Introduction to GW

Paolo Umari, Università degli Studi di Padova, Italy
Democritos, Trieste

Motivations

When we want to model a material for energy application, it is more than likely that we want to know with good accuracy one or more of the following properties:

Electronic band gap

Level alignment

Optical band gap

Motivations

Idea: use Density Functional Theory:

$$
\left(-\frac{\nabla^{2}}{2}+V_{\mathrm{ext}}(\mathbf{r})+V_{H}[n](\mathbf{r})+V_{x c}[n](\mathbf{r})\right) \psi_{i}(\mathbf{r})=\epsilon_{i} \psi_{i}(\mathbf{r})
$$

Motivations

Result: disaster

M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).

Our wish: model direct photoelectron spectroscopy

We want to calculate energies corresponding to particle addition and removal:

Electron removal

Our wish: model inverse photoelectron spectroscopy

Electron addition

$$
E(N ; 0)+\frac{\hbar^{2} k^{2}}{2 m}
$$

$$
E(N+1 ; i)+\hbar \omega
$$

Quasi-particle energies

electron removal:

$$
E_{s^{\prime}}=E(N ; 0)-E(N-1 ; i)
$$

electron addiction:

$$
E_{s}=E(N+1 ; i)-E(N ; 0)
$$

quasi particles energies stay are given by the poles of the oneparticle interacting Green's function:

$$
\begin{gathered}
G\left(\mathbf{r}_{1}, t_{1} ; \mathbf{r}_{2}, t_{2}\right)=i\langle N, 0| T\left[\hat{\psi}_{H}\left(\mathbf{r}_{1}, t_{1}\right) \hat{\psi}_{H}^{\dagger}\left(\mathbf{r}_{2}, t_{2}\right)\right]|N, 0\rangle \\
G\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \omega\right)=\sum_{s} \frac{f_{s}\left(\mathbf{r}_{1}\right) f_{s}^{*}\left(\mathbf{r}_{2}\right)}{\omega-E_{s} \pm i \eta}
\end{gathered}
$$

Many Body Perturbation Theory

Gives a way for obtaining G

- rigorous framework
- in principles exact
-in practice improvable
- not only energy levels: neutral
excitations, total energies
- good results for band-gaps

Many-Body Perturbation Theory

Idea: we start from a non-interacting Hamiltonian

$$
\hat{H}_{0}\left|\psi_{i}\right\rangle=\epsilon_{i}\left|\psi_{i}\right\rangle
$$

then we switch on the e-e interaction:

$$
\hat{H}=\hat{H}_{0}+\frac{1}{2} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \frac{\hat{\psi}^{\dagger}\left(\mathbf{r}_{1}\right) \hat{\psi}^{\dagger}\left(\mathbf{r}_{2}\right) \hat{\psi}\left(\mathbf{r}_{2}\right) \hat{\psi}\left(\mathbf{r}_{1}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

Many body perturbation theory

From the equation of motion for G :

$$
\hat{H}_{0}(\mathbf{r}) f_{s}(\mathbf{r})+V_{H}[n](\mathbf{r}) f_{s}(\mathbf{r})+\int d \mathbf{r}^{\prime} \Sigma\left(\mathbf{r}, \mathbf{r}^{\prime} ; E_{s}\right)=E_{s} f_{s}(\mathbf{r})
$$

The Self-energy gives access to the quasi-particle energies

How to get the self-energy:

Hedin's equations:

$$
\begin{aligned}
& \Sigma(1,2)=\mathrm{i} \int \mathrm{~d}(34) G\left(1,3^{+}\right) W(1,4) \Lambda(3,2,4) \\
& G(1,2)=G_{0}(1,2)+\int \mathrm{d}(34) G_{0}(1,3) \Sigma(3,4) G(4,2)
\end{aligned}
$$

$$
\Lambda(1,2,3)=\delta(1-2) \delta(2-3)+\int \mathrm{d}(4567) \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(7,5) \Lambda(6,7,3)
$$

$$
W(1,2)=v(1,2)+\int \mathrm{d}(34) v(1,3) P(3,4) W(4,2) \quad \begin{gathered}
\text { unperturbed Green's function }
\end{gathered}
$$

$$
P_{(}(1,2)=-\mathrm{i} \int \mathrm{~d} 3 \mathrm{~d} 4 G(1,3) \Lambda(3,4,2) G\left(4,1^{+}\right) . G_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \omega\right)=\sum_{i} \frac{\psi_{i}\left(\mathbf{r}_{1}\right) \psi_{i}^{*}\left(\mathbf{r}_{2}\right)}{\omega-\epsilon_{i} \pm i \eta}
$$

