Light sterile neutrinos: double beta decay and flavour symmetries

James Barry MPIK, Heidelberg BeNe 2012, Trieste, 20 September 2012

In collaboration with Werner Rodejohann, He Zhang & Luis Dorame

Outline

- Motivations for sterile neutrinos
 - What is ''light'': eV, keV, GeV?
 - Phenomenological hints
- Neutrinoless double beta decay
 - Effect of sterile neutrinos in different model scenarios
 - (Competing mechanisms, e.g. in LRSM)
- Sterile neutrinos & flavour symmetries
 - ◆ A₄ models with sterile neutrinos
 - NLO corrections & θ_{13}

Quick recap: why "sterile"?

(talk by Langacker)

- Z-boson decay width means $N_{active} = 3$, i.e. only three active neutrinos with $m_v < m_Z/2$
- Sterile/singlet/right-handed neutrino is SU(2) singlet
 - Only interacts via mixing with active sector
 - Can interact with Higgs and/or BSM physics
- Mass of sterile neutrino is unprotected and can be large (GUT scale) or small (pseudo-Dirac case)
- From phenomenology alone: "low-energy seesaw"?

(de Gouvêa et al)

Motivations for sterile neutrinos

(see talks by Schwetz, Wong, Langacker, Lindner, Ruchayskiy...)

eV-scale sterile neutrinos

•
$$\overline{\nu}_{\mu} \to \overline{\nu}_{e} \ (3.8\sigma)$$

• $\Delta m^2 \simeq 1 \ \mathrm{eV}^2$

- \implies 3+1 scenario
- MiniBooNE (u_{μ} and $ar{
 u}_{\mu}$)
 - Combined low energy (200-1250 MeV) excess of 3.8σ
 - Excesses 'not well understood'

eV-scale sterile neutrinos

• Re-evaluation of beta decay spectra shows a 6% increase in antineutrino flux (reactor anomaly)

eV-scale sterile neutrinos

Table 1: Best-fit and estimated 2σ values of the sterile neutrino parameters.

	parameter	$\Delta m^2_{41} [{\rm eV}]$	$ U_{e4} ^2$	$\Delta m_{51}^2 [{\rm eV}]$	$ U_{e5} ^2$
$3 \pm 1/1 \pm 3$	best-fit	1.78	0.023		
$0 \pm 1/1 \pm 6$	2σ	1.61 - 2.01	0.006 - 0.040		
3+9/9+9	best-fit	0.47	0.016	0.87	0.019
$\left(\frac{1}{2} \right)^{-2} \left(\frac{1}{2} \right)^{-2}$	2σ	0.42 – 0.52	0.004 - 0.029	0.77 – 0.97	0.005 - 0.033
1+9+1	best-fit	0.47	0.017	0.87	0.020
$1 \pm 0 \pm 1$	2σ	0.42 – 0.52	0.004 - 0.029	0.77 – 0.97	0.005 - 0.035
				K	Copp et al, 2011
		3+1 v	s 1+3		
1/ -		_			
V S	•				
	T			•	
		A	2	ſ	
	↓	Δm	41		
-	-	_		\checkmark	
=		-		•	\mathbf{v}_{a}
					'S

(see talk by Schwetz for current status of global fits)

Cosmology & eV sterile neutrinos

(see talk by Wong)

- Some extra radiation preferred by CMB, SDSS, HST
- N_{eff} consistent with 3 (but also with 4) at 2σ :
- 3+2 disfavoured from HDM limit & BBN
- Expect PLANCK to clarify the issue soon

WDM and keV sterile neutrinos

(talks by Ruchayskiy, Lindner)

- Standard ACDM cosmological model:
 - non-relativistic DM with WIMP DM candidate
- keV WDM also compatible with observations, solves problems with small scale structure
 - Reduces number of Dwarf satellite galaxies
 - Smoothes cusps in DM halos
- Sterile neutrino is good candidate
 - Appears in usual seesaw model
 - Need a mechanism to produce correct relic abundance, e.g. Dodelson-Widrow scenario:

$$\Omega_{\rm DM} \simeq 0.2 \left(\frac{\theta_s^2}{3 \times 10^{-9}}\right) \left(\frac{M_s}{3 \text{ keV}}\right)^{1.8}$$

