Progress in $0\nu\beta\beta$ decay search and the GERmanium Detector Array

Werner Maneschg

- on behalf of the GERDA collaboration -

Max-Planck-Institut für Kernphysik - Heidelberg

BeNu 2012 conference, September 17-21, 2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Observation of $0\nu\beta\beta$ decay helps answering 3 fundamental questions:

- Is lepton number conservation violated? Are neutrinos their own anti-particles ?
- What is the absolute neutrino mass scale?
- Is the neutrino mass spectrum degenerate, normal or inverted? (Hierarchy problem)

Observable: $0\nu\beta\beta$ decay rate \rightarrow half-life $T_{1/2}$. If not observed, then quoting a lower limit of $T_{1/2}$ (90%C.L).

- Best limit in the past obtained by HdM (2001): $T_{1/2}^{0\nu} > 1.9 \times 10^{25} \text{ yr; } \langle m_{\beta\beta} \rangle \leq 0.35 \text{ eV}$
- KKDC claim (2004): $T_{1/2}^{0\nu} = 1.17 \times 10^{25} \text{ yr; } \langle m_{\beta\beta} \rangle \sim (0.23-0.59) \text{ eV}$
- New experiments: EXO-200 (2012): $T_{1/2}^{0\nu} > 1.6 \times 10^{25} \text{ yr}, \langle m_{\beta\beta} \rangle \leq 0.14 \cdot 0.38 \text{ eV}$ Within 2015: $\langle m_{\beta\beta} \rangle \leq 0.05 \text{ eV}$

Progress in calculations of nuclear processes

Half-life correlation with effective Majorana neutrino mass

$$(T_{1/2})^{-1} = G^{0\nu} \left| M^{0\nu} \right|^2 \langle m_{\beta\beta} \rangle^2$$

with $G^{0\nu}$: phase space factor, $M^{0\nu}$: nuclear matrix element, $\langle m_{\beta\beta} \rangle = \left| \sum_{j} m_{j} U_{ej}^{2} \right|$

M^{0v} Calculations:

- Improvements for NSM and QRPA:
 →Most QRPA discrepancies solved (Simkovic
 F. et al, Phys.Rev.C 79 (2009))
 →Progress in understanding source of spread of
 NSM values (Faessler A. et al,(2012))
- New methods IBM, EDF, pHFB
- $Q_{\beta\beta}$ values: \rightarrow Penning-traps (e.g. ¹³⁰Te: 5% shift)
- Cross sections for neutron reactions (e.g.²⁰⁷Pb(n,n' γ): DEP of 3062 keV $\simeq Q_{\beta\beta}$ of ⁷⁶Ge)

Request: Larger number of measurement with different isotopes

- ightarrow Avoid (not well) known rare background events at Q_{etaeta}
- \rightarrow NME uncertainties \leq 30% for neutrino mass spectrum & CP violating phases
- \rightarrow Mechanisms: Light vs. heavy Majorana neutrino exchange, RHC,...

Determination of the half-life

 $\mathcal{T}_{1/2} \propto \begin{cases} a \cdot \epsilon \cdot M \cdot T, & \text{background-free} \\ a \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}, & \text{if background is present} \end{cases}$ with a: Abun./Enrich.; M: Mass; ϵ : act.volume; ΔE : e-res.; T: life-time; B: bkgd

Isotope	$Q_{\beta\beta}$	nat.Abun.	Experiment	FWHM/E @ $Q_{\beta\beta}$	Mass
	[keV]	[%]	(operat./funded)	[%]	[kg]
⁴⁸ Ca	4273.7	0.19	Candles		0.35
⁷⁶ Ge	2039.1	7.8	GERDA	0.1-0.2	$15 \rightarrow 35$
			Majorana Dem.	0.1-0.2	30
⁸² Se	2995.5	9.2	SuperNEMO		$7 \rightarrow 100$
			Lucifer		
¹⁰⁰ Mo	3035.0	9.6	MOON		480
			AMoRe		100
¹¹⁶ Cd	2809.1	7.6	Cobra		64
¹³⁰ Tl	2530.3	34.5	CUORE	0.2	$10 \rightarrow 200$
¹³⁶ Xe	2457.8	8.9	EXO	4.0	175
			KamLand-Zen	9.8	$330 \rightarrow 1000$
			NEXT		100
¹⁵⁰ Nd	3367.3	5.6	SNO+		44

