Neutrino mass models at the TeV scale, naturally

BENE 2012 ICTP Trieste Sept. 17-21, 2012

Walter Winter Universität Würzburg

Heisenberg-Programm Deutsche Forschungsgemeinschaft

Contents

- Introduction
- Ingredients for "natural" neutrino mass at TeV scale?
- Loop-induced neutrino mass
- Neutrino mass from higher dimensional operator
- A SUSY example
- Even higher suppression mechanisms
- Summary

Effective field theories

BSM physics described by effective operators in the low-E limit (gauge invariant, SM **external** fields):

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \dots$$

$$\begin{array}{c} \Lambda: \text{ Scale} \\ \text{of new physics} \end{array} \\ \hline \mathcal{L}_{5} = LLHH \\ \hline \mathcal{L}_{6} = \overline{L}L\overline{L}L \\ \hline \mathcal{L}_{7} = (LLHH)(H^{\dagger}H) \\ \hline \mathcal{L}_{8} = (\overline{L}L\overline{L}L)(H^{\dagger}H) \end{array}$$

$$\begin{array}{c} \Lambda: \text{ Scale} \\ \text{of new physics} \end{array} \\ \hline \text{Neutrino} \\ \text{mass} \\ (LNV) \\ \text{Ov}\beta\beta \text{ decay!} \end{array}$$

$$\begin{array}{c} \text{Lepton} \\ \text{flavor} \\ \text{violation} \\ (LFV) \end{array}$$

But these are no fundamental theories (non-renormalizable operators). Idea: Investigate fundamental theories (TeV completions) systematically! ⇒ see also talk by R. Volkas

Iulius-Maximilians-ERSITAT WURZBURG

See-saw mechanism

- Neutrino mass from d=5 (Weinberg) Operator
- Fundamental theories at tree level:

- Neutrino mass ~ $Y^2 v^2 / \Lambda$ (type I, III see-saw)
- For Y = O(1), $v \sim 100$ GeV: $\Lambda \sim GUT$ scale
- For Λ ~ TeV scale: Y << 10⁻⁵ Interactions difficult to observe at LHC Couplings "unnaturally" small? Will not discuss these ... 4

Neutrino masses at the TeV scale

Goals:

- New physics scale "naturally" at TeV scale (i.e., TeV scale not put in by hand)
 Testable at the LHC?!
- Yukawa couplings of order one
- Requires additional suppression mechanisms:
 - 1) Radiative generation of neutrino mass (n loops)
 - 2) Neutrino mass from higher than d=5 effective operator
 - Small lepton number violating contribution ε (e.g. inverse see-saw, RPV SUSY models, ...)

$$m_{\nu} \propto \frac{\langle H^0 \rangle^2}{\Lambda} \times \left(\frac{1}{16\pi^2}\right)^n \times \epsilon \times \left(\frac{\langle H^0 \rangle}{\Lambda}\right)^{d-5}$$

Example (suppression 3): Type-II, inverse seesaw

Type I/III : extra fermion

Mohapatra, Valle 1986

Type II : natural

(Florian Bonnet **@GGI Florence 2012)**

Radiative neutrino mass (suppression 1)

 Reminder (yesterday):

> All of these generate neutrino mass by d=5 operator!

 $m_{\nu} \propto \frac{\langle H^0 \rangle^2}{\Lambda} \times \left(\frac{1}{16\pi^2}\right)^n$ (at least, since the non-renormalizable vertex may be radiatively induced?)

from: de Gouvea, Jenkins, 2007

Loops versus dimension

Example (1)

 Additional Z₂ to prevent scalar from taking VEV:

 Compare to type-II see-saw: LFV coupling suppressed by loop

 Y_{Δ}

Bonnet, Hirsch, Ota, Winter, 2012 10

Dev, Pilaftsis, arXiv:1209.4051

ϕ'	ϕ	ψ
1^S_{α}	$3^S_{2+\alpha}$	$2^F_{1+\alpha}$
2^S_{α}	$2^S_{2+\alpha}$	$1_{1+\alpha}^F$
2^S_{α}	$2^S_{2+\alpha}$	$3^F_{1+\alpha}$
3^S_{α}	$1^S_{2+\alpha}$	$2^F_{1+\alpha}$
3^S_{α}	$3^S_{2+\alpha}$	$2^F_{1+\alpha}$

(here: scalar; we did not consider vectors explicitely!)

Ψ	ψ'	ϕ	ψ
1^F_{α}	$2^F_{1+\alpha}$	1^S_{α}	$2^F_{\alpha-1}$
1^F_{α}	$2^F_{1+\alpha}$	3^S_{α}	$2^F_{\alpha-1}$
2^F_{α}	$1_{1+\alpha}^F$	2^S_{α}	$1^F_{\alpha-1}$
2^F_{α}	$1_{1+\alpha}^F$	2^S_{α}	$3^F_{\alpha-1}$
2^F_{α}	$3^F_{1+\alpha}$	2^S_{α}	$1^{F}_{\alpha-1}$
2^F_{α}	$3_{1+\alpha}^F$	2^S_{α}	$3^F_{\alpha-1}$
3^F_{α}	$2_{1+\alpha}^F$	1^S_{α}	$2^F_{\alpha-1}$
3^{F}_{α}	$2^F_{1+\alpha}$	3^{S}_{α}	2^{F}_{α} 1

(α : integer)

Decompositions work (by construction) for SM and new physics fields!