WDM and keV sterile neutrinos

Max-Planck-Institut Für Kernphysik

Neutrinoless double beta decay

Standard mechanism: $0\nu\beta\beta$ mediated by light, massive Majorana neutrinos

Neutrino mixing with sterile neutrinos

• Phenomenological approach (1 sterile neutrino): $U = R_{34}\tilde{R}_{24}\tilde{R}_{14}R_{23}\tilde{R}_{13}R_{12}P$

$$R_{34} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{34} & s_{34} \\ 0 & 0 & -s_{34} & c_{34} \end{pmatrix} \text{ or } \tilde{R}_{14} = \begin{pmatrix} c_{14} & 0 & 0 & s_{14}e^{-i\delta_{14}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s_{14}e^{i\delta_{14}} & 0 & 0 & c_{14} \end{pmatrix}$$
$$P = \text{diag} \left(1, e^{i\alpha/2}, e^{i(\beta/2 + \delta_{13})}, e^{i(\gamma/2 + \delta_{14})} \right)$$
$$\Rightarrow 3 \text{ Dirac, 3 Majorana phases}$$

• New effects in neutrinoless double beta decay...

OvBB in seesaw models

• The situation is different in seesaw models:

$$M_{\nu}^{6\times6} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}$$

• If all sterile neutrinos are lighter than around 100 MeV, the effective mass vanishes exactly

$$\langle m_{ee} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i + \sum_{i=1}^{3} U_{e,3+i}^2 M_i \right| = \left[M_{\nu}^{6 \times 6} \right]_{ee} = 0$$

 Direct contribution of heavy neutrinos suppressed by their mass & mixing: (see eg. Mitra et al, 2011)

$$\frac{M_i}{q^2 - M_i^2} \simeq -\frac{1}{M_i}$$

Flavour symmetry models with sterile neutrinos

Based on JB, W. Rodejohann, H. Zhang, JHEP 1107, 091 (2011); JCAP 1201, 052 (2012)

A₄ symmetry

Ma, Rajasekaran, 2001

- Symmetry group of the tetrahedron
- Even permutations of four objects
- Twelve elements
- Four irreducible representations: $\underline{1}, \underline{1}', \underline{1}''$ and $\underline{3}$
- Product rules: $\underline{1} \times \underline{1} = \underline{1}$ $\underline{1'} \times \underline{1''} = \underline{1}$ $\underline{1''} \times \underline{1'} = \underline{1}$ $\underline{1''} \times \underline{1'} = \underline{1''}$ $\underline{1''} \times \underline{1''} = \underline{1''}$ $\underline{3} \times \underline{3} = \underline{1} + \underline{1'} + \underline{1''} + \underline{3}_{as} + \underline{3}_{s}$