Request: Larger number of measurement with different isotopes

- \rightarrow Avoid natural radioactivity: stay above ²⁰⁸Th and ²¹⁴Bi lines
- \rightarrow Advantages of single isotopes: better ΔE , scalability/enrichment of isotope mass
- \rightarrow Measurements: independent techniques with \leq 30% precision

Isotopes and experimental techniques for $0 u\beta\beta$ decay search

- Selected isotopes: 8 out of 35 (\leftarrow nat.Abun., $Q_{\beta\beta}$, $G^{0\nu} \propto (Z, Q_{\beta\beta}^5)$, chem.prop.)
- Techniques: ion., scint.(gas,liq.), track./TPC(gas,liq.,solid), cal./bolo.

The CUORE experiment

Detectors and cryostat

- Te0₂ crystals cooled down to ~10 mK with He within a multi-layer copper cryostat
- Isotopic nat. abundance of ¹³⁰Te: 34.1% (no • enrichment!)

Shielding

- Inner Roman lead layer and outer lead layer
- Ra barrier and neutron shield 0
- 1400 m overburden (3500 m w.e.) at LNGS

Concept: DBD Source = Absorber

Bolometric technique

Te02 absorbs energy deposition E by particle

Energy deposition E registered by a thermistor (NTD Ge) as temperature increase: Signal: $\Delta T = E/C$, C: capacity Time constant = C/G; G: thermal coupling Need: \rightarrow low-heat C \rightarrow mK + diele.diamagn.mat.

Very good energy resolution achievable:

 \sim 5 keV @ $Q_{\beta\beta}$ (2527 keV), corr.FWHM/E=0.2% イロト イポト イヨト イヨト

э

Scaling of the CUORE project

Cuoricino (Cuore Demonstrator) (2003-2008):

- 1 tower; 62 crystals; ¹³⁰Te: 11.3 kg
- Achieved BI = $0.169 \pm 0.006 \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$; most prob.: surface α 's
- Limit for $0\nu\beta\beta$ half-life of ¹³⁰Te (90% C.L.): $T_{1/2}^{0\nu} > 2.8 \times 10^{24} \text{ yr}, \langle m_{\beta\beta} \rangle < 0.30\text{-}0.71 \text{ eV}$

(E. Andreotti et al., Astropart. Phys. 34 (2011))

2 Cuore-0 (2012-2014):

- 1.tower of 19-tower Cuore assembly; 52 crystals; ¹³⁰Te: 11 kg
 - \rightarrow Control detector-production chain for Cuore (recontamination)
 - \rightarrow As stand alone experiment: Improve BI to 0.11-0.05 cts/(keV·kg·yr)

Output Cuore (2014-2019):

- 19 towers; 988 crystals; ¹³⁰Te: 206 kg
- Goal BI: 0.01 cts/(keV·kg·yr)

Installation of Cuore-0

(spring/summer 2012)

Cuore-0:

- Installation in cryostat completed; cooling-down and data-collection start forseen within July 2012
- With BI=0.05 cts/(keV·kg·yr), 2 yr run (90%C.L.):

$$ightarrow \, T_{1/2}^{0
u} > 5.9 imes 10^{24} \, {
m yr}, \,
ightarrow \langle m_{etaeta}
angle \, < 0.17$$
-0.39 eV

Cuore:

- Crystals almost all arrived at LNGS
- Radiopurity of all crystals measured; extrapolation to BI for Cuore:

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ 日 ・ う へ つ ・

- \rightarrow from bulk: $1.1 \times 10^{-4} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- \rightarrow from surface: 4.2×10⁻³ cts/(keV·kg·yr)
- With $BI=0.01 \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$, 5 yr run:
 - $ightarrow \, T_{1/2}^{0
 u} > \! 1.6 \! imes \! 10^{25} \, {
 m yr}, \, \langle m_{etaeta}
 angle < \! 0.04 \! ext{-} \! 0.09 \, {
 m eV}$

The KamLAND-Zen experiment

Advantages of using a) Xe-loaded LS b) in KamLAND

- Xe: soluble in LS (Raghavan R., PRL72 1411 (1994))
- Xe: high isotopic enrichment, extraction and purification
- Use existing ultra-pure detector; low-energy anti-neutrino measurements can continue