Bonnet, Hirsch, Ota, Winter, 2012

Neutrino mass from higher dimensional operators (suppression 2)

 Approach: Use higher dimensional operators, e.g.

$$\mathcal{O}^5 = \mathcal{O}_W = LLHH$$

 $\mathcal{O}^7 = (LLHH)(H^{\dagger}H)$

 $\mathcal{O}^9 = (LLHH)(H^{\dagger}H)(H^{\dagger}H)$

(Babu, Bonnet, Chen, Giudice, Godoladze, de Gouvea, Gu, Dobrescu, Hernandez, Kanemura, Langacker, Lebedev, Liao, Nandi, Ning, Okada, Ota, Picek, Radovcic, Ren, Sarkar, Shafi, Tavartkiladze, Winter, Zhang, ...)

- Leads to $m_{\nu} \sim v \left(\frac{v}{\Lambda_{\rm NP}}\right)^{d-4}$
- Estimate: for $\Lambda \sim 1 10$ TeV and m_v linear in Yukawas (worst case):
 - d = 9 sufficient if no other suppression mechanism
 - d = 7 sufficient if Yukawas ~ m_e/v ~ 10⁻⁶ allowed

The loop issue

d=7 operator

d=5 operator

Loop d=5 contribution dominates for

$$rac{1}{\Lambda_{
m NP}^3} < rac{1}{16\pi^2} \, rac{1}{\Lambda_{
m NP}} \; \; {
m or} \; \Lambda > 3 \, {
m TeV}$$

- Conclusion: If assumed that d=7 leading, one effectively has to assume Λ < 3 TeV by hand (see e.g. Babu, Nandi, Tavartkiladze, arXiv:0905.2710)
- How can one make this a feature of the theory?

Forbid lower dim. operators

- Define genuine d=D operator as leading contribution to neutrino mass with all operators d<D forbidden
- Use new U(1) or discrete symmetry ("matter parity")
- Problem: H⁺H can never be charged under the new symmetry! ⇒ Need new fields!
- The simplest possibilities are probably

$$\mathscr{L}_{\mathrm{eff}}^{d=n+5} = \frac{1}{\Lambda_{\mathrm{NP}}^{d-4}} (LLHH)(S)^n, \quad n = 1, 2, 3, \dots$$
 (NMSSM: n=1,2 only)

(e.g. Chen, de Gouvea, Dobrescu, hep-ph/0612017; Godoladze, Okada, Shafi, arXiv:0809.0703; Krauss, Ota, Porod, Winter, arXiv:1109.4636)

$$\mathscr{L}_{\text{eff}}^{d=2n+5} = \frac{1}{\Lambda_{\text{NP}}^{d-4}} (LLH_uH_u) (H_dH_u)^n, \quad n = 1, 2, 3, \dots$$

(e.g. Babu, Nandi, hep-ph/9907213; Giudice, Lebedev, arXiv:0804.1753; Bonnet, D. Hernandez, Bonnet, Winter, arXiv:0907.3143)

Higher dim. operators in THDM

	SUSY	Op.#	Effective interaction	Cond.#	Charge of effective int.	-	
dim.5	\checkmark	1	LLH_uH_u	1	$2q_L + 2q_{H_u}$	-	SUSY:
		2	$LLH_d^*H_u$	2	$2q_L - q_{H_d} + q_{H_u}$		only this one
		3	$LLH_d^*H_d^*$	3	$2q_L - 2q_{H_d}$		(but: thoro can
dim.7	\checkmark	4	$LLH_uH_uH_dH_u$	4	$2q_L + q_{H_d} + 3q_{H_u}$	\langle	
		5	$LLH_uH_uH_d^*H_d$	1	$2q_L + 2q_{H_u}$		be operators with
		6	$LLH_uH_uH_u^*H_u$	1	$2q_L + 2q_{H_u}$		the scalar singlet
		7	$LLH_d^*H_uH_d^*H_d$	2	$2q_L - q_{H_d} + q_{H_u}$		
		8	$LLH_d^*H_uH_u^*H_u$	2	$2q_L - q_{H_d} + q_{H_u}$		In the INIVISSIVI)
		9	$LLH_d^*H_d^*H_d^*H_d$	3	$2q_L - 2q_{H_d}$		
		10	$LLH_d^*H_d^*H_u^*H_u$	3	$2q_L - 2q_{H_d}$		
		11	$LLH_d^*H_d^*H_u^*H_d^*$	5	$2q_L - 3q_{H_d} - q_{H_u}$		
dim.9		12	$LLH_uH_uH_dH_uH_dH_u$	6	$2q_L + 2q_{H_d} + 4q_{H_u}$	\leq \equiv	Same for d=9
		13	$LLH_uH_uH_dH_uH_d^*H_d$	4	$2q_L + q_{H_d} + 3q_{H_u}$		
		14	$LLH_uH_uH_dH_uH_u^*H_u$	4	$2q_L + q_{H_d} + 3q_{H_u}$		
		15	$LLH_uH_uH_d^*H_dH_d^*H_d$	1	$2q_L + 2q_{H_u}$		
		16	$LLH_uH_uH_d^*H_dH_u^*H_u$	1	$2q_L + 2q_{H_u}$	■ Sim	nnlest
		17	$LLH_uH_uH_u^*H_uH_u^*H_u$	1	$2q_L + 2q_{H_u}$		ipieot
		18	$LLH_d^*H_uH_d^*H_dH_d^*H_d$	2	$2q_L - q_{H_d} + q_{H_u}$	noc	cibility (d-7)
		19	$LLH_d^*H_uH_d^*H_dH_u^*H_u$	2	$2q_L - q_{H_d} + q_{H_u}$	pus	solution $(u-r)$.
		20	$LLH_d^*H_uH_u^*H_uH_u^*H_u$	2	$2q_L - q_{H_d} + q_{H_u}$	7 ,	with a a
		21	$LLH_d^*H_d^*H_d^*H_dH_d^*H_d$	3	$2q_L - 2q_{H_d}$	L_5 V	with e.g.
		22	$LLH_d^*H_d^*H_d^*H_dH_dH_u^*H_u$	3	$2q_L - 2q_{H_d}$	0	
		23	$LLH_d^*H_d^*H_u^*H_uH_u^*H_u$	3	$2q_L - 2q_{H_d}$	$q_{H_{u}} = 0$.	$q_{H_L} = 3, \ q_L = 1, \ q_E = 1$
		24	$LLH_d^*H_d^*H_d^*H_u^*H_d^*H_d$	5	$2q_L - 3q_{H_d} - q_{H_u}$	1114	
		25	$LLH_d^*H_d^*H_d^*H_u^*H_u^*H_u$	5	$2q_L - 3q_{H_d} - q_{H_u}$	q_Q =	$=0, \ q_U=0, \ q_D=2$
		26	$LLH_d^*H_d^*H_u^*H_d^*H_u^*H_d^*$	7	$2q_L - 4q_{H_d} - 2q_{H_u}$	0	
dim.11							$ISY \cdot 7$
							15 1 5