\sim								1
		Type	L_i	ℓ^c_i	$ u_i^c$	Δ	References	
		A1				-	[1-14] $[15]$ #	
		A2	3	1, 1', 1''	-	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]	
		A3				<u>1, 3</u>	[19]	
	Symme	B1	3	1. 1'. 1"	3	-	$[4, 20-27]^{\#}$ $[28-30]^{*}$ $[31-48]$	
	Symme	B2	-	-, - , -	2	<u>1, 3</u>	[49]#	
		C1				-	[2, 50, 51] $[52]$ [#]	
	Even p	C2	3	3		1	[53, 54] [55]#	
		C3	<u>0</u>	Ū	-	<u>1, 3</u>	[56]	k
٠	Iwelve	C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[57]	
		D1				-	[58, 59] [#] $[60, 61]$ [*] $[62]$	
	Four ir	D2	3	3	3	<u>1</u>	[63] [64]*	1'' and 3
		D3	5	<u>0</u>	<u>n</u>	<u>1</u> ′	[65]*	
	Droduc	D4				<u>1', 3</u>	[66]*	ID Dedejeherr
	 Product 	E1	3	3	1 1' 1"	-	[67, 68]	JB, Rodejonann,
		E2	ŭ	ŭ	1, 1, 1	<u>1</u>	[69]	unu mpi hd mpg
		F	1, 1', 1''	3	3	1 or 1'	[70]	personalhomes/i
		G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1}, \underline{1}', \underline{1}''$	-	[71]	(see also Ding.
		Н	<u>3</u>	<u>1, 1, 1</u>	-	-	[72]	(200 4120 2116,
		Ι	3	1, 1, 1	1	-	[73]*	
		J	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1</u>	-	[74]* [75]	
		Κ	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1, 1</u>	-	[76]*	
		L	3	1, 1, 1	1, 1', 1''	-	[77]	
		М	<u>3</u>	<u>1, 1, 1</u>	<u>3</u>	-	[12, 39, 78, 79]	
		Ν	<u>3</u>	1, 1, 1	1, 1	1	[80]*	
		0	1, 1', 1''	1, 1', 1''	3	-	[81]	3 + 3
		Р	<u>1</u> , <u>1</u> ′, <u>1</u> ″	$\underline{1}, \underline{1}'', \underline{1}'$	<u>3, 1</u>	-	[82, 83]	$ \underline{\upsilon}as + \underline{\upsilon}s$
		Q	1, 1', 1''	1, 1'', 1'	$\underline{3},1',1''$	-	[84]	

ohann, 2010. egularly at d.mpg.de/ omes/jamesb/ Ding, 2011)

Effective model with sterile neutrino

Table 2: Altarelli-Feruglio effective A_4 model, including a sterile neutrino ν_s

Field		e^{c}	μ^c	$ au^c$	$h_{u,d}$	φ	φ'	ξ	Θ	ν_s
$SU(2)_L$	2	1	1	1	2	1	1	1	1	1
A_4	<u>3</u>	<u>1</u>	$\underline{1}^{\prime\prime}$	$\underline{1}'$	<u>1</u>	<u>3</u>	<u>3</u>	<u>1</u>	1	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	1	1
$U(1)_{ m FN}$	-	F_e	F_{μ}	F_{τ}	-	_	-	-	-1	F_{ν}

 $\mathcal{L}_{\mathrm{Y},\ell} = \frac{y_e}{\Lambda} \lambda^{F_e} e^c(\varphi L) h_d + \frac{y_\mu}{\Lambda} \lambda^{F_\mu} \mu^c(\varphi L)' h_d + \frac{y_\tau}{\Lambda} \lambda^{F_\tau} \tau^c(\varphi L)'' h_d$ $\mathcal{L}_{Y,\nu} = \frac{x_a}{12} \xi (Lh_u Lh_u) + \frac{x_d}{12} (\varphi' Lh_u Lh_u)$

$$\Lambda^{2} \langle L h_{u} L h_{u} \rangle + \Lambda^{2} \langle F L h_{u} \rangle + \frac{x_{e}}{\Lambda^{2}} \lambda^{F_{\nu}} \xi(\varphi' L h_{u}) \nu_{s} + m_{s} \lambda^{2F_{\nu}} \nu_{s}^{c} \nu_{s}^{c} + \text{h.c.}$$

$$\Lambda \equiv \frac{\langle \Theta \rangle}{\Lambda} < 1 \implies FN$$
 suppression factor