L. Hedin, Phys. Rev. 139, A769 (1965)

Approximations: Hartree

$$
\begin{aligned}
& \Sigma(1,2)=i \int d(34) G\left(1,3^{+}\right) W(1,4) \wedge(3,2,4)=0 \\
& G(1,2)=G_{0}(1,2)+\int_{U(34)} G_{0}(1,3) \Sigma(3,4) G(4,2)
\end{aligned}
$$

$$
\begin{aligned}
& W(1,2)=v(1,2)+\int \mathrm{d}(34) v(1,3) P(3,4) W(4,2) \\
& P(1,2)=-i \int \mathrm{~d} 3 \mathrm{~d} 4 \mathrm{G}(1,3) \wedge(3,1,2) G\left(1,1^{+}\right) .
\end{aligned}
$$

Approximations: Hartree-Fock

$$
\begin{aligned}
& \Sigma(1,2)=\mathrm{i} \int \mathrm{~d}(34) G\left(1,3^{+}\right) W(1,4) \wedge(3,2,4)=i G(1,2) v(1,2) \\
& G(1,2)=G_{0}(1,2)+\int \mathrm{d}(34) G_{0}(1,3) \Sigma(3,4) G(4,2) \\
& \Lambda(1,2,3)-\delta(1-2) \delta(2-3)+\int \frac{d(1567)}{\delta \Sigma(1,2)} \delta G(4,5) \\
& W(1,2)=v(1,2)+\int \frac{d}{d}(34) G(7,5) \wedge(1,3) P(3,7) W(4,2) \\
& P(1,2)=-i \int d 3 d 4 G(1,3) \Lambda(3,4,2) G\left(4,1^{+}\right)
\end{aligned}
$$

Approximations: DFT

$$
\begin{aligned}
& \Sigma(1,2)=\frac{i}{\int d(34) G\left(1,3^{+}\right) W(1,4) \Lambda(3,2,4)}=V_{x c}(1) \delta(1,2) \\
& G(1,2)=G_{0}(1,2)+\int \mathrm{d}(34) G_{0}(1,3) \Sigma(3,4) G(4,2) \\
& -\Lambda(1,2,3)-\delta(1-2) \delta(2-3)+\int \mathrm{d}(1567) \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(1,6) G(7,5) \Lambda(6,7,3) \\
& W(1,2)-1(1,2)+\int d(34),(1,3) P(3,4) W(1,2) \\
& P(1,2)--i \int d 3 d 4 G(1,3) \Lambda(3,4,2) G\left(1,1^{+}\right) .
\end{aligned}
$$

Approximations: GW

Equations to be solved self-consistently

$$
\begin{aligned}
& \Sigma(1,2)=\mathrm{i} \int \mathrm{~d}(34) G\left(1,3^{+}\right) W(1,4) \wedge(3,2,4) \\
& G(1,2)=G_{0}(1,2)+\int \mathrm{d}(34) G_{0}(1,3) \Sigma(3,4) G(4,2) \\
& \Lambda(1,2,3)=\delta(1-2) \delta(2-3)+\int \mathrm{d}\left(4567, \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(1,6) G(7,5) \Lambda(6,7,3)\right. \\
& W(1,2)=v(1,2)+\int \mathrm{d}(34) v(1,3) P(3,4) W(4,2) \\
& P(1,2)=-\mathrm{i} \int \mathrm{~d} 3 \mathrm{~d} 4 G(1,3) \Lambda(3,4,2) G\left(4,1^{+}\right) .
\end{aligned}
$$

