$oldsymbol{S_4}$ and $oldsymbol{CP}$

C. Hagedorn

INFN, Sezione di Padova, Italy

Feruglio/H/Ziegler, work in progress

BeNe 2012, ICTP, Trieste, 17.09-21.09.2012

Outline

- Existing approaches with flavor symmetry G_f and CP
- S_4 and CP as showcase
 - Z_2 and the diagonal subgroup of Z_2 and CP for neutrinos
 - Generalization: Z_2 and CP for neutrinos
- Conclusions

Approaches with G_f and CP in Literature

We would like to investigate in more detail an idea dubbed " $\mu\tau$ reflection symmetry". (Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

$$Q_{23}m_{\nu}Q_{23} = m_{\nu}^{\star}$$

imposes as conditions on the mixing angles:

$$\sin \theta_{23} = \cos \theta_{23}$$
 and $\sin \theta_{13} \cos \delta_{CP} = 0$

A mass matrix m_{ν} for neutrinos with similar properties has been found by *Babu/Ma/Valle ('02)*.

Harrison/Scott ('02,'04) have discussed also "tri χ maximal mixing"; for some model building see *Harrison (ICHEP12)*.

Approaches with G_f and CP in Literature

There have been several further approaches - among them are

- Ferreira et al. ('12) get with $\Delta(27)$ maximal CP violation and $heta_{23}$
- Combination of S_4 and CP (Mohapatra/Nishi ('12))
- T' and CP violation (Chen/Mahanthappa ('09), Meroni et al. ('12))
- S_2 and CP as acc. symmetries in potential (Babu/Kubo ('04,'11))
- "Geometrical CP violation" (Branco et al. ('83)) (recently discussed by de Medeiros Varzielas et al.)

S_4 Basis

In the following we choose a basis in which the generators are real and furthermore two of them are diagonal.

$$\rho(S) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \quad \rho(T) = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ -1 & \sqrt{2} & -1 \end{pmatrix} , \quad \rho(U) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

The generators S, T and U fulfill the relations

$$S^{2} = E$$
 , $T^{3} = E$, $U^{2} = E$,
 $(ST)^{3} = E$, $(SU)^{2} = E$, $(TU)^{2} = E$, $(STU)^{4} = E$

Standard Way to get TB Mixing from S_4

- Require invariance of charged lepton sector under Z_3 generated by T
- Require invariance of neutrino sector under $Z_2 \times Z_2$ generated by S and U

Lepton mixing is given by the matrix V which diagonalizes $\rho(T)$: $V\rho(T)V^{\dagger} = \text{diag}(1, \omega^2, \omega)$ with $\omega = e^{2\pi i/3}$

$$V = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -i/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & i/\sqrt{2} \end{pmatrix}$$

Definition of CP Transformation

Form of CP transformation (Grimus et al. ('87), Haber/Surujon ('12))

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star}$$

with X being unitary and symmetric, i.e.

$$XX^{\star} = \mathbb{1}$$

We have to fulfill consistency conditions, if we wish to study theories with a flavor symmetry and CP. We exemplify this in the case of S_4 .

Consistency Conditions

Consider the following sequence of transformations ϕ transforms as rep. ρ of S_4

$$\phi \xrightarrow{\mathsf{CP}} X\phi^* \xrightarrow{S_4} \rho(g) X\phi^* \xrightarrow{\mathsf{CP}} X\left(\rho(g) X\phi^*\right)^* = \left(X^*\rho(g) X\right)^*\phi$$

Thus we have to fulfill the requirement

$$\left(X^{-1}\rho(g)X\right)^{\star}=
ho(g')$$
 with $g,g'\in S_4$, but in general $g\neq g'$

It is sufficient to fulfill this for the generators of the group S_4 .

Consistency Conditions II

We are interested in a particular case in which one of the Z_2 which we like to preserve in the neutrino sector "combines" with the transformation CP:

 $(Z_2)_I \times [(Z_2)_{II} \times \mathsf{CP}]_{diag}$

with $(Z_2)_I$ generated by S and $(Z_2)_{II}$ generated by U.

Again, we have to fulfill some consistency conditions:

 $\phi \xrightarrow{\mathsf{CP}} X \phi^* \xrightarrow{S} \rho(S) X \phi^* \text{ and } \phi \xrightarrow{S} \rho(S) \phi \xrightarrow{\mathsf{CP}} X (\rho(S) \phi)^*$ thus we need to have: $\rho(S) X - X \rho(S)^* = 0$ and similar for U.

For our choice of $\rho(S)$ and $\rho(U)$: $[\rho(S), X] = 0$ and $[\rho(U), X] = 0$.