Masses & mixing $\langle \xi \rangle = u, \ \langle \varphi \rangle = (v, 0, 0) \text{ and } \langle \varphi' \rangle = (v', v', v')$ $\Rightarrow M_{\ell} \text{ diagonal} \Rightarrow m_{\alpha} = y_{\alpha} v_d \frac{v}{\Lambda} \lambda^{F_{\alpha}}$ $M_{\nu}^{4 \times 4} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e \\ \cdot & \cdot & \frac{2d}{3} & e \\ \cdot & \cdot & m_s \end{pmatrix} \begin{array}{c} a = 2x_a \frac{uv_a^2}{\Lambda^2} \\ d = 2x_d \frac{v'v_a^2}{\Lambda^2} \\ e = \sqrt{2}x_e \frac{uv'v_a}{\Lambda^2} \end{array}$ Mixing matrix: $\theta_{13} =$ $U \simeq \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \mathbf{0} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & \mathbf{0} & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & -\frac{\sqrt{3}e}{m} & 0 & 0 \end{pmatrix} + \mathcal{O}\left(\frac{e^2}{m_s^2}\right)$

BARPLANELO

Numerical example

Mass eigenvalues:

$$m_1 = a + d$$
, $m_2 = a - \frac{3e^2}{m_s}$, $m_3 = -a + d$, $m_4 = m_s + \frac{3e^2}{m_s}$

For $F_{\nu} = 6$, $\langle \Theta \rangle = v = v' = u = 10^{11}$ GeV, $\Lambda = 10^{12.5}$ GeV

$$a \sim d \simeq 0.1 \left(\frac{u}{10^{11} \text{ GeV}}\right) \left(\frac{v_u}{10^2 \text{ GeV}}\right)^2 \left(\frac{10^{12.5} \text{ GeV}}{\Lambda}\right)^2 \text{ eV}$$
$$e \simeq 0.1 \left(\frac{\lambda}{10^{-1.5}}\right)^6 \left(\frac{u}{10^{11} \text{ GeV}}\right) \left(\frac{v'}{10^{11} \text{ GeV}}\right) \left(\frac{v_u}{10^2 \text{ GeV}}\right) \left(\frac{10^{12.5} \text{ GeV}}{\Lambda}\right)^2 \text{ eV}$$

Sterile neutrino mass & mixing:

$$\begin{split} \left(\frac{x_s}{\Lambda}(\varphi\varphi) + \frac{x_{s'}}{\Lambda^2}\xi\xi\xi + \frac{x_{s''}}{\Lambda^2}(\varphi'\varphi')\xi\right)\nu_s^c\nu_s^c \Longrightarrow \left(x_s\frac{v^2}{\Lambda} + x_{s'}\frac{u^3}{\Lambda^2} + x_{s''}\frac{3v'^2u}{\Lambda^2}\right)\lambda^{2F_\nu}\\ m_s \simeq 10^{0.5}\left(\frac{\lambda}{10^{-1.5}}\right)^{12}\left(\frac{v}{10^{11}\text{ GeV}}\right)^2\left(\frac{10^{12.5}\text{ GeV}}{\Lambda}\right)\text{ eV}\\ \theta_{14} \simeq e/m_s \simeq 0.1 \end{split}$$

MaX-Planck-Institut Für Kernphysik

Non-zero θ_{13} ?

- Sterile neutrino causes deviations to solar and atmospheric angles, but reactor angle remains zero
- Need charged lepton correction terms from dim-7 operators: Altarelli, Feruglio, 2006

e.g.,
$$\eta_i \propto \langle \varphi \rangle \langle \varphi' \rangle \langle h_u \rangle^2 / \Lambda^3$$

$$\Rightarrow \sin^2 \theta_{13} \simeq \frac{(\eta_1 - \eta_2)^2}{8a^2}$$

 \Rightarrow non-zero θ_{13} possible with NLO operators

Sterile neutrinos in seesaw models

- Split seesaw mechanism
 Kusenko; Adulpravitchai et al
- Symmetries (eg. $L_e L_{\mu} L_{\tau}$) Shaposhnikov; Lindner et al
- Froggatt-Nielsen mechanism
 Merle & Niro; JB, Rodejohann, Zhang
- Extended seesaw mechanisms

```
Mohapatra; Smirnov; Zhang
```