Approximations: GoWo aka one-shot GW

- We start from a first guess for Go from DFT (or HF) - perturbative, non self-consistent scheme

$$
\begin{aligned}
& \Sigma(1,2)=i G_{0}\left(1,2^{+}\right) W(1,2) \\
& G(1,2)=G_{0}(1,2)+\int d(34) G_{0}(1,3) \Sigma(3,4) G(4,2) \\
& W(1,2)=v(1,2)+\int d(34) v(1,3) P(3,4) W(4,2) \\
& P(1,2)=-i G_{0}(1,2) G_{0}(2,1) \\
& \text { Random phase approximation (RPA) }
\end{aligned}
$$

Approximations: diagonal GoWo

$$
H_{0}(\mathbf{r}) f_{i}(\mathbf{r})+\int d \mathbf{n}^{\prime} \Sigma\left(\mathbf{r}, \mathbf{r}^{\prime} ; F_{\imath}\right) f_{\imath}\left(\mathbf{r}^{\prime}\right)=F_{i} f_{i}(\mathbf{r})
$$

we approximate:

$$
f_{i}(\mathbf{r})=\psi_{i}(\mathbf{r})
$$

$$
\epsilon_{i}+\left\langle\psi_{i}\right| \Sigma\left(E_{i}\right)\left|\psi_{i}\right\rangle=E_{i}
$$

GoWo Approximation: the entire scheme

M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett 55, 1418 (1985)

$$
\begin{gathered}
E_{n} \simeq \epsilon_{n}+\left\langle\Sigma_{\left.G^{\circ} W^{\circ}\left(E_{n}\right)\right\rangle_{n}-\left\langle V_{x c}\right\rangle_{n}} \begin{array}{c}
\Sigma_{G^{\circ} W^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)}=\frac{i}{2 \pi} \int d \omega^{\prime} G^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega-\omega^{\prime}\right) W^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega^{\prime}\right) \\
\mathrm{W}^{\circ}=v+v \cdot \Pi^{\circ} \cdot v \text { where } \Pi^{\circ}=P^{\circ} \cdot\left(1-v \cdot P^{\circ}\right)^{-1} \\
P^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\frac{1}{2 \pi} \int d \omega^{\prime} G^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega-\omega^{\prime}\right) G^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega^{\prime}\right) \\
G^{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\sum_{i} \frac{\psi_{i}(\mathbf{r}) \psi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-\epsilon_{i} \pm i \delta}
\end{array} .\right.
\end{gathered}
$$

It works!

M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006)

P.Umari et al. , Phys. Stat Sol. B $\underline{248} 960$
(2011)

Several codes Quantum-Espresso friendly

www.sax-project.org

Self energies and eXcitations

The GWL code

Available on gww.qe-forge.org through the GNU-GPL license

- Implemented in the Quantum-Espresso DFT package
- pw4ggw.x and gww.x codes
-mixed OPENMP/MPI
-O(N3)-O(N4)
- large use of BLAS/LAPACK routine
\bullet balance memory usage/communications
-tested up to 4096 computing cores

Integration schemes:

- Plasmon pole approximation: use a model for W
\checkmark Analytic continuation of self-energy: calculate G, P, W on imaginary frequency/time

Multipole expansion of the expectation values of the self-energy operator:

$$
\left\langle\psi_{i}\right| \Sigma_{\mathrm{c}}(i \omega)\left|\psi_{i}\right\rangle=\sum_{n} \frac{a_{n}^{i}}{i \omega-b_{n}^{i}}
$$

M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117211 (1999)

