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Outline

• Existing approaches with flavor symmetry Gf and CP

• S4 and CP as showcase
• Z2 and the diagonal subgroup of Z2 and CP for neutrinos
• Generalization: Z2 and CP for neutrinos

• Conclusions
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Approaches withGf and CP in Literature

We would like to investigate in more detail an idea dubbed
"µτ reflection symmetry". (Harrison/Scott (’02,’04), Grimus/Lavoura (’03))

Q23mνQ23 = m⋆
ν

imposes as conditions on the mixing angles:

sin θ23 = cos θ23 and sin θ13 cos δCP = 0

A mass matrix mν for neutrinos with similar properties has
been found by Babu/Ma/Valle (’02).

Harrison/Scott (’02,’04) have discussed also "triχmaximal mixing";
for some model building see Harrison (ICHEP12).
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Approaches withGf and CP in Literature

There have been several further approaches - among them are

• Ferreira et al. (’12) get with ∆(27) maximal CP violation and θ23

• Combination of S4 and CP (Mohapatra/Nishi (’12))

• T ′ and CP violation (Chen/Mahanthappa (’09), Meroni et al. (’12))

• S2 and CP as acc. symmetries in potential (Babu/Kubo (’04,’11))

• "Geometrical CP violation" (Branco et al. (’83))

(recently discussed by de Medeiros Varzielas et al.)

– p. 4/27



S4 Basis

In the following we choose a basis in which the generators
are real and furthermore two of them are diagonal.

ρ(S) =









−1 0 0

0 1 0

0 0 −1









, ρ(T ) =
1

2
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, ρ(U) =









1 0 0

0 1 0

0 0 −1









The generators S, T and U fulfill the relations

S2 = E , T 3 = E , U2 = E ,

(ST )3 = E , (SU)2 = E , (TU)2 = E , (STU)4 = E .
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Standard Way to get TB Mixing fromS4

• Require invariance of charged lepton sector under Z3

generated by T

• Require invariance of neutrino sector under Z2 × Z2 gener-
ated by S and U

Lepton mixing is given by the matrix V which diagonalizes ρ(T ):
V ρ(T )V † = diag

(

1, ω2, ω
)

with ω = e2πi/3

V =
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Definition of CP Transformation

Form of CP transformation (Grimus et al. (’87), Haber/Surujon (’12))

φ
CP−→ Xφ⋆

with X being unitary and symmetric, i.e.

XX⋆ = 1

We have to fulfill consistency conditions, if we wish to
study theories with a flavor symmetry and CP. We exem-
plify this in the case of S4.
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Consistency Conditions

Consider the following sequence of transformations
φ transforms as rep. ρ of S4

φ
CP−→ Xφ⋆ S4−→ ρ(g)Xφ⋆ CP−→ X (ρ(g)Xφ⋆)⋆ = (X⋆ρ(g)X)⋆ φ

Thus we have to fulfill the requirement

(

X−1ρ(g)X
)⋆

= ρ(g′) with g, g′ ∈ S4 , but in general g 6= g′

It is sufficient to fulfill this for the generators of the group S4.
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Consistency Conditions II

We are interested in a particular case in which one of the Z2

which we like to preserve in the neutrino sector "combines"
with the transformation CP:

(Z2)I × [(Z2)II × CP]diag

with (Z2)I generated by S and (Z2)II generated by U .

Again, we have to fulfill some consistency conditions:

φ
CP−→ Xφ⋆ S−→ ρ(S)Xφ⋆ and φ

S−→ ρ(S)φ
CP−→ X (ρ(S)φ)

⋆

thus we need to have: ρ(S)X −Xρ(S)⋆ = 0 and similar for U .