Measurement of 2 uetaeta half-life of 136 Xe

- Fitregion: [0.5;4.8] MeV; includes 80% of the $2\nu\beta\beta$ spectrum
- Exposure for ¹³⁶Xe alone: 38.4 kg·yr (112.3 d; 125 kg ¹³⁶Xe)
- $2\nu\beta\beta$ events: ~35500 events; rate: (80.9±0.7) cts/(d·ton) in Xe-loaded LS

KamLAND-Zen $2\nu\beta\beta$ half-life result (May 2012):

 $T_{1/2}^{2\nu} = 2.30 \pm 0.02 \pm 0.12 \, (stat+sys) \times 10^{21} \, yr \, (arXiv:1205.6372)$

Limit for 0 uetaeta half-life of 136 Xe

Unexpected peak at 2.6 MeV

- Non-compatible with Q_{ββ} of ¹³⁶Xe
- Check 'all' nuclei ($\mathcal{O}(10^3)$) and decay paths ($\mathcal{O}(10^6)$) \rightarrow Remaining candidates: ^{110m}Ar, ²⁰⁸Bi, ⁸⁸Y, ⁶⁰Co

 $T_{1/2}^{0\nu}$ result (May 2012: arXiv:1205.6372)

 $T_{1/2}^{0
u}>$ 6.2×10²⁴ yr, $\langle m_{etaeta}
angle <$ 0.26-0.54 eV at 90%C.L.

- Purification of Xe-loaded LS ongoing; \rightarrow lower background ^{110m}Ar (,²⁰⁸Bi,⁸⁸Y) background by 100×
- 600 kg Xe already in the Kamioka mine, \rightarrow first $\beta\beta$ 1-ton experiment (?)
- Increased amount of Xe and cleaner balloon (less ²¹⁴Bi)

The EXO-200 experiment

Concept: DBD source = Detector

Detector design and background reduction

- LXe Vessel in ultra-radiopure copper cryostat filled with high-purity heat transfer fluid HFE7000
- Lead shield
- 4 plastic scintillators as active muon vetos
- 700 m overburden (1600 m w.e.) at WIPP lab, Carlsbad, NM

Detection principle

Medium: 175 kg of LXe; ¹³⁶Xe enrichment: 80.6% Detection principle:

- Collection charge wires measure ionized electrons
- Large Area Avalanche Photodiodes (APDs) measure 178 nm scintillation light

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Gain from:

Drifttime:

- \rightarrow Position reconstruction res.: X,Y: 18 mm; Z: 6 mm
- \rightarrow Distinguish single $\beta/\beta\beta$'s from multiple γ 's clusters: Ionisation vs. Scintillation:
- \rightarrow Discrimination of α from $\beta/\beta\beta/\gamma$

Calibrations with ⁶⁰Co, ¹³⁷Cs, ²²⁸Th sources

Ionisation vs. Scintillation (228 Th source)

Determination of number of SSE/MSE for a spectral component

- β/ββ's are mostly SSE, but can also populate MSE spectrum due to bremsstrahlung (γ's mostly MSE)
- Ocntribution to SSE/MSE spectra to be simulated for all spectral components
 → MC tested with calibrations:

Example: Region around 2.6 MeV ²⁰⁸TI-line

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Measurement of $2\nu\beta\beta$ half-life of 136 Xe

- Rejection of peripheral background by fiducial Volume cut:
 Active mass of 08 E kg of L Xe (136X)
 - \rightarrow Active mass of 98.5 kg of LXe ($^{136} \rm Xe:$ 79.4 kg)
 - \rightarrow LXe exposure after 120.7 d: 32.5 kg·yr

• SSE $2\nu\beta\beta$ spectrum:

- \rightarrow spectrum contains \sim 22000 $2\nu\beta\beta$ events above 0.7 MeV
- \rightarrow S/B ratio of $\sim 10/1$!
- \rightarrow SSE spectrum: 82.5% of $2\nu\beta\beta$ events (MC calc.)

$\begin{array}{l} \mbox{Results for $T_{1/2}^{2\nu}$ [\times10^{21}$ yr]$ \\ \mbox{EXO-200 (May 2012): $2.23\pm0.02\pm0.22$ (stat+sys) arXiv:1205.5608$ \\ \mbox{Agrees with KamLAND-Zen (May 2012): $2.30\pm0.02\pm0.12$ (stat+sys) arXiv:1205.6372$ \\ \mbox{Contradicts DAMA/LXe: $>10 yr (90\%C.L.) (R. Barnabei et al., Phys.Lett.B 546 (2002) 23)$ \\ \end{array}$

$0\nu\beta\beta$ results after 120 d with 98.5 kg of LXe (May 2012):

- Observed background: 1(5) events within 1(2) σ around 0 $\nu\beta\beta$ ROI \rightarrow BI=0.0015 cts/(keV·kg·yr) \rightarrow within specs!
- $T_{1/2}^{0
 u}$ >1.6×10²⁵ yr, $\langle m_{etaeta}
 angle$ <0.14-0.38 eV (90% C.L.)