- Contour integration

$$
\begin{aligned}
& \left\langle\psi_{i}\right| \Sigma_{\mathrm{c}}(\omega)\left|\psi_{i}\right\rangle=\int_{-\infty}^{\infty}\left\langle\psi_{i}\right| G_{0}\left(\omega-i \omega^{\prime}\right) W_{\mathrm{c}}\left(i \omega^{\prime}\right)\left|\psi_{i}\right\rangle \\
& +\sum \int \psi_{i}^{*}(\mathbf{r}) \psi_{j}(\mathbf{r}) \psi_{j}^{*}\left(\mathbf{r}^{\prime}\right) W_{\mathrm{c}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \epsilon_{j}-E\right) \psi_{i}(\mathbf{r}) d \mathbf{r} d \mathbf{r}^{\prime}\left[\theta\left(\omega-\epsilon_{j}\right)-\theta\left(\epsilon_{\mathrm{F}}-\epsilon_{j}\right)\right] \\
& \text { A. Fleszar and W. Hanke, Phys. Rev. B 56, } 10228 \text { (1997). }
\end{aligned}
$$

\checkmark Contour integration, with analytic continuation of pole terms
-Real frequency integration

Large systems: two challenges

Two big challenges:

- Computational cost:

We must represent operators prohibitive for large systems

- Sums over empty states

In principles sums over all empty states
prohibitive for large systems
analogous to DFPT

How many empty states do I need?

FIG. 1. Band convergence of the quasiparticle band gap of ZnO employing a $4 \times 4 \times 4$ k-point set and calculated with (pluses) and without local orbitals (LOs) (crosses) for high-lying states. The solid lines show the hyperbolical fits. We also indicate results with finer k-point samplings (stars) calculated with LOs and 500 bands. The dashed lines show the hyperbolical fit shifted to align with these results. The fit asymptote for the $8 \times 8 \times 8 \mathbf{k}$-point set at 2.99 eV (dotted line) is considered the best estimate for the all-electron one-shot $G W$ band gap.
C. Friedrich, M.Mueller, S. Blugel, Phys. Rev. B 081101 R (11)

IP of the caffeine molecule

S. Baroni, et al.J. Phys.: Condens. Matter 22074204

GW without empty states: Linear response

Sternheimer approach for P
The polarizability matrix $P_{\mu \nu}^{\circ}(i \omega)$:

$$
P_{\mu \nu}^{\circ}(i \omega)=-4 \Re \sum_{v, c} \frac{\int d \mathbf{r} d \mathbf{r}^{\prime} \Phi_{\mu}(\mathbf{r}) \psi_{v}(\mathbf{r}) \psi_{c}(\mathbf{r}) \psi_{v}\left(\mathbf{r}^{\prime}\right) \psi_{c}\left(\mathbf{r}^{\prime}\right) \Phi_{\nu}\left(\mathbf{r}^{\prime}\right)}{\epsilon_{c}-\epsilon_{v}+i \omega}
$$

the projector over the conduction manifold Q_{c} :

$$
Q_{c}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{c} \psi_{c}(\mathbf{r}) \psi_{c}\left(\mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)-\sum_{v} \psi_{v}(\mathbf{r}) \psi_{v}\left(\mathbf{r}^{\prime}\right),
$$

with the notation:

$$
\left\langle\mathbf{r} \mid \psi_{i} \Phi_{\nu}\right\rangle=\psi_{i}(\mathbf{r}) \Phi_{\nu}(\mathbf{r}) .
$$

We can now eliminate the sum over c :

$$
P_{\mu \nu}^{\circ}(i \omega)=-4 \Re \sum_{v}\left\langle\Phi_{\mu} \psi_{v}\right| Q_{c}\left(H-\epsilon_{v}+i \omega\right)^{-1} Q_{c}\left|\psi_{v} \Phi_{\nu}\right\rangle,
$$

GW without empty states: Lanczos chains

We can strongly reduce the computational load in three steps:

1. Through a block algorithm, starting from Wannier's valence orbitals, we obtain a reduced basis for:

$$
Q_{c}\left|\psi_{v} \Phi_{\mu}\right\rangle \cong \sum_{\alpha} T_{v \mu, \alpha}\left|t_{\alpha}\right\rangle
$$

2. The problem is now that of solving:

$$
\left\langle t_{\alpha}\right|\left(H_{o}-\epsilon_{v}+i \omega\right)^{-1}\left|t_{\beta}\right\rangle
$$