Systematic study of d=7

- Systematically decompose d=7 operator in all possible Ways (tree level)
- Notation for mediators:

					\mathbf{P}	henom	
	#	Operator	Top.	Mediators	NU	δg_L	4ℓ
	1	$(H_u \mathrm{i} au^2 \overline{L^c}) (H_u \mathrm{i} au^2 L) (H_d \mathrm{i} au^2 H_u)$	2	${f 1}_0^R,{f 1}_0^L,{f 1}_0^s$	\checkmark		
	2	$(H_u \mathrm{i} au^2 ec{ au} \overline{L^c}) (H_u \mathrm{i} au^2 L) (H_d \mathrm{i} au^2 ec{ au} H_u)$	2	$3_{0}^{R},3_{0}^{L}1_{0}^{R},1_{0}^{L},3_{0}^{s}$	\checkmark	\checkmark	
	3	$(H_u \mathrm{i} au^2 ec au \overline{L^c}) (H_u \mathrm{i} au^2 ec au L) (H_d \mathrm{i} au^2 H_u)$	2	${f 3}^R_0,{f 3}^L_0,{f 1}^s_0$	\checkmark	\checkmark	
	4	$(-\mathrm{i}\epsilon^{abc})(H_u\mathrm{i}\tau^2\tau^a\overline{L^c})(H_u\mathrm{i}\tau^2\tau^bL)(H_d\mathrm{i}\tau^2\tau^cH_u)$	2	${f 3}^R_0,{f 3}^L_0,{f 3}^s_0$	\checkmark	\checkmark	
	5	$(\overline{L^c} \mathrm{i} au^2 ec{ au} L) (H_d \mathrm{i} au^2 H_u) (H_u \mathrm{i} au^2 ec{ au} H_u)$	2/3	$3_{-1}^{s},3_{-1}^{s}/1_{0}^{s}$			\checkmark
	6	$(-\mathrm{i}\epsilon^{abc})(\overline{L^c}\mathrm{i}\tau^2\tau^aL)(H_d\mathrm{i}\tau^2\tau^bH_u)(H_u\mathrm{i}\tau^2\tau^cH_u)$	2/3	$3_{-1}^{s},3_{-1}^{s}/3_{0}^{s}$			\checkmark
	$\overline{7}$	$(H_u \mathrm{i} au^2 \overline{L^c}) (\underline{L} \mathrm{i} au^2 ec{ au} H_d) (H_u \mathrm{i} au^2 ec{ au} H_u)$	2	$1_{0}^{R},1_{0}^{L},3_{0}^{R},3_{0}^{L},3_{-1}^{s}$	\checkmark	\checkmark	
	8	$(-\mathrm{i}\epsilon^{abc})(H_u\mathrm{i}\tau^2\tau^aL^c)(L\mathrm{i}\tau^2\tau^bH_d)(H_u\mathrm{i}\tau^2\tau^cH_u)$	2	$3_{0}^{R}, 3_{0}^{L}, 3_{0}^{R}, 3_{0}^{L}, 3_{0}^{s}, 3_{-1}^{s}$	\checkmark	\checkmark	
	9	$(H_u\mathrm{i} au^2L^c)(\mathrm{i} au^2H_u)(L)(H_d\mathrm{i} au^2H_u)$	1	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},1_{0}^{s}$	\checkmark		
•	10	$(H_u \mathrm{i} au^2 ec{ au} \overline{L^c}) (\mathrm{i} au^2 ec{ au} H_u) (L) (H_d \mathrm{i} au^2 H_u)$	1	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},1_{0}^{s}$	\checkmark	\checkmark	
	11	$(H_u \mathrm{i} au^2 \overline{L^c}) (\mathrm{i} au^2 H_u) (ec{ au} L) (H_d \mathrm{i} au^2 ec{ au} H_u)$	1	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},3_{0}^{s}$	\checkmark		
	12	$(H_u \mathrm{i} au^2 au^a \overline{L^c}) (\mathrm{i} au^2 au^a H_u) (au^b L) (H_d \mathrm{i} au^2 au^b H_u)$	1	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},3_{0}^{s}$	\checkmark	\checkmark	
	13	$(H_u \mathrm{i} au^2 \overline{L^c})(L) (\mathrm{i} au^2 H_u)(H_d \mathrm{i} au^2 H_u)$	1/4	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{s},(1_{0}^{s})$	\checkmark		
	14	$(H_u \mathrm{i} au^2 ec{ au} \overline{L^c}) (ec{ au} L) (\mathrm{i} au^2 H_u) (H_d \mathrm{i} au^2 H_u)$	1/4	$3^R_0,3^L_0,2^{s''}_{-1/2},(1^s_0)$	\checkmark	\checkmark	
