Maximal CP Violation in Lepton Mixing

Walter Grimus (University of Vienna)

BeNe12 'Behind the Neutrino Mass' Trieste, September 17–21, 2012

Outline of the talk

P.M. Ferreira, W. Grimus, L. Lavoura, P.O. Ludl

Maximal CP violation in lepton mixing from a model with $\Delta(27)$ flavour symmetry arXiv:1206.7072 [hep-ph], to appear in JHEP

Outline of the talk:

- Mechanism for maximal CP violation in lepton mixing
- Model building: charged-lepton sector
- Model building: neutrino sector—model I
- Model building: neutrino sector—model II
- Predictions for neutrino masses and lepton mixing
- Conclusions

Mechanism for maximal CP violation

Notation:

$$\begin{split} \mathcal{L}_{\mathrm{mass}} &= -\bar{\ell}_L M_\ell \ell_R + \frac{1}{2} \, \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \text{H.c.} \\ & U_\ell^\dagger M_\ell M_\ell^\dagger U_\ell \quad = \quad \mathrm{diag} \left(m_\mathrm{e}^2, m_\mu^2, m_\tau^2 \right) \\ & U_\nu^T \mathcal{M}_\nu U_\nu \quad = \quad \mathrm{diag} \left(m_1, m_2, m_3 \right) \\ & \qquad \qquad \mathsf{Mixing matrix} \qquad \boxed{U = U_\ell^\dagger U_\nu} \end{split}$$

Mechanism for maximal CP violation

Observation 1: Harrison, Scott (2002)

(*)
$$|U_{\mu j}| = |U_{\tau j}| \quad \forall j = 1, 2, 3 \Rightarrow \begin{cases} \cos \theta_{23} = \sin \theta_{23} = \frac{1}{\sqrt{2}} \\ \sin \theta_{13} \cos \delta = 0 \end{cases}$$

$$\sin \theta_{13} \neq 0 \quad \Rightarrow \quad \theta_{23} = 45^{\circ}, \quad \delta = \pm 90^{\circ}$$

Compatible with global fits at 2σ (3σ)

Observation 2:

If $U_\ell = U_\omega$ and $U_
u$ ${
m real}$ then $U = U_\ell^\dagger U_
u$ has property (*)

$$U_{\omega} \equiv rac{1}{\sqrt{3}} \left(egin{array}{ccc} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{array}
ight) \quad \omega = rac{-1+i\sqrt{3}}{2}$$

Mechanism for maximal CP violation

Proof:
$$U_{\nu}=\left(R_{jk}\right) \text{ with } R_{jk} \ \underline{\text{real}} \Rightarrow$$

$$U_{\mu j}=\left(U_{\omega}^{\dagger}R\right)_{\mu j} = \frac{1}{\sqrt{3}}\left(R_{1j}+\omega^{2}R_{2j}+\omega R_{2j}\right)$$

$$U_{\tau j}=\left(U_{\omega}^{\dagger}R\right)_{\tau j} = \frac{1}{\sqrt{3}}\left(R_{1j}+\omega R_{2j}+\omega^{2}R_{2j}\right)$$

Therefore, it follows that $U_{ au j} = U_{\mu j}^*$.

$$E = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right), \quad A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right), \quad C = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{array} \right)$$

$$\begin{aligned} [\phi \ell_R]_0 &= \phi_1 \ell_{1R} + \phi_2 \ell_{2R} + \phi_3 \ell_{3R}, \\ [\phi \ell_R]_1 &= \phi_1 \ell_{1R} + \omega \phi_2 \ell_{2R} + \omega^2 \phi_3 \ell_{3R}, \\ [\phi \ell_R]_2 &= \phi_1 \ell_{1R} + \omega^2 \phi_2 \ell_{2R} + \omega \phi_3 \ell_{3R}, \end{aligned}$$

$$\mathcal{S}: \qquad \ell_R \to A\ell_R, \ \phi \to A\phi$$
 $\mathcal{T}: \qquad \ell_R \to E\ell_R, \ \phi \to E\phi$