3. This is achieved through a Lanczos chain algorithm

$$
\sum_{n m}\left\langle t_{\alpha} \mid l_{n}^{\beta}\right\rangle L_{n m}^{-1}\left(-\epsilon_{v}+i \omega\right)\left\langle l_{m}^{\beta} \mid t_{\beta}\right\rangle \quad \mathrm{L}=\left(\begin{array}{ccccc}
d_{1}-\epsilon_{v}+i \omega & f_{1} & 0 & 0 & 0 \\
f_{1} & d_{2}-\epsilon_{v}+i \omega & f_{2} & 0 & 0 \\
0 & f_{2} & d_{3}-\epsilon_{v}+i \omega & f_{3} & 0 \\
0 & & f_{3} & d_{3}-\epsilon_{v}+i \omega & f_{4} \\
0 & & & f_{4} & d_{3}-\epsilon_{v}+i \omega
\end{array}\right)
$$

GW without empty states: self-energy

We want to calculate the expectation values:

$$
\left\langle\psi_{i}\right| G\left(\omega-i \omega^{\prime}\right) W_{c}\left(i \omega^{\prime}\right)\left|\psi_{i}\right\rangle
$$

- Starting from the reducible polarizability:

$$
\sum_{\mu \nu}\left\langle\psi_{i}\left(v \Phi_{\mu}\right)\right|\left(\omega-i \omega^{\prime}-H_{0}\right)^{-1}\left|\left(v \Phi_{\nu}\right) \psi_{i}\right\rangle \Pi_{\mu \nu}\left(i \omega^{\prime}\right)
$$

where:

$$
\left\langle\mathbf{r} \mid\left(v \Phi_{\mu}\right)\right\rangle=\int d \mathbf{r}^{\prime} v\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \Phi_{\mu}\left(\mathbf{r}^{\prime}\right)
$$

-The computational load is then strongly reduced with reduced basis sets and Lanczos chains:

$$
\left|\psi_{i}\left(v \Phi_{\mu}\right)\right\rangle \cong \sum_{\alpha} S_{i \mu, \alpha}\left|s_{\alpha}\right\rangle
$$

$$
\left\langle s_{\alpha}\right|\left(\omega-i \omega^{\prime}-H_{o}\right)^{-1}\left|s_{\beta}\right\rangle
$$

GW without empty states: Caffeine molecule

How to speed up GW: optimal polarizability basis

If an optimal representation of P° can be found:

$$
\begin{aligned}
& P\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega\right) \cong \sum_{\mu \nu} \Phi_{\mu}(\mathbf{r}) P_{\mu \nu}(i \omega) \Phi_{v}\left(\mathbf{r}^{\prime}\right) \\
& \Pi\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega\right) \cong \sum_{\mu \nu} \Phi_{\mu}(\mathbf{r}) \Pi_{\mu \nu}(i \omega) \Phi_{v}\left(\mathbf{r}^{\prime}\right) \\
& W_{\mathrm{c}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega\right) \cong \sum_{\mu \nu}\left(v \Phi_{\mu}\right)(\mathbf{r}) \Pi_{\mu \nu}(i \omega)\left(v \Phi_{v}\right)\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

Optimal polarizability basis

We consider the average polarizability in frequency:

$$
\tilde{P}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t=0\right)=\sum_{v c} \psi_{v}(\mathbf{r}) \psi_{c}(\mathbf{r}) \psi_{v}\left(\mathbf{r}^{\prime}\right) \psi_{c}\left(\mathbf{r}^{\prime}\right)
$$

-We take the basis formed by the most important eigenvectors:

$$
\tilde{P}(t=0)\left|\Phi_{\mu}\right\rangle=p_{\mu}\left|\Phi_{\mu}\right\rangle \quad p_{\mu}>q^{*}
$$

- We can avoid any calculation of empty states, however the basis sets are quite large
- It is better to consider the modified operator:

$$
\tilde{P}^{\prime}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t=0\right)=\sum_{v c} \psi_{v}(\mathbf{r}) \psi_{c}(\mathbf{r}) \psi_{v}\left(\mathbf{r}^{\prime}\right) \psi_{c}\left(\mathbf{r}^{\prime}\right) \quad \epsilon_{c}<E^{*}
$$