Possible Solutions for \boldsymbol{X}

We find the following four different solutions for X - up to overall phase:

$$X_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \rho(E) , \quad X_{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \rho(S) ,$$
$$X_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \rho(U) , \quad X_{4} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \rho(SU) .$$

We find that all X belong to S_4 itself and that they are elements of the Klein group $(Z_2)_I \times (Z_2)_{II}$.

We want to preserve $(Z_2)_I \times [(Z_2)_{II} \times CP]$ with

• $(Z_2)_I$ generated by S (m_{ij} complex)

$$\rho(S)^T m_{\nu} \rho(S) = m_{\nu} \quad \text{fixing the form of} \quad m_{\nu} = \begin{pmatrix} m_{11} & 0 & m_{13} \\ 0 & m_{22} & 0 \\ m_{13} & 0 & m_{33} \end{pmatrix}$$

• $[(Z_2)_{II} \times CP]_{diag}$ with U and X_1 (a, b, c, w real)

 $\rho(U)^T m_{\nu} \rho(U) = m_{\nu}^{\star} \quad \text{fixing the form of} \quad m_{\nu} = \begin{pmatrix} a & 0 & iw \\ 0 & b & 0 \\ iw & 0 & c \end{pmatrix}$

The neutrino mass matrix m_{ν} is diagonalized by

$$U_{\nu} = PR_{13}$$

with

$$P = \operatorname{diag}(1, 1, -i) \quad \text{and} \quad R_{13} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$

with θ : $\tan 2\theta = -2w/(a+c)$ - not determined by S_4 !

The PMNS matrix takes the form: $U_{PMNS} = VU_{\nu} = VPR_{13}$ Results for lepton mixing parameters

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$$
$$\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right) \approx \frac{1}{2} + \frac{\theta}{\sqrt{3}}$$
$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta} \approx \frac{1}{3} + \frac{2\theta^2}{9}$$
$$J_{CP} = 0 \quad \text{and Majorana phases are trivial}$$

Note: We find the same results, if we use instead $X_2 = \rho(S)$.

We find a physically different result, if we use the solution $X_3 = \rho(U)$:

$$m_{\nu} = \begin{pmatrix} a & 0 & w \\ 0 & b & 0 \\ w & 0 & c \end{pmatrix} \quad \text{with} \quad a, b, c, w \text{ real}$$

Thus, a rotation in the (13)-plane is sufficient with the angle θ determined by: $\tan 2\theta = 2w/(c-a)$.

Results for lepton mixing parameters

 $\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$ $\sin^2 \theta_{23} = \frac{1}{2}$ $\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta} \approx \frac{1}{3} + \frac{2\theta^2}{9}$ $|J_{CP}| = |\sin 2\theta| / (6\sqrt{3}) , \quad |\delta_{CP}| = \pi/2$ Majorana phases are trivial

Note: Such results have been found in the literature.

Note2: We get the same result for $X_4 = \rho(SU)$.

We can equally well choose U or SU for the group $(Z_2)_I$. Clearly, choice U still leads to $\theta_{13} = 0$ and $\theta_{23} = \pi/4$. Thus, we discuss instead the case of SU. Note the following:

- ho(SU) fulfills the consistency condition $ho(SU)X X
 ho(SU)^{\star} = 0$
- We can either choose $(Z_2)_{II}$ to be generated by S or U. We choose here: U.

Now we can analyze this case as before. To begin with we choose $X_1 = \rho(E)$.

• $(Z_2)_I$ generated by SU (m_{ij} complex)

 $\rho(SU)^T m_{\nu} \rho(SU) = m_{\nu} \quad \text{fixing the form of} \quad m_{\nu} = \begin{pmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & m_{23} \\ 0 & m_{23} & m_{33} \end{pmatrix}$

• $[(Z_2)_{II} \times CP]_{diag}$ with U and X_1 (a, b, c, w real)

$$\rho(U)^T m_{\nu} \rho(U) = m_{\nu}^{\star} \quad \text{fixing the form of} \quad m_{\nu} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & iw \\ 0 & iw & c \end{pmatrix}$$

As you can see, U_{ν} is then of the form

$$U_{\nu} = PR_{23}$$

with

$$P = \operatorname{diag}(1, 1, -i) \quad \text{and} \quad R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

with θ : $\tan 2\theta = -2w/(b+c)$ - not determined by S_4 ! The PMNS matrix reads $U_{PMNS} = VPR_{23}$

Results for lepton mixing parameters

$$\sin^2 \theta_{13} = \frac{1}{3} \sin^2 \theta$$
$$\sin^2 \theta_{23} = \frac{1}{2} - \frac{\sqrt{6} \sin 2\theta}{5 + \cos 2\theta} \approx \frac{1}{2} - \sqrt{\frac{2}{3}}\theta$$
$$\sin^2 \theta_{12} = \frac{\cos^2 \theta}{2 + \cos^2 \theta} \approx \frac{1}{3} - \frac{2\theta^2}{9}$$
$$J_{CP} = 0 \quad \text{and Majorana phases are trivial}$$

We find the same results, if we use instead $X_4 = \rho(SU)$.