 \mathcal{S} , \mathcal{T} generate 3-dimensional irrep of A_4

Transformation property of bilinears: A_4

$$\begin{array}{ccc} [\phi\ell_R]_j & \stackrel{\mathcal{S}}{\longrightarrow} & [\phi\ell_R]_j \\ [\phi\ell_R]_j & \stackrel{\mathcal{T}}{\longrightarrow} & \omega^{2j} \, [\phi\ell_R]_j \end{array}$$

Yukawa Lagrangian of charged leptons:

$$\mathcal{L}_{Y}^{(\ell)} = -\sum_{j=1}^{3} h_{j} \bar{D}_{jL} [\phi \ell_{R}]_{j-1} + \text{H.c.}$$

$$\mathcal{T}:\quad D_L\to C^2D_L$$

Charged-lepton Yukawa Lagrangian looks very similar to the one of some A_4 -based models, however, roles of D_L and ℓ_R reversed!

Mass matrix of the charged leptons: VEVs $v_j = \langle \phi_j^0 \rangle_0$

$$M_{\ell} = \operatorname{diag}(h_1, h_2, h_3) \left(\sqrt{3} U_{\omega}\right) \operatorname{diag}(v_1, v_2, v_3)$$

$$U_{\omega}^{\dagger}M_{\ell}$$
 diagonal if $h_1=h_2=h_3$

Our model: equality of Yukawa couplings

Usual A_4 models: equality of VEVs

The equality of the h_j is achieved by assuming invariance of $\mathcal{L}_Y^{(\ell)}$ under

$$\mathcal{T}':\quad D_L\to ED_L,\ \ell_R\to C\ell_R$$

Therefore, in the following we shall use

$$h_1=h_2=h_3\equiv h, \quad U_\omega^\dagger M_\ell=\sqrt{3}\,h\,{
m diag}\,(v_1,v_2,v_3)$$

No VEV alignment of Higgs doublets!

$$\begin{array}{rcl} m_{\rm e} & = & \sqrt{3} \; |h v_1| \\ m_{\mu} & = & \sqrt{3} \; |h v_2| \\ m_{\tau} & = & \sqrt{3} \; |h v_3| \end{array}$$

Fine-tuning of VEVs:

$$|v_1|:|v_2|:|v_3|=m_e:m_\mu:m_\tau$$

Side remark:

Basis transformation $D_L = U_\omega D_L' \Rightarrow$

$$\mathcal{L}_{Y}^{(\ell)} = -\sum_{k=e,\mu, au} h\, ar{D'}_{kL} \phi_k\, \ell_{kR} + ext{H.c.}$$

Yukawa couplings flavour-diagonal!

symmetry	D_L	ℓ_R	ϕ	ν_R	η	$\phi_{ u}$
$\mathcal S$	1	Α	Α	1	1	1
\mathcal{T}	C^2	Ε	Ε	C^2	C^2	1
\mathcal{T}'	Ε	C	1	Ε	Ε	1

Multiplets of model I and their transformation properties Same field content as in A_4 model of He, Keum, Volkas (2006) Yukawa Lagrangian of the neutrinos: Type I seesaw model

$$\begin{split} \mathcal{L}_{Y}^{(\nu)} &= \\ &- y_{\nu} \bar{D}_{L} \tilde{\phi}_{\nu} \nu_{R} + \frac{1}{2} y \sum_{j=1}^{3} \eta_{j} \nu_{jR}^{T} C^{-1} \nu_{jR} \\ &+ y' \left(\nu_{2R}^{T} C^{-1} \nu_{3R} \eta_{1} + \nu_{3R}^{T} C^{-1} \nu_{1R} \eta_{2} + \nu_{1R}^{T} C^{-1} \nu_{2R} \eta_{3} \right) + \text{H.c.} \end{split}$$