-For avoiding the calculation of empty states we consider:

$$
\tilde{P^{\prime \prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t=0\right)=\sum_{v \tilde{\mathbf{G}}} \psi_{v}(\mathbf{r}) \tilde{\mathbf{G}}(\mathbf{r}) \psi_{v}\left(\mathbf{r}^{\prime}\right) \tilde{\mathbf{G}}\left(\mathbf{r}^{\prime}\right)
$$

-Where $\tilde{\mathbf{G}}$ are planewaves defined by E^{\star} projected over the conduction manifold, and orthonormalized

Optimal polarizability basis: Benzene

Extension to extended systems

- $\operatorname{Head}\left(\mathbf{G}=0, \mathbf{G}^{\prime}=0\right)$ and wings $\left(\mathbf{G}=0, \mathbf{G}^{\prime} \neq 0\right)$ of the symmetric dielectric matrix are calculated using Lanczos chains (k-points sampling implemented)
■ Wings are projected over the polarizability basis vectors
■ Element $\mathbf{G}=0$ added to the polarizability basis
- $v(\mathbf{G})=\frac{1}{\Omega} \int d \mathbf{q} \frac{1}{|\mathbf{G}+\mathbf{q}|^{2}}$
- Grid on imaginary frequency can be denser around $\omega=0$

Test: bulk Si

-64 atoms cell
$\bullet 4 \times 4 \times 4$ k-points mesh for head and wings
$\bullet E^{*}=3 R y ; q^{*}=7.93$ a.u.

- Polarizability basis: 2000 vectors

state	LDA	GW	Ref LDA	Ref GW	Expt
$\Gamma_{1 v}$	-11.91 eV	-11.59 eV	-11.89 eV	-11.57 eV	-12.5 eV
$X_{1 v}$	-7.77 eV	-7.68 eV	-7.78 eV	-7.67 eV	
$X_{4 v}$	-2.82 eV	-2.85 eV	-2.82 eV	-2.80 eV	$-2.9 ;-3.3 \mathrm{eV}$
$\Gamma_{25 v}^{\prime}$	0 eV				
$X_{1 c}$	0.67 eV	1.44 eV	0.61 eV	1.34 eV	1.25 eV

Ref: M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117211 (1999)

Optimal polarizability basis vs Plane-waves: bulk-Si

8 atoms Si cell: Gamma only calculation
k-points integration only for long range terms

Optimal basis sets improve upon plane-waves

Applications: larger molecules

$\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4}$

G.Stenuit, C. Castellarin-Cudia, O.Plekan, V. Feyer, K.C. Prince, A. Goldoni, and P. Umari, Phys. Chem. Chem. Phys., 12, 10812 (2010)

Tetraphenylporphyrin

Analysis

Tetraphenylporphyrin

Analysis

Zn-Phthalocyanine

GW calculation w/o $\mathrm{Zn}(3 \mathrm{~s}, 3 \mathrm{p})$ semicore in valence:

IP $P_{\exp }=6.35 \mathrm{eV}$
$\mathrm{IPGw}=5.7 \mathrm{eV}$

P.Umari and S.Fabris J. Chem. Phys, 136, 174310 (2012).

Importance of semicore states

We must include semicore Zn 3 s and 3p states in valence:
300Ry Plane-waves cutoff
$\mathrm{IP}_{\mathrm{exp}}=6.35 \mathrm{eV} \quad \mid \mathrm{P}_{\mathrm{GW}}=5.7 \mathrm{eV}$

Explanation

The electronic band gap of Carbon nanotubes

For semiconducting zig-zag CNTs we want to study the dependance of the electronic band gap wrt the diameter d_{t}

The electronic band gaps can be measured with great difficulties, optical band gap instead are measured with great accuracy:

cont'ed

Electronic gaps could be obtained combing theoretical results for exciton binding energies with optical measurements:

R.B. Weisman and S.M. Bachilo Nano Lett. 3, 1235 (2003)

$$
E^{11}=E_{\mathrm{op}}^{11}+E_{1 A 2}^{\mathrm{bind}}
$$

From theory:

$$
E_{1 A 2}^{\text {bind }} \approx 2.3\left(E_{\mathrm{op}}^{22}-E_{\mathrm{op}}^{11}\right)
$$

J. Deslippe, M. Dipoppa, D. Prendergast, M.V.O. Moutinho, R.B. Capaz, and S.G. Louie, Nano Lett. 9, 1330 (2009).

GW+L results

(m, n)	$\#$ cells	\#atoms	$\#$ k-points	dimensions (Bohr)
$(7,0)$	4	112	4	$30.0 \times 32.0 \times 30.0$
$(8,0)$	3	96	4	$30.0 \times 24.3 \times 30.0$
$(10,0)$	3	120	6	$34.0 \times 24.0 \times 34.0$
$(11,0)$	3	132	6	$36.0 \times 24.0 \times 36.0$
$(13,0)$	2	104	9	$39.0 \times 16.0 \times 39.0$
$(14,0)$	2	112	9	$40.0 \times 16.0 \times 40.0$
$(16,0)$	2	128	9	$40.0 \times 16.0 \times 40.0$

(m, n)	LDA (eV)	GW (eV)	Ref. GW(eV)
$(7,0)$	0.16	$1.98(1.47)$	$\left(0.60^{\mathrm{a}}-1.12^{\mathrm{b}}\right)$
$(8,0)$	0.5	$2.24(1.80)$	$2.54^{\mathrm{c}}\left(2.12-1.75^{\mathrm{c}}-1.51^{d}\right)$
$(10,0)$	0.80	1.72	
$(11,0)$	0.95	1.66	
$(13,0)$	0.65	1.52	
$(14,0)$	0.74	1.36	
$(16,0)$	0.56	1.21	

a) T. Miyake and S. Saito, Phys. Rev. B 68, 155423 (2003).
c) C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402
d) W. Kang and M. S. Hybertsen, Phys. Rev. B 82, 195108 (2010).

Experimental STM measure: H. Lin et al. Nat. Mat. 9, 235 (2010).
We can extrapolate the GW results:
$E^{11}=a / d_{t}$
$a=1.54 \pm 0.14 \mathrm{eV} \times \mathrm{nm}$
P. Umari, O. Petrenko, S. Taioli, and M.M. de Souza, J. Chem. Phys.136, 181101 (2012).

Extension to extended systems

72 atoms $-\mathrm{SiO}_{2}$

- $\mathrm{E}_{\text {gap }}(\mathrm{GW})=8.9 \mathrm{eV}$
- $\mathrm{E}_{\text {gap }}(\mathrm{exp})=8.9-9.7 \mathrm{eV}$

152 atoms $-\mathrm{Si}_{3} \mathrm{~N}_{4}$

- $\mathrm{E}_{\text {gap }}(\mathrm{GW})=4.5 \mathrm{eV}$
- $\mathrm{Egap}^{\text {gexp }}$) $=\sim 5 \mathrm{eV}$

DNA from single bases to larger models

Single DNA strand

-10 basis single strand model

- 509 atoms
-1794 electrons

Conclusions

- GW calculation with no empty states now possible
-both plane-waves and optimal basis sets
- large systems are affordable
- GWL part of the Quantum-Espresso package
- GNU license
- new features implemented: spin polarized systems, partly occupied systems
- still working on: self-consistency, BSE

Acknowledgements

- G.Stenuit(Democritos)
- X. Qian(MIT)
- L.Giacomazzi(Sissa)

- J. Xian(Sissa)
-L. Martin-Samos(Democritos)
- A.Magistrato(Democritos)
- A. Vargiu (SLACS)
- F. De Angelis
-A. Goldoni (Elettra)
-C. Castellarin-Cudia(Elettra)
-C. Cavazzoni(Cineca)
- M. Betti (Rome)
-S. Fabris(Demcoritos)