For our choice of ρ(S) and ρ(U): [ρ(S), X ] = 0 and [ρ(U), X ] = 0.
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Possible Solutions forX

We find the following four different solutions for X - up to overall
phase:

X1 =









1 0 0

0 1 0

0 0 1









= ρ(E) , X2 =









−1 0 0

0 1 0

0 0 −1









= ρ(S) ,

X3 =









1 0 0

0 1 0

0 0 −1









= ρ(U) , X4 =









−1 0 0

0 1 0

0 0 1









= ρ(SU) .

We find that all X belong to S4 itself and that they are ele-
ments of the Klein group (Z2)I × (Z2)II .
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Study of SolutionX1

We want to preserve (Z2)I × [(Z2)II × CP] with

• (Z2)I generated by S (mij complex)

ρ(S)Tmνρ(S) = mν fixing the form of mν =









m11 0 m13

0 m22 0

m13 0 m33









• [(Z2)II × CP]diag with U and X1 (a, b, c, w real)

ρ(U)Tmνρ(U) = m⋆
ν fixing the form of mν =









a 0 iw

0 b 0

iw 0 c
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Study of SolutionX1

The neutrino mass matrix mν is diagonalized by

Uν = PR13

with

P = diag(1, 1,−i) and R13 =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









with θ: tan 2θ = −2w/(a+ c) - not determined by S4!
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Study of SolutionX1

The PMNS matrix takes the form: UPMNS = V Uν = V PR13

Results for lepton mixing parameters

sin2 θ13 =
2

3
sin2 θ

sin2 θ23 =
1

2

(

1 +

√
3 sin 2θ

2 + cos 2θ

)

≈ 1

2
+

θ√
3

sin2 θ12 =
1

2 + cos 2θ
≈ 1

3
+

2θ2

9

JCP = 0 and Majorana phases are trivial

Note: We find the same results, if we use instead X2 = ρ(S).
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Study of SolutionX3

We find a physically different result, if we use the solution
X3 = ρ(U):

mν =









a 0 w

0 b 0

w 0 c









with a, b, c, w real

Thus, a rotation in the (13)-plane is sufficient with the angle θ

determined by: tan 2θ = 2w/(c− a).
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Study of SolutionX3

Results for lepton mixing parameters

sin2 θ13 = 2

3
sin2 θ

sin2 θ23 = 1

2

sin2 θ12 = 1

2+cos 2θ ≈ 1

3
+ 2θ2

9

|JCP | = | sin 2θ|/(6
√
3) , |δCP | = π/2

Majorana phases are trivial

Note: Such results have been found in the literature.

Note2: We get the same result for X4 = ρ(SU).
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Other Choices for(Z2)I and(Z2)II

We can equally well choose U or SU for the group (Z2)I .
Clearly, choice U still leads to θ13 = 0 and θ23 = π/4.

Thus, we discuss instead the case of SU .
Note the following:

• ρ(SU) fulfills the consistency condition
ρ(SU)X −Xρ(SU)⋆ = 0

• We can either choose (Z2)II to be generated by S or U .
We choose here: U .

Now we can analyze this case as before.
To begin with we choose X1 = ρ(E).

– p. 16/27



Other Choices for(Z2)I and(Z2)II

• (Z2)I generated by SU (mij complex)

ρ(SU)Tmνρ(SU) = mν fixing the form of mν =









m11 0 0

0 m22 m23

0 m23 m33









• [(Z2)II × CP]diag with U and X1 (a, b, c, w real)

ρ(U)Tmνρ(U) = m⋆
ν fixing the form of mν =









a 0 0

0 b iw

0 iw c
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Other Choices for(Z2)I and(Z2)II

As you can see, Uν is then of the form

Uν = PR23

with

P = diag(1, 1,−i) and R23 =









1 0 0

0 cos θ sin θ

0 − sin θ cos θ









with θ: tan 2θ = −2w/(b+ c) - not determined by S4!