NLO seesaw corrections

Full neutrino mass matrix is: $M_{\nu}^{6\times6} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}$ $U_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} V_{\nu} & 0 \\ 0 & V_R \end{pmatrix}$ $\overset{\text{Schechter \& Valle, 1982; Grimus \& Lavoura, 2000; \\ \text{Hettmansperger, Lindner, Rodejohann 2011}}$ $M_{\nu} = -M_D M_R^{-1} M_D^T = V_{\nu} \operatorname{diag}(m_1, m_2, m_3) V_{\nu}^T$

 $M_R = V_R \operatorname{diag}(M_1, M_2, M_3) V_R^T$

NLO corrections governed by

$$B = M_D M_R^{-1} + \mathcal{O}\left(M_D^3 (M_R^{-1})^3\right)$$

 $\frac{B\simeq \sqrt{M_{\nu}/M_R}}{\Rightarrow {\rm can \ be \ significant \ if \ } M_R\simeq 1 \ {\rm eV}}$

Active-sterile mixing & 0vBB

Active-sterile mixing is

$$\theta_{\alpha i} \equiv [U_{\nu}]_{\alpha,3+i} = [BV_R]_{\alpha i} \simeq \frac{[M_D V_R^*]_{\alpha i}}{M_i}$$

- \Rightarrow mixing is a ratio of two scales
- $0\nu\beta\beta$ amplitude vanishes if all sterile neutrinos light

$$\langle m_{ee} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i + \sum_{i=1}^{3} U_{e,3+i}^2 M_i \right| = \left[M_{\nu}^{6 \times 6} \right]_{ee} = 0$$

• In addition, in certain flavour symmetry models

$$M_D = V_{\nu} \operatorname{diag}\left(\sqrt{-m_1 M_1}, \sqrt{-m_2 M_2}, \sqrt{-m_3 M_3}\right) V_R^T$$

Chen, King 2009; Choubey et al 2010

$$U_{e,3+i}^2 M_i = \left[-(V_{\nu}^2)_{ei} \frac{m_i}{M_i} \right] M_i = -U_{ei}^2 m_i , \quad (i = 1, 2, 3)$$
$$\implies \text{pairwise cancellation!}$$

Seesaw model

 A_4 singlets

Table 3: A_4 type I seesaw model, with three right-handed sterile neutrinos

Field		e^{c}	μ^c	$ au^c$	$h_{u,d}$	φ	φ'	φ''	ξ	ξ'	ξ''	Θ	ν_1^c	ν_2^c	ν_3^c
$SU(2)_L$	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1
A_4	<u>3</u>	<u>1</u>	$\underline{1}^{\prime\prime}$	$\underline{1}'$	<u>1</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>1</u>	$\underline{1}'$	<u>1</u>	<u>1</u>	1	$\underline{1}'$	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω^2	ω^2	ω	1	1	ω^2	ω	1
$U(1)_{ m FN}$	-	3	1	0	-	-	-	-	-	-	-	-1	F_1	F_2	F_3

$$-\mathcal{L}_{Y,\nu} = \frac{y_1}{\Lambda} \lambda^{F_1} (\varphi Lh_u) \nu_1^c + \frac{y_2}{\Lambda} \lambda^{F_2} (\varphi' Lh_u)'' \nu_2^c + \frac{y_3}{\Lambda} \lambda^{F_3} (\varphi'' Lh_u) \nu_3^c + \frac{1}{2} \left[w_1 \lambda^{2F_1} \xi \nu_1^c \nu_1^c + w_2 \lambda^{2F_2} \xi' \nu_2^c \nu_2^c + w_3 \lambda^{2F_3} \xi'' \nu_3^c \nu_3^c \right] + \text{h.c.}$$

- FN charge drops out of leading order seesaw term
- Different scenarios possible, vary F_i
- Active sterile mixing depends on FN charge, e.g.

$$\theta_{e1} \simeq \frac{y_1 v v_u}{w_1 u \Lambda} \lambda^{-F}$$

Reminder: motivations/mass scales

- Three (observed) phenomena to explain, with three distinct mass scales:
 - eV − SBL oscillation anomalies
 - ♦ keV Warm Dark Matter
 - GeV − Resonant leptogenesis / vMSM
 - ◆ > 10⁹ GeV Standard leptogenesis

⇒ with three RH neutrinos one cannot explain all three phenomena!