Neutrino mass matrix: $\langle \eta_j \rangle_0 = s_j \Rightarrow M_R$ determined by VEVs s_j

$$M_D \propto 1$$

 \mathcal{M}_{ν}^{-1} has typical form of $\Delta(27)$ models (Ma (2006)):

$$\mathcal{M}_{
u}^{-1} = \left(egin{array}{ccc} \zeta a & c & b \\ c & \zeta b & a \\ b & a & \zeta c \end{array}
ight) \quad ext{with} \quad \zeta^* = y/y'$$

Symmetry group of the model:

Neutrino sector: $\Delta(27)$ generated by E, C

Charged-leptons: $A_4 + T'$ Column with ℓ_R in table:

suggests AC to be a generator of the symmetry group, has sixth

root of unity $-\omega^2$ in its diagonal

Might naively guess $\Delta(108) \equiv \Delta(3 \times 6^2)$ to be the symmetry group. However, beyond the symmetries listed in the table, the model possesses an accidental $2 \leftrightarrow 3$ interchange symmetry:

$$D_{2L} \leftrightarrow D_{3L}, \quad \ell_{2R} \leftrightarrow \ell_{3R}, \quad \phi_2 \leftrightarrow \phi_3, \quad \nu_{2R} \leftrightarrow \nu_{3R}, \quad \eta_2 \leftrightarrow \eta_3$$

Therefore, the full symmetry group is $\Delta(216) = \Delta(6 \times 6^2)$.

Generalized CP: need real \mathcal{M}_{ν} for real U_{ν}

$$\mathsf{CP}: \quad \left\{ \begin{array}{l} D_L \to i C D_L^*, \ \ell_R \to i S C \ell_R^*, \ \nu_R \to i C \nu_R^*, \\ \phi \to S \phi^*, \ \phi_\nu \to \phi_\nu^*, \ \eta \to \eta^*, \end{array} \right.$$

$$S = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

Renders Yukawa couplings, in particular $\zeta^* = y/y'$, real!

VEVs of the scalar gauge singlets: $\langle \eta_j \rangle_0 = s_j$

$$V_{\eta} = \sum_{j=1}^{3} \left(\mu |\eta_{j}|^{2} + \lambda_{1} |\eta_{j}|^{4} \right) + \lambda_{2} \left(|\eta_{1}\eta_{2}|^{2} + |\eta_{1}\eta_{3}|^{2} + |\eta_{2}\eta_{3}|^{2} \right)$$

$$+ M_{1} \left(\eta_{1}\eta_{2}\eta_{3} + \text{H.c.} \right) + M_{2} \left(\eta_{1}^{3} + \eta_{2}^{3} + \eta_{3}^{3} + \text{H.c.} \right)$$

$$+ \lambda_{3} \left(\eta_{1}^{*2}\eta_{2}\eta_{3} + \eta_{2}^{*2}\eta_{1}\eta_{3} + \eta_{3}^{*2}\eta_{1}\eta_{2} + \text{H.c.} \right)$$

Need reals VEVs s_j!

At minimum of V: arg $s_j = \omega^{p_j}$ with p_j integer,

$$p_1 + p_2 + p_3 = 0 \mod 3$$

Model II: type II seesaw

Scalar gauge triplets:
$$\Delta=\left(egin{array}{cc} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{array}
ight)$$

$$\begin{split} \mathcal{L}_{Y}^{(\Delta)} &= \frac{1}{2} \, \tilde{\mathbf{y}} \sum_{j=1}^{3} D_{jL}^{T} C^{-1} \varepsilon \Delta_{j} D_{jL} \\ &+ \tilde{\mathbf{y}}' \left(D_{2L}^{T} C^{-1} \varepsilon \Delta_{1} D_{3L} + D_{3L}^{T} C^{-1} \varepsilon \Delta_{2} D_{1L} + D_{1L}^{T} C^{-1} \varepsilon \Delta_{3} D_{2L} \right) + \text{H.c.} \end{split}$$