The PMNS matrix reads UPMNS = V PR23
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Other Choices for(Z2)I and(Z2)II

Results for lepton mixing parameters

sin2 θ13 =
1

3
sin2 θ

sin2 θ23 =
1

2
−

√
6 sin 2θ

5 + cos 2θ
≈ 1

2
−
√

2

3
θ

sin2 θ12 =
cos2 θ

2 + cos2 θ
≈ 1

3
− 2θ2

9

JCP = 0 and Majorana phases are trivial

We find the same results, if we use instead X4 = ρ(SU).
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Other Choices for(Z2)I and(Z2)II

If we use X2 = ρ(S) or X3 = ρ(U), we find the general form
of mν compatible with the symmetry (Z2)I×[(Z2)II × CP]diag
to be

mν =









a 0 0

0 b w

0 w c









with a, b, c, w real

Now Uν is only a rotation in the (23)-plane and thus P also
drops from UPMNS.
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Other Choices for(Z2)I and(Z2)II

Results for lepton mixing parameters

sin2 θ13 = 1

3
sin2 θ

sin2 θ23 = 1

2

sin2 θ12 = cos
2 θ

2+cos2 θ ≈ 1

3
− 2θ2

9

|JCP | = | sin 2θ|/(6
√
6) , |δCP | = π/2

and Majorana phases are trivial

Comparison to the case with (Z2)I generated by S:

• sin2 θ13 smaller by factor of 2

• Deviation of sin2 θ12 from 1/3 changes sign

• Both allow for θ23 and δCP maximal
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Extension of the Analysis:Z2 × CP

We can also study the case in which the neutrino sector is
invariant under Z2 × CP.

We note the following

• We find all results mentioned before.
• For Z2 generated by S we find two additional solutions

X5 = −









0 0 1

0 1 0

1 0 0









= ρ(TST 2S) , X6 =









0 0 1

0 −1 0

1 0 0









= ρ(T 2STS)

• Phenomenology of these cases is different: "A4-like".
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Extension of the Analysis:Z2 × CP

Do the analysis as before.

The neutrino mass matrix mν invariant under Z2 × CP
for X5 or X6 is

mν =









x+ iy 0 b

0 a 0

b 0 x− iy









with - again - four real parameters a, b, x, y.
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Extension of the Analysis:Z2 × CP

mν is diagonalized through

Uν =









1/
√
2 0 eiα/

√
2

0 1 0

−e−iα/
√
2 0 1/

√
2









with α given by tanα = −y/x.
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Extension of the Analysis:Z2 × CP

Lepton mixing

sin2 θ13 =
1

3

sin2 θ23 =
1

2

(

1 +

√
3

2
sinα

)

α→0−→ 1

2

sin2 θ12 =
1

2

|JCP | = | cosα|/(6
√
3)

α→0−→ 1

6
√
3

Limit α → 0 leads to results of "magic matrix", known from A4.
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Some Example withθ Large

Without having a concrete model we cannot argue that θ is
small and thus also cases with θ sizable should be consid-
ered. One possible example is:

UPMNS = Q12V PR13Q13

with Q1i being the permutation of first and ith generation.
Lepton mixing is then

sin2 θ13 =

(

cos θ
√
6

−
sin θ
√
2

)

2
θ=0.34

≈ 0.022 limit θ = 0:
1

6

sin2 θ23 =
4 cos2 θ

4 + cos 2θ +
√
3 sin 2θ

θ=0.34

≈ 0.61 limit θ = 0:
4

5

sin2 θ12 =
2

4 + cos 2θ +
√
3 sin 2θ

θ=0.34

≈ 0.34 limit θ = 0:
2

5

and JCP still vanishes.
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Conclusions

• Combination of flavor symmetry and CP seems interesting

• Showcase: S4 and CP
• Results of "µτ reflection symmetry" are found
• Study of all possible combinations
• Extension to analysis of Z2 × CP in neutrino sector
• Peculiarity: always one free parameter in mixing which is

independent of S4 ⇒ model building

• Generalization of this study to any discrete group
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