If we use $X_2 = \rho(S)$ or $X_3 = \rho(U)$, we find the general form of m_{ν} compatible with the symmetry $(Z_2)_I \times [(Z_2)_{II} \times CP]_{diag}$ to be

$$m_{\nu} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & w \\ 0 & w & c \end{pmatrix} \quad \text{with} \quad a, b, c, w \text{ real}$$

Now U_{ν} is only a rotation in the (23)-plane and thus *P* also drops from U_{PMNS} .

Results for lepton mixing parameters

 $\sin^2 \theta_{13} = \frac{1}{3} \sin^2 \theta$ $\sin^2 \theta_{23} = \frac{1}{2}$ $\sin^2 \theta_{12} = \frac{\cos^2 \theta}{2 + \cos^2 \theta} \approx \frac{1}{3} - \frac{2\theta^2}{9}$ $|J_{CP}| = |\sin 2\theta| / (6\sqrt{6}) , \quad |\delta_{CP}| = \pi/2$ and Majorana phases are trivial

Comparison to the case with $(Z_2)_I$ generated by S:

- $\sin^2 \theta_{13}$ smaller by factor of 2
- Deviation of $\sin^2 \theta_{12}$ from 1/3 changes sign
- Both allow for θ_{23} and δ_{CP} maximal

We can also study the case in which the neutrino sector is invariant under $Z_2 \times CP$.

We note the following

- We find all results mentioned before.
- For Z_2 generated by S we find two additional solutions

$$X_{5} = -\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \rho(TST^{2}S) , \quad X_{6} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \rho(T^{2}STS)$$

• Phenomenology of these cases is different: " A_4 -like".

Do the analysis as before.

The neutrino mass matrix m_{ν} invariant under $Z_2 \times CP$ for X_5 or X_6 is

$$m_{\nu} = \left(\begin{array}{ccc} x + iy & 0 & b \\ 0 & a & 0 \\ b & 0 & x - iy \end{array} \right)$$

with - again - four real parameters a, b, x, y.

 m_{ν} is diagonalized through

$$U_{\nu} = \begin{pmatrix} 1/\sqrt{2} & 0 & e^{i\alpha}/\sqrt{2} \\ 0 & 1 & 0 \\ -e^{-i\alpha}/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$$

with α given by $\tan \alpha = -y/x$.

Lepton mixing

$$\sin^2 \theta_{13} = \frac{1}{3}$$
$$\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{\sqrt{3}}{2} \sin \alpha \right) \quad \stackrel{\alpha \to 0}{\longrightarrow} \quad \frac{1}{2}$$
$$\sin^2 \theta_{12} = \frac{1}{2}$$
$$|J_{CP}| = |\cos \alpha| / (6\sqrt{3}) \quad \stackrel{\alpha \to 0}{\longrightarrow} \quad \frac{1}{6\sqrt{3}}$$

Limit $\alpha \to 0$ leads to results of "magic matrix", known from A_4 .

Some Example with θ Large

Without having a concrete model we cannot argue that θ is small and thus also cases with θ sizable should be considered. One possible example is:

 $U_{PMNS} = Q_{12} V P R_{13} Q_{13}$

with Q_{1i} being the permutation of first and i^{th} generation. Lepton mixing is then

$$\sin^2 \theta_{13} = \left(\frac{\cos \theta}{\sqrt{6}} - \frac{\sin \theta}{\sqrt{2}}\right)^2 \quad \stackrel{\theta = 0.34}{\approx} \quad 0.022 \quad \text{limit } \theta = 0; \quad \frac{1}{6}$$
$$\sin^2 \theta_{23} = \frac{4\cos^2 \theta}{4 + \cos 2\theta + \sqrt{3}\sin 2\theta} \quad \stackrel{\theta = 0.34}{\approx} \quad 0.61 \quad \text{limit } \theta = 0; \quad \frac{4}{5}$$
$$\sin^2 \theta_{12} = \frac{2}{4 + \cos 2\theta + \sqrt{3}\sin 2\theta} \quad \stackrel{\theta = 0.34}{\approx} \quad 0.34 \quad \text{limit } \theta = 0; \quad \frac{2}{5}$$

and J_{CP} still vanishes.

Conclusions

- Combination of flavor symmetry and CP seems interesting
- Showcase: S_4 and CP
 - Results of " $\mu\tau$ reflection symmetry" are found
 - Study of all possible combinations
 - Extension to analysis of $Z_2 \times CP$ in neutrino sector
 - Peculiarity: always one free parameter in mixing which is independent of $S_4 \Rightarrow$ model building
- Generalization of this study to any discrete group