	15	$(H_u \mathrm{i} au^2 \overline{L^c})(L) (\mathrm{i} au^2 ec{ au} H_u)(H_d \mathrm{i} au^2 ec{ au} H_u)$	1/4	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{s},(3_{0}^{s})$	\checkmark		
	16	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c})(\tau^a L)(\mathrm{i} \tau^2 \tau^b H_u)(H_d \mathrm{i} \tau^2 \tau^b H_u)$	1/4	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{s},(3_{0}^{s})$	\checkmark	\checkmark	
	17	$(H_u \mathrm{i} au^2 \overline{L^c})(H_d) (\mathrm{i} au^2 H_u)(H_u \mathrm{i} au^2 L)$	1	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L}$	\checkmark		
	18	$(H_u \mathrm{i} au^2 ec{ au} \overline{L^c}) (ec{ au} H_d) (\mathrm{i} au^2 H_u) (H_u \mathrm{i} au^2 L)$	1	$3^R_0, 3^L_0, 2^R_{-1/2}, 2^L_{-1/2}, 1^R_0, 1^L_0$	L √	\checkmark	
	19	$(H_u \mathrm{i} au^2 \overline{L^c})(H_d) (\mathrm{i} au^2 ec{ au} H_u)(H_u \mathrm{i} au^2 ec{ au} L)$	1	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},3_{0}^{R},3_{0}^{L}$		\checkmark	
	20	$(H_u \mathrm{i} au^2 au^a \overline{L^c}) (au^a H_d) (\mathrm{i} au^2 au^b H_u) (H_u \mathrm{i} au^2 au^b L)$	1	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},2_{-1/2}^{L},$	\checkmark	\checkmark	
	21	$(\overline{L^c}\mathrm{i} au^2 au^a L)(H_u\mathrm{i} au^2 au^a)(au^bH_d)(H_u\mathrm{i} au^2 au^bH_u)$	1/4	$3_{-1}^{s}, 2_{+1/2}^{s}, (3_{-1}^{s})$			\checkmark
	22	$(\overline{L^c}\mathrm{i} au^2 au^a L)(H_d\mathrm{i} au^2 au^a)(au^bH_u)(H_u\mathrm{i} au^2 au^bH_u)$	1/4	$3_{-1}^{s},2_{+3/2}^{s},(3_{-1}^{s})$			\checkmark
	23	$(\overline{L^c}\mathrm{i} au^2ec{ au}L)(H_u\mathrm{i} au^2ec{ au})(H_u)(H_d\mathrm{i} au^2H_u)$	1/4	$3_{-1}^{s}, 2_{+1/2}^{s}, (1_{0}^{s})$			\checkmark
	24	$(\overline{L^c}\mathrm{i} au^2 au^a L)(H_u\mathrm{i} au^2 au^a)(au^bH_u)(H_d\mathrm{i} au^2 au^bH_u)$	1/4	$3_{-1}^{s},2_{+1/2}^{s},(3_{0}^{s})$			\checkmark
	25	$(H_d \mathrm{i} au^2 H_u) (\overline{L^c} \mathrm{i} au^2) (ec{ au} L) (H_u \mathrm{i} au^2 ec{ au} H_u)$	1	$1_{0}^{s},2_{+1/2}^{L},2_{+1/2}^{R},3_{-1}^{s}$			
	26	$(H_d \mathrm{i} au^2 au^a H_u) (\overline{L^c} \mathrm{i} au^2 au^a) (au^b L) (H_u \mathrm{i} au^2 au^b H_u)$	1	$3^{s}_{0}, 2^{L}_{+1/2}, 2^{R}_{+1/2}, 3^{s}_{-1}$			
	97	$(\mathbf{U};\tau^{2}\overline{\mathbf{I}c})(;\tau^{2}\mathbf{U})(\vec{\tau}\mathbf{I})(\mathbf{U};\tau^{2}\vec{\tau}\mathbf{U})$	1	1R 1L 9R 9L 28	1		
	\backslash		$/ \setminus$				/
						1	/
	/		\	$\langle \rangle$		í	
	,			$i\prec$			
			/	´ I ``, / I		١,	
	/			I X /		`	\
	/	Topology 1 Topology 2	\ /	Topology 3 $\overline{)}$	Topolo	gv 4	Ν.
		I 0,F0, -		1 07 -	T	J. –	

Generalizations of see-saws

Bonnet, D. Hernandez, Ota, Winter, JHEP 10 (2009) 076

Phenom

- Generalizations of originial see-saws: Duplication of the original see-saws plus scalars
- Type I (fermionic singlet)
- Type II (scalar triplet)
- Type III (fermionic triplet)

Characteristics: Similar phenomenology!

#	Operator	Top.	Mediators	NU	δg_L	4l
1	$(H_u \mathrm{i} au^2 \overline{L^c}) (H_u \mathrm{i} au^2 L) (H_d \mathrm{i} au^2 H_u)$	2	${f 1}_0^R,{f 1}_0^L,{f 1}_0^s$	\checkmark		
2	$(H_u \mathrm{i} au^2 ec au \overline{L^c}) (H_u \mathrm{i} au^2 L) (H_d \mathrm{i} au^2 ec au H_u)$	2	${f 3}^R_0,{f 3}^L_0,{f 1}^R_0,{f 1}^L_0,{f 3}^s_0$	\checkmark	\checkmark	
3	$(H_u \mathrm{i} au^2 ec au \overline{L^c}) (H_u \mathrm{i} au^2 ec au L) (H_d \mathrm{i} au^2 H_u)$	2	${f 3}^R_0,{f 3}^L_0,{f 1}^s_0$	\checkmark	\checkmark	
4	$(-\mathrm{i}\epsilon^{abc})(H_u\mathrm{i}\tau^2\tau^a\overline{L^c})(H_u\mathrm{i}\tau^2\tau^bL)(H_d\mathrm{i}\tau^2\tau^cH_u)$	2	${f 3}^R_0,{f 3}^L_0,{f 3}^s_0$	\checkmark	\checkmark	
5	$(\overline{L^c}\mathrm{i} au^2ec{ au}L)(H_d\mathrm{i} au^2H_u)(H_u\mathrm{i} au^2ec{ au}H_u)$	2/3	$3_{-1}^{s},3_{-1}^{s}/1_{0}^{s}$			\checkmark
6	$(-\mathrm{i}\epsilon^{abc})(\overline{L^c}\mathrm{i}\tau^2\tau^a L)(H_d\mathrm{i}\tau^2\tau^b H_u)(H_u\mathrm{i}\tau^2\tau^c H_u)$	2/3	$3_{-1}^{s}, 3_{-1}^{s}/3_{0}^{s}$			\checkmark
7	$(H_u \mathrm{i} au^2 \overline{L^c}) (L \mathrm{i} au^2 ec{ au} H_d) (H_u \mathrm{i} au^2 ec{ au} H_u)$	2	$1_{0}^{R},1_{0}^{L},3_{0}^{R},3_{0}^{L},3_{-1}^{s}$	\checkmark	\checkmark	
8	$(-\mathrm{i}\epsilon^{abc})(H_u\mathrm{i}\tau^2\tau^a L^c)(L\mathrm{i}\tau^2\tau^b H_d)(H_u\mathrm{i}\tau^2\tau^c H_u)$	2	$3_{0}^{R}, 3_{0}^{L}, 3_{0}^{R}, 3_{0}^{L}, 3_{0}^{s}, 3_{-1}^{s}$	\checkmark	\checkmark	
9	$(H_u\mathrm{i} au^2L^c)(\mathrm{i} au^2H_u)(L)(H_d\mathrm{i} au^2H_u)$	1	$1_{0}^{R},1_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},1_{0}^{s}$	\checkmark		
10	$(H_u \mathrm{i} au^2 ec{ au} \overline{L^c}) (\mathrm{i} au^2 ec{ au} H_u) (L) (H_d \mathrm{i} au^2 H_u)$	1	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},1_{0}^{s}$	\checkmark	\checkmark	
11	$(H_u \mathrm{i} au^2 \overline{L^c}) (\mathrm{i} au^2 H_u) (ec{ au} L) (H_d \mathrm{i} au^2 ec{ au} H_u)$	1	$1^R_0,1^L_0,2^R_{-1/2},2^L_{-1/2},3^s_0$	\checkmark		
12	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c}) (\mathrm{i} \tau^2 \tau^a H_u) (\tau^b L) (H_d \mathrm{i} \tau^2 \tau^b H_u)$	1	$3_{0}^{R},3_{0}^{L},2_{-1/2}^{R},2_{-1/2}^{L},3_{0}^{s}$	\checkmark	\checkmark	
13	$(H_u \mathrm{i} au^2 \overline{L^c})(L)(\mathrm{i} au^2 H_u)(H_d \mathrm{i} au^2 H_u)$	1/4	$1_{0}^{R}, 1_{0}^{L}, 2_{-1/2}^{s}, (1_{0}^{s})$	\checkmark		
14	$(H_u \mathrm{i} au^2 au \overline{L^c}) (au L) (\mathrm{i} au^2 H_u) (H_d \mathrm{i} au^2 H_u)$	1/4	$3_{0}^{R}, 3_{0}^{L}, 2_{-1/2}^{s}, (1_{0}^{s})$	\checkmark	\checkmark	
15	$(H_u \mathrm{i} \tau^2 \overline{L^c})(L) (\mathrm{i} \tau^2 \vec{\tau} H_u) (H_d \mathrm{i} \tau^2 \vec{\tau} H_u)$	1/4	$1_{0}^{R}, 1_{0}^{L}, 2_{-1/2}^{s}, (3_{0}^{s})$	\checkmark		
16	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c})(\tau^a L)(\mathrm{i} \tau^2 \tau^b H_u)(H_d \mathrm{i} \tau^2 \tau^b H_u)$	1/4	$3_{0}^{R}, 3_{0}^{L}, 2_{-1/2}^{s}, (3_{0}^{s})$	\checkmark	\checkmark	
17	$(H_u \mathrm{i} \tau^2 \overline{L^c})(H_d)(\mathrm{i} \tau^2 H_u)(H_u \mathrm{i} \tau^2 L)$	1	$1_{0}^{R}, 1_{0}^{L}, 2_{-1/2}^{R}, 2_{-1/2}^{L}$	\checkmark		
18	$(H_u \mathrm{i} \tau^2 \vec{\tau} \overline{L^c}) (\vec{\tau} H_d) (\mathrm{i} \tau^2 H_u) (H_u \mathrm{i} \tau^2 L)$	1	$3_{0}^{R}, 3_{0}^{L}, 2_{1/2}^{R}, 2_{1/2}^{L}, 1_{0}^{L}, 1_{0}^{R}, 1_{0}^{L}$	\checkmark	\checkmark	
19	$(H_u \mathrm{i} \tau^2 \overline{L^c})(H_d)(\mathrm{i} \tau^2 \vec{\tau} H_u)(H_u \mathrm{i} \tau^2 \vec{\tau} L)$	1	$1_{0}^{R}, 1_{0}^{L}, 2_{-1/2}^{R}, 2_{-1/2}^{L}, 3_{0}^{R}, 3_{0}^{L}$	\checkmark	\checkmark	
20	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c}) (\tau^a H_d) (\mathrm{i} \tau^2 \tau^b H_u) (H_u \mathrm{i} \tau^2 \tau^b L)$	1	$3_{0}^{R}, 3_{0}^{L}, 2_{-1/2}^{R}, 2_{-1/2}^{L},$	\checkmark	\checkmark	
21	$(\overline{L^c}\mathrm{i} au^2 au^a L)(H_u\mathrm{i} au^2 au^a)(au^b H_d)(H_u\mathrm{i} au^2 au^b H_u)$	1/4	$3_{-1}^{s}, 2_{+1/2}^{s}, (3_{-1}^{s})$			\checkmark
22	$(\overline{L^c}\mathrm{i} au^2 au^a L)(H_d\mathrm{i} au^2 au^a)(au^b H_u)(H_u\mathrm{i} au^2 au^b H_u)$	1/4	$3_{-1}^{s}, 2_{+3/2}^{s}, (3_{-1}^{s})$			\checkmark
23	$(\overline{L^c}i\tau^2\vec{\tau}L)(H_ui\tau^2\vec{\tau})(H_u)(H_di\tau^2H_u)$	1/4	$3_{-1}^{s}, 2_{+1/2}^{s}, (1_{0}^{s})$			\checkmark
24	$(\overline{L^c}i\tau^2\tau^a L)(H_ui\tau^2\tau^a)(\tau^b H_u)(H_di\tau^2\tau^b H_u)$	1/4	$3_{-1}^{s}, 2_{\pm 1/2}^{s}, (3_{0}^{s})$			\checkmark
25	$(H_d \mathrm{i} au^2 H_u) (\overline{L^c} \mathrm{i} au^2) (au L) (H_u \mathrm{i} au^2 au H_u)$	1	$1_{0}^{s}, 2_{\pm 1/2}^{L}, 2_{\pm 1/2}^{R}, 3_{\pm 1}^{s}$			
26	$(H_d \mathrm{i} \tau^2 \tau^a H_u) (\overline{L^c} \mathrm{i} \tau^2 \tau^a) (\tau^b L) (H_u \mathrm{i} \tau^2 \tau^b H_u)$	1	$3_{0}^{s}, 2_{\pm 1/2}^{L}, 2_{\pm 1/2}^{R}, 3_{-1}^{s}$			
27	$(H_u \mathrm{i} \tau^2 \overline{L^c}) (\mathrm{i} \tau^2 H_d) (\vec{\tau} L) (H_u \mathrm{i} \tau^2 \vec{\tau} H_u)$	1	$1_{0}^{R}, 1_{0}^{L}, 2_{+1/2}^{R}, 2_{+1/2}^{L}, 3_{-1}^{s}$	\checkmark		
28	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c}) (\mathrm{i} \tau^2 \tau^a H_d) (\tau^b L) (H_u \mathrm{i} \tau^2 \tau^b H_u)$	1	$3_{0}^{R}, 3_{0}^{L}, 2_{+1/2}^{R}, 2_{+1/2}^{L}, 3_{-1}^{s}$	\checkmark	\checkmark	
29	$(H_u \mathrm{i} au^2 \overline{L^c})(L) (\mathrm{i} au^2 ec{ au} H_d) (H_u \mathrm{i} au^2 ec{ au} H_u)$	1/4	$1_{0}^{R}, 1_{0}^{L}, 2_{\pm 1/2}^{s}, (3_{-1}^{s})$	\checkmark		
30	$(H_u \mathrm{i} \tau^2 \tau^a \overline{L^c})(\tau^a L)(\mathrm{i} \tau^2 \tau^b H_d)(H_u \mathrm{i} \tau^2 \tau^b H_u)$	1/4	$3_{0}^{R}, 3_{0}^{L}, 2_{+1/2}^{s}, (3_{-1}^{s})$	\checkmark	\checkmark	
31	$(\overline{L^c}\mathrm{i} au^2 au^aH_d)(\mathrm{i} au^2 au^aH_u)(au^bL)(H_u\mathrm{i} au^2 au^bH_u)$	1	$3_{+1}^L, 3_{+1}^R, 2_{+1/2}^L, 2_{+1/2}^R, 3_{-1}^s$	\checkmark	\checkmark	
32	$(\overline{L^c}\mathrm{i} au^2 au^aH_d)(au^aL)(\mathrm{i} au^2 au^bH_u)(H_u\mathrm{i} au^2 au^bH_u)$	1/4	$3_{+1}^L, 3_{+1}^R, 2_{-3/2}^s, (3_{-1}^s)$	\checkmark	\checkmark	
33	$(\overline{L^c}\mathrm{i} au^2ec{ au}H_d)(\mathrm{i} au^2ec{ au}H_u)(H_u)(H_u\mathrm{i} au^2L)$	1	$3_{+1}^L, 3_{+1}^R, 2_{-3/2}^L, 2_{-3/2}^{\bar{R}}, 1_0^L, 1_0^R$	\checkmark	\checkmark	
34	$(\overline{L^c}\mathrm{i} au^2 au^aH_d)(\mathrm{i} au^2 au^aH_u)(au^bH_u)(H_u\mathrm{i} au^2 au^bL)$	1	$3_{+1}^L,3_{+1}^R,2_{-3/2}^L,2_{-3/2}^R,3_0^L,3_0^R$	\checkmark	\checkmark	

A SUSY example

Krauss, Ota, Porod, Winter, Phys. Rev. D84 (2011) 115023

Test at the LHC? (example)

Test LNV

Process	σ [fb] (7 TeV)	σ [fb] (14 TeV)
$pp \rightarrow W^+ e^- W^- e^+$	$(3.447 \pm 0.87) \cdot 10^{-1}$	(1.277 ± 0.66)
$pp \rightarrow W^+ e^- W^- \mu^+$	$(7.06 \pm 0.15) \cdot 10^{-3}$	$(3.141 \pm 0.027) \cdot 10^{-2}$
$pp \to W^+ e^+ W^- \mu^-$	$(6.99 \pm 0.16) \cdot 10^{-3}$	$(3.206 \pm 0.027) \cdot 10^{-2}$
$pp \rightarrow W^+ e^- W^- \tau^+$	$(1.037 \pm 0.020) \cdot 10^{-2}$	$(4.293 \pm 0.036) \cdot 10^{-2}$
$pp \to W^+ e^+ W^- \tau^-$	$(1.015 \pm 0.021) \cdot 10^{-2}$	$(4.411 \pm 0.036) \cdot 10^{-2}$
$pp \to W^+ \mu^- W^- \mu^+$	$(3.74 \pm 0.10) \cdot 10^{-1}$	(1.279 ± 0.017)
$pp \rightarrow W^+ \mu^- W^- \tau^+$	$(2.913 \pm 0.048) \cdot 10^{-3}$	$(1.096 \pm 0.007) \cdot 10^{-1}$
$pp \to W^+ \mu^+ W^- \tau^-$	$(2.990 \pm 0.042) \cdot 10^{-2}$	$(1.139 \pm 0.007) \cdot 10^{-1}$
$pp \to W^+ \tau^- W^- \tau^+$	$(4.27 \pm 0.10) \cdot 10^{-1}$	(1.606 ± 0.017)
$pp \rightarrow W^+ e^- W^+ e^-$	$(1.112 \pm 0.013) \cdot 10^{-4}$	$(4.261 \pm 0.028) \cdot 10^{-4}$
$pp \to W^+ e^- W^+ \mu^-$	$(1.537 \pm 0.023) \cdot 10^{-3}$	$(5.810 \pm 0.050) \cdot 10^{-3}$
$pp \to W^+ e^- W^+ \tau^-$	$(4.721 \pm 0.055) \cdot 10^{-3}$	$(1.761 \pm 0.016) \cdot 10^{-2}$
$pp \to W^+ \mu^- W^+ \mu^-$	$(4.099 \pm 0.052) \cdot 10^{-3}$	$(1.514 \pm 0.013) \cdot 10^{-2}$
$pp \rightarrow W^+ \mu^- W^+ \tau^-$	$(2.704 \pm 0.036) \cdot 10^{-2}$	$(1.062 \pm 0.093) \cdot 10^{-1}$

 $(4.614 \pm 0.065) \cdot 10^{-2}$

Works also in SU(5) GUT: Krauss, Meloni, Porod, Winter, in prep.

 $(1.729 \pm 0.016) \cdot 10^{-1}$

Even higher suppression?

Example 1: d=9 tree level

$$\mathscr{L} = \frac{1}{2} \begin{pmatrix} \overline{\nu_{L\alpha}^c} & \overline{N_{Ra}} & (\overline{N_L'^c})_c \end{pmatrix} \begin{pmatrix} 0 & (Y_{\nu}^{\mathsf{T}})_{\alpha b} \langle H_u^0 \rangle & 0 \\ (Y_{\nu})_{a\beta} \langle H_u^0 \rangle & 0 & M_{ad} \\ 0 & (M^{\mathsf{T}})_{cb} & (\Lambda^{-3})_{cd} \langle H_d^0 H_u^0 \rangle^2 \end{pmatrix} \begin{pmatrix} \nu_{L\beta} \\ (N_R^c)_b \\ N_{Ld}' \end{pmatrix} + \text{H.c.}$$

$$(\Lambda^{-3})_{ab} = 2\kappa_{ab} \frac{\mu^2 \omega}{M_{\phi}^2 M_{\varphi}^4} \sim \mathcal{O}\left(\frac{1}{\Lambda_{\rm NP}^3}\right)$$

 Inverse see-saw-like, with even higher suppression of LNV term
 Requires Z₇ symmetry

Example 2: two-loop d=7

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \left[(Y_N)_{a\alpha} (\overline{N_R})_a H_d^{\dagger} L_{\alpha} + (\alpha_1)_{ab} \phi (\overline{N_R^c})_a (N_R)_b + (\alpha_2)_{ab} \phi (\overline{N_L^c})_a (N_L^\prime)_a \right]$$

 $+ \mu S^* H_d \mathrm{i} \tau^2 H_u + (\overline{N_R})_a M_{ab} (N_L')_b + \mathrm{H.c.} - \mathscr{V}(H_u, H_d, \phi, S) \,.$

Without scalar potential: Respects $U(1)_{Y}$, $U(1)_{L}$, and a new U(1); no v mass

$$\mathscr{V}(H_u, H_d, \phi, S) = \left[\lambda_1 S \phi^3 + \mu_1 S^* \phi^2 + \lambda_2 S^3 \phi^* + \text{H.c.}\right] + M_S^2 S^* S + M_\phi^2 \phi^* \phi + \cdots$$

Violates all cont. symmetries except from U(1)_Y, while respecting Z₅ If S is integrated out: Term ~ ϕ^5 (respects Z₅, violates U(1))

- Neutrino masses emerge from "breaking of the new symmetry"
- Charges (Z₅)

 $q_{H_u} = 0 \,, \quad q_{H_d} = 1 \,, \quad q_L = 2 , \quad q_{N_R} = q_{N'_L} = 1 \,, \quad q_\phi = 3 \,, \quad q_S = 1 \,$

Neutrino mass in example 2

Neutral fermion fields (integrate out scalars):

$$\mathscr{L} = \frac{1}{2} \begin{pmatrix} \overline{\nu_{L\alpha}^{c}} & \overline{N_{Ra}} & (\overline{N_{L}^{\prime c}})_{c} \end{pmatrix} \begin{pmatrix} m_{\nu\alpha\beta}^{(2\text{-loop})} & (Y_{N}^{\mathsf{T}})_{\alpha b} \langle H_{d}^{0*} \rangle & (\epsilon Y_{\nu}^{\prime})_{\alpha d}^{(1\text{-loop})\mathsf{T}} \\ (Y_{N})_{a\beta} \langle H_{d}^{0*} \rangle & \mu_{ab}^{\prime(\text{tree})} & M_{ad} \\ (\epsilon Y_{\nu}^{\prime})_{c\beta}^{(1\text{-loop})} & (M^{\mathsf{T}})_{cb} & \mu_{cd}^{(\text{tree})} \end{pmatrix} \begin{pmatrix} \nu_{L\beta} \\ (N_{R}^{c})_{b} \\ N_{Ld}^{\prime} \end{pmatrix} + \text{H.c.}$$

Contributions to neutrino mass:

$$\begin{split} m_{\nu\alpha\beta}^{(2\text{-loop})} &\sim \frac{1}{(16\pi^2)^2} \frac{v_d v_u^3}{\Lambda_{\text{NP}}} \lambda_2 [Y_N^\mathsf{T} (M^\mathsf{T})^{-1} \alpha_2 M^{-1} Y_N]_{\alpha\beta}, \\ (\epsilon Y_\nu)_{c\beta}^{(1\text{-loop})} &\sim \frac{1}{16\pi^2} \frac{v_d^2 v_u^3}{\Lambda_{\text{NP}}^3} \lambda_2 [\alpha_2 M^{-1} Y_N]_{c\beta}, \\ \mu_{cd}^{(\text{tree})} &\sim \frac{v_d^3 v_u^3}{\Lambda_{\text{NP}}^5} \lambda_2 (\alpha_2)_{cd}, \\ \mu_{ab}^{\prime(\text{tree})} &\sim \frac{v_d^3 v_u^3}{\Lambda_{\text{NP}}^5} \lambda_2^* (\alpha_1^*)_{ab}. \end{split}$$

Features of example 2

- Incorporates all three suppression mechanisms:
 - Radiative generation of neutrino mass
 - Small lepton number violating contribution (optional: LNV couplings can be chosen small)
 - Neutrino mass from higher than d=5 effective operator (d=5 forbidden)
- Neutrino mass related to breaking of new U(1) to discrete symmetry
- TeV scale naturally coming out, with large Yukawa couplings possible

UNIVERSITÄT WÜRZBURG

Summary

- "Natural" TeV see-saw requires additional suppression mechanisms :
 - Radiative generation of neutrino mass (n)
 - Higher dimensional operator (d)
 - Small LNV parameter (ϵ) $m_{\nu} \propto \frac{\langle H^0 \rangle^2}{\Lambda} \times \left(\frac{1}{16\pi^2}\right)^n \times \epsilon \times \left(\frac{\langle H^0 \rangle}{\Lambda}\right)^{d-5}$
- Decompositions of higher dimensional operators often lead to inverse/linear seesaws
- Mediators typically testable at the LHC: "hierarchy" LFC – LFV – LNV likely