Neutrino mass matrix: $\langle \Delta_j^0 \rangle_0 = \delta_j$

$$\mathcal{M}_{\nu} = \left(\begin{array}{ccc} \tilde{y} \delta_{1} & \tilde{y}' \delta_{3} & \tilde{y}' \delta_{2} \\ \tilde{y}' \delta_{3} & \tilde{y} \delta_{2} & \tilde{y}' \delta_{1} \\ \tilde{y}' \delta_{2} & \tilde{y}' \delta_{1} & \tilde{y} \delta_{3} \end{array} \right) = \left(\begin{array}{ccc} \zeta a & c & b \\ c & \zeta b & a \\ b & a & \zeta c \end{array} \right) \quad \text{Ma (2006)}$$

For definiteness, discussion of model I:

Weak basis:
$$\mathcal{M}_{\nu}^{(w)} = U_{\ell}^{\mathsf{T}} \mathcal{M}_{\nu} U_{\ell}$$
 with $U_{\ell} = U_{\omega}$

$$\mathcal{M}_{\nu}^{(w)^{-1}} = U_{\omega}^{\dagger} \mathcal{M}_{\nu}^{-1} U_{\omega}^{*} = \begin{pmatrix} \bar{\zeta} \bar{a} & \bar{c} & \bar{b} \\ \bar{c} & \bar{\zeta} \bar{b} & \bar{a} \\ \bar{b} & \bar{a} & \bar{\zeta} \bar{c} \end{pmatrix}$$

$$3\bar{a} = (\zeta - 1)(a + b + c)$$

$$3\bar{b} = (\zeta - 1)(a + \omega^{2}b + \omega c)$$

$$3\bar{c} = (\zeta - 1)(a + \omega b + \omega^{2}c)$$

$$\bar{\zeta} = \frac{\zeta + 2}{\zeta - 1}$$

a, b, c,
$$\zeta$$
 real \Rightarrow $ar{a}$, $ar{\zeta}$ real, $ar{c}=ar{b}^*$

Same mechanism in Mohapatra, Nishi (2012)

Theorem: Grimus, Lavoura (2003)

$$\mathcal{M}_{\nu}^{(w)^{-1}} = \begin{pmatrix} x & y & y^* \\ y & z & w \\ y^* & w & z^* \end{pmatrix}$$
 with x and w real

Then $\mathcal{M}_{\nu}^{(w)^{-1}}$ is diagonalized by

$$U'=\left(egin{array}{ccc} u_1 & u_2 & u_3 \ w_1 & w_2 & w_3 \ w_1^* & w_2^* & w_3^* \end{array}
ight) \quad ext{with} \quad u_j\in\mathbb{R}$$

and

$${U'}^\dagger \mathcal{M}_{
u}^{(w)^{-1}} {U'}^* = \operatorname{diag}\left(\frac{1}{\mu_1}, \frac{1}{\mu_2}, \frac{1}{\mu_3}\right) \quad ext{with } \mu_j = \epsilon_j \mathit{m}_j, \,\, \epsilon_j = \pm 1$$

Consequences of the theorem:

- $|U_{\mu j}| = |U_{\tau j}| \ \forall j = 1, 2, 3$
- **2** The ϵ_j correspond to the Majorana phase factors

Effective mass in $(\beta\beta)_{0\nu}$ decay:

$$m_{\beta\beta} = \left| \sum_{j=1}^{3} u_j^2 \mu_j \right| = \left| \sum_{j=1}^{3} u_j^2 \epsilon_j m_j \right|$$

Counting of parameters and predictions:

- 4 real parameters in $\mathcal{M}_{
 u}^{(w)^{-1}}$
- 9 physical quantities: three masses, mixing angles, phases \Rightarrow

9-4=5 predictions:

$$s_{23}^2=1/2$$
, $\delta=\pm\pi/2$, Majorana phases 0 or π

Extra relation from

$$\left(\mathcal{M}_{\nu}^{(w)^{-1}}\right)_{11} \left(\mathcal{M}_{\nu}^{(w)^{-1}}\right)_{13} = \bar{\zeta} \bar{a} \bar{b} = \left(\mathcal{M}_{\nu}^{(w)^{-1}}\right)_{22} \left(\mathcal{M}_{\nu}^{(w)^{-1}}\right)_{23}$$

Only equality of moduli of both sides physically meaningful!