The GERDA experiment

Cherenkov veto

Concept: DBD **Source** = Detector

Background reduction:

- material screening
- graded passive shielding;
- active vetos;
- operation of bare Ge diodes in LAr
- Particle identification techniques

Ge detector array

- 1-string and three arm with each 3 detectors (Phase I)
 - up to ${\sim}12$ strings

(depending on final design

for Phase II)

Large	Cryostat					
۲	R=2 m, h=5.9 m, 64 m ³ LAr					
۹	• Acts as cooling medium					
۹	Acts as passive shielding					
۹	Will act as active					
	background suppresion					
	using scintillation (Phase					
	II)					
	4 7 N 4 7 N 7 N 0 0					

GERDA: construction milestones

- Lol: 2004
- R&D: since 2004 (i.e. material screening, testing bare Ge diodes in LAr etc.)
- **Construction**: 2008-2010
 - cryostat & cryogenic infrastructure
 - water tank & muon veto
 - clean-room and lock system

Location in Hall A at LNGS (3500 m w.e.)

- Technology: refurbished co-axial HPGe detectors from HdM, IGEX and GTF experiments
- Mass:
 - 6 enriched (⁷⁶Ge: ~86%): 14.63 kg: ANG2-ANG5, RG1, RG2; (ANG1 and RG3: drawing leakage current after installation and thus excluded from DAQ)
 - 3 natural (⁷⁶Ge: 7.83%): 7.59 kg: GTF112, GTF45, GTF32
- Operation: bare diodes in LAr on low-mass holders

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

 \rightarrow Commissioning phase: 2010-2011

 \rightarrow Start of Phase I data collection: November 9, 2011

Phase I: detectors' performance and stability

Energy resolution: 4.5-5.1 keV (FWHM) @ 2614.5 keV; 4.5 keV @ 2039 keV

- Stability I: Constant energy resolution and no significant shift of energy scale
 → Duty cycle 'high',i.e. ~95% in (DAQ start June 2012); effectively ~80%
 due to 1 run rejected after temperature instabilities in clean room.
 → Exposure for enriched detectors until September 6, 2012: 9.55 kg·yr
- Stability II: No significant increase of leakage current !

Phase I: Energy spectra for natural and enriched diodes

- Background index at $Q_{\beta\beta}$: 'low', however unexpected ⁴²Ar background
- Pulse shape discrimination: no PSD technique applied so far
- Blinding: automatic blinding of Q_{ββ} region in (2039±20) keV region applied since January 11, 2012

イロト イポト イヨト イヨト

-

Problematics:

- 4^2 Ar: long-lived $(T_{1/2}=32.9y)$ • 4^2 K: β decay into 4^2 Ca: • $Q_{\beta-}=3525.4$ keV, E $\gamma=1524.7$ keV (81.9% Emis.Prob.) • Expected concentration: • 41μ Bq/kg at 90% C.L. (v.D. • Ashitkov et al., Inst.Exp.Tech.46(2003)153) • However: collection of ions through E-field from HV
- Improvement: 60 µm thin cylindrical Cu foil around strings
 → Background reduction:3 ×

Preliminary measurement of ⁴²Ar:

In GERDA: 92.8 \pm 5.2(syst)4.5 \pm (stat) μ Bq/kg

In R&D setup LArGe: consistent result using a different method

Phase I: Measurement of $2\nu\beta\beta$ half-life of ⁷⁶Ge

- Fit: region (600-1800) keV; May 2011-Nov 2012; only enriched detectors \rightarrow S/B~8/1 !
- Free parameters: 40 K, 42 K, 214 Bi, $T_{1/2}^{2\nu}$, active mass, enrichment

Results for $T_{1/2}^{2\nu}$ [×10²¹ yr]

Preliminary GERDA result: 1.88±0.10 (sys+stat) Comparison to weighted average of previous measurements: 1.