Model I: eV, eV, keV Model II: eV, keV, \simeq GeV Model III: keV, \gtrsim GeV, \gtrsim GeV

Table 4: Summary of possible model scenarios

	F_1, F_2, F_3	Mass spectrum	$ U_{lpha 4} $	$ U_{lpha 5} $	ہم) NO	$ n_{ee}\rangle$ IO	Phenomenology
Ι	9, 10, 10	$M_{2,3} = \mathcal{O}(\mathrm{eV}),$	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$	0	0	3+2 mixing
IIA	9,10,0	$M_2 = \mathcal{O}(\text{eV})$ $M_3 = \mathcal{O}(10^{11} \text{GeV})$	$\mathcal{O}(0.1)$	$\mathcal{O}(10^{-11})$	0	$\frac{2\sqrt{\Delta m_{\rm A}^2}}{3}$	3 ± 1 mixing
IIB	9, 0, 10	$M_2 = \mathcal{O}(10^{11} \mathrm{GeV})$ $M_3 = \mathcal{O}(\mathrm{eV})$	$\mathcal{O}(10^{-11})$	$\mathcal{O}(0.1)$	$\frac{\sqrt{\Delta m_{\rm S}^2}}{3}$	$\frac{\sqrt{\Delta m_{\rm A}^2}}{3}$	5 + 1 mixing
III	9,5,5	$M_{2,3} = \mathcal{O}(10 \mathrm{GeV})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-6})$	$\frac{\sqrt{\Delta m_{\rm S}^2}}{3}$	$\sqrt{\Delta m_{ m A}^2}$	Leptogenesis

Choose $F_1 = 9 \Rightarrow M_1 \simeq 1$ keV, $\theta_1^2 \simeq 10^{-8}$ Negligible contribution to neutrino mass, $\theta_1^2 M_1 \simeq 10^{-5}$ eV \implies Decouple ν_1^c , get 5×5 mass matrix For example, with $\langle \varphi' \rangle = (v', v', v')$ and $\langle \varphi'' \rangle = (0, v'', -v'')$ $M_D^{(NO)} = \frac{v_u}{\Lambda} \begin{pmatrix} y_2 v' \lambda^{F_2} & 0\\ y_2 v' \lambda^{F_2} & -y_3 v'' \lambda^{F_3}\\ y_2 v' \lambda^{F_2} & y_3 v'' \lambda^{F_3} \end{pmatrix} M_R = \begin{pmatrix} w_2 u' \lambda^{2F_2} & 0\\ 0 & w_3 u'' \lambda^{2F_3} \end{pmatrix}$ \implies TBM at leading order

Table 4: Summary of possible model scenarios

	F_1, F_2, F_3	Mass spectrum	$ U_{lpha 4} $	$ U_{lpha 5} $	را NO	$ n_{ee}\rangle$ IO	Phenomenology
Ι	9, 10, 10	$M_{2,3} = \mathcal{O}(\mathrm{eV}),$	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$	0	0	3+2 mixing
IIA	9,10,0	$M_2 = \mathcal{O}(\text{eV})$ $M_3 = \mathcal{O}(10^{11} \text{GeV})$	$\mathcal{O}(0.1)$	$\mathcal{O}(10^{-11})$	0	$\frac{2\sqrt{\Delta m_{\rm A}^2}}{3}$	3 ± 1 mixing
IIB	9, 0, 10	$M_2 = \mathcal{O}(10^{11} \mathrm{GeV})$ $M_3 = \mathcal{O}(\mathrm{eV})$	$\mathcal{O}(10^{-11})$	$\mathcal{O}(0.1)$	$\frac{\sqrt{\Delta m_{\rm S}^2}}{3}$	$\frac{\sqrt{\Delta m_{\rm A}^2}}{3}$	5 – 1 mixing
III	9,5,5	$M_{2,3} = \mathcal{O}(10 \mathrm{GeV})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-6})$	$\frac{\sqrt{\Delta m_{\rm S}^2}}{3}$	$\sqrt{\Delta m_{ m A}^2}$	Leptogenesis