Abbreviation: $U_j \equiv u_j^2 = |U_{ej}|^2$

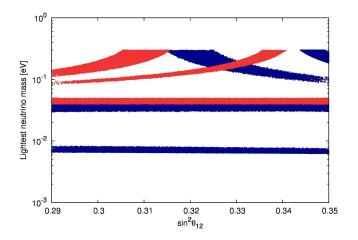
Extra relation

$$\left(\sum_{j} \frac{U_{j}^{2}}{m_{j}^{2}} + \sum_{j < j'} \frac{2U_{j}U_{j'}}{\mu_{j}\mu_{j'}}\right) \left[\sum_{j} \frac{U_{j}(1 - U_{j})}{2m_{j}^{2}} - \sum_{j < j'} \frac{U_{j}U_{j'}}{\mu_{j}\mu_{j'}}\right]$$

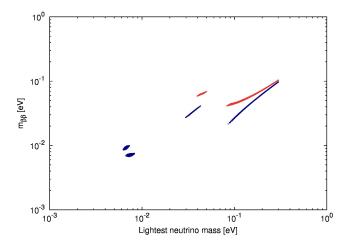
$$= \left[\sum_{j} \frac{(1 - U_{j})^{2}}{4m_{j}^{2}} + \sum_{j < j'} \frac{-1 + U_{j} + U_{j'} + U_{j}U_{j'}}{2\mu_{j}\mu_{j'}}\right]$$

$$\times \left[\sum_{j} \frac{(1 - U_{j})^{2}}{4m_{j}^{2}} + \sum_{j < j'} \frac{1 - U_{j} - U_{j'} + U_{j}U_{j'}}{2\mu_{j}\mu_{j'}}\right]$$

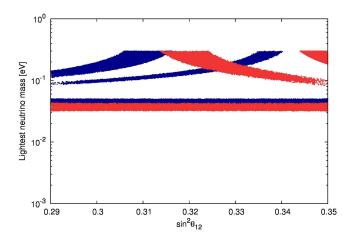
$$U_3 = \sin^2 \theta_{13}$$
, $U_2 = \cos^2 \theta_{13} \sin^2 \theta_{12}$, $U_1 = \cos^2 \theta_{13} \cos^2 \theta_{12}$



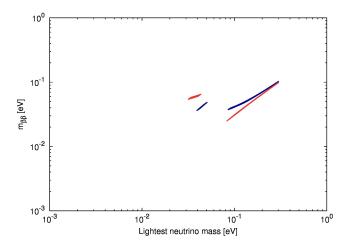
Model I: Lightest neutrino mass as a function of $\sin^2 \theta_{12}$ blue: = normal, red = inverted



Model I: $m_{\beta\beta}$ versus lightest neutrino mass blue = normal, red = inverted



Model II: Lightest neutrino mass as a function of $\sin^2 \theta_{12}$ blue = normal, red = inverted



Model II: $m_{\beta\beta}$ versus lightest neutrino mass blue = normal, red = inverted

Conclusions

- **①** Observation: $U_{\ell} = U_{\omega}$, U_{ν} real \Rightarrow $|U_{\mu j}| = |U_{\tau j}| \quad \forall j = 1, 2, 3$
- 2 Predictions: $\delta = \pm 90^{\circ}$, $\theta_{23} = 45^{\circ}$, Majorana phases 0 or π
- Models: Seesaw type I or type II
- Minimal VEV alignment: real VEVs of gauge singlet scalars
- No FCNI
- **1** Neutrino sector has $\Delta(27)$ symmetry
- **②** One additional prediction from that symmetry: Lightest ν mass as function of θ_{12} , θ_{13} , Δm_{21}^2 , Δm_{31}^2