and total self-energy corrections than the other 395

states. The following ten states at higher energy levels exhibit 396

σsp character, and their !X
n and !C

n show a linear, but opposite 397

dependence with respect to the G0W0 QP energy εG0W0
n . 398

Thus, their sum !XC
n is shown to be almost constant, ranging 399

from −20.5 to −19.4 eV. Since the same trend is present 400

in εXC
n , the final difference #XC

n between G0W0 and DFT 401

results stays almost constant, between −3.3 and −3.0 eV. 402

The next three n and six π valence states and three π∗
403

conduction states have a similar behavior, despite different 404

magnitudes in their self-energy corrections. In particular, the 405

six π valence states are lowered by about −2.5 eV, while the 406

three π∗ conduction states are lifted by 2.1 eV, leading to an 407

increase of 4.6 eV for the HOMO-LUMO gap. The above 408

observations provide an important evidence that the G0W0 409

self-energy corrections are highly orbital dependent and on 410

average !X(σss) < !X(σsp) < !X(n) < !X(π ), !C(σss) > 411

!C(σsp) > !C(n) > !C(π ), and #XC(σss) < #XC(σsp) ≈ 412

#XC(n) < #XC(π ). Consequently, the commonly used 413

“scissor operator” to correct bandgaps by rigidly lowering 414

the valence levels and increasing the conduction levels by the 415

same amount will never be adequate for describing the entire 416

QP spectrum. 417

VII. SUMMARY 418

In summary, VIPs, VEAs, and DOS of five DNA and 419

RNA bases obtained from a fully converged many-body 420

G0W0 approach are found to be in very good agreement 421

with experiments and other theoretical works. Two types 422
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•509 atoms
•1794 electrons



Conclusions

•GW calculation with no empty states now possible
•both plane-waves and optimal basis sets
•large systems are affordable
•GWL  part of the Quantum-Espresso package
•GNU license
•new features implemented: spin polarized systems, partly occupied systems
•still working on: self-consistency, BSE
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