 \implies non-zero θ_{13} possible from charged leptons

Seesaw model

• Inverted ordering:

$$\frac{|U_{e,\mu4}|^2}{|U_{e5}|^2} \simeq \epsilon_1^2 \left[1 - 2\rho_2 \mp 2r_1 \left(\frac{y'_{\mu}}{y_{\mu}} \pm \frac{y'_{\tau}}{y_{\tau}} \right) \right],$$
$$\frac{|U_{e5}|^2}{|U_{e5}|^2} \simeq 4\epsilon_2^2 \left[1 + r_1 \left(\frac{y'_{\mu}}{y_{\mu}} + \frac{y'_{\tau}}{y_{\tau}} \right) - (\chi - \rho_3) \right],$$

Scenario I: \Rightarrow 3+2 mixing

Scenario IIB: \Rightarrow 3+1 mixing

Conclusion

- "Light" sterile neutrinos exhibit distinct phenomenological signatures
- Naïve expectations for neutrinoless double beta decay altered in the presence of steriles
- Flavour symmetry models can be extended to include light sterile neutrinos, using FN mechanism
- NLO seesaw terms need to be considered for eVscale sterile neutrinos
- Deviations from TBM due to sterile neutrinos, but large reactor angle requires NLO operators or different discrete group as starting point

Other mechanisms of 0\nu\beta\beta?

Alternative mechanisms, e.g. LRSM

Which contribution dominates?

- Propagator: heavy or light neutrinos exchanged;
 Vertices: left- or right-handed currents
- λ and η -diagrams suppressed by left-right mixing, can be enhanced with matrix structures
- Depends on mechanism of neutrino mass generation (type I, type II, type I+II)
- Other observables important, i.e. LFV
- Type II dominance easiest to study, since light and heavy spectra proportional to each other:

$$m_{\nu} = M_L \propto M_R$$

Tello et al, PRL, 106, 151801 (2011)

Interplay of LNV & LFV observables

Type I or type I+II

- $\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left\{ |\mathcal{M}_{\nu}^{0\nu}|^2 |\eta_{\nu}|^2 + |\mathcal{M}_{N}^{0\nu}|^2 |\eta_{N_R}^L|^2 + |\mathcal{M}_{N}^{0\nu}|^2 |\eta_{N_R}^R + \eta_{\delta_R}|^2 \right\}$
 - $+|\mathcal{M}_{\lambda}^{0\nu}|^{2}|\eta_{\lambda}|^{2}+|\mathcal{M}_{\eta}^{0\nu}|^{2}|\eta_{\eta}|^{2}\big\}$
 - In LR model one expects both type I and type II seesaw
 - At least six contributions, plus interference terms
 - Dirac Yukawas & RH sector unknown
 - Start with Ansatz for y_D or for M_R ?
 - Left-right mixing (M_D/M_R) can be enhanced with special matrix structures (cancellations) Kersten & Smirnov, 2007
 - In type I+II case, one can solve the type I+II seesaw equation yielding 8 solutions Akhmedov & Frigerio, 2007
 - Distinguishing different possibilities requires other phenomenology
 - Different nuclear matrix elements for different diagrams
 - Work in progress...

Inverse 0vBB at linear colliders

Rodejohann, PRD 81, 114001 (2010)

 $e^-e^- \rightarrow W^-_L W^-_R, \ \sqrt{s} \simeq 3 \ {\rm TeV}$

Max-Planck-Institut Für Kernphysik

Total cross section for LR-diagram

 $e^-e^- \rightarrow W_L^- W_R^-$, $\mathbf{s} = \mathbf{9} \ \mathrm{TeV^2}$

JB, Dorame, Rodejohann, Eur. Phys. J. C 72, 2023 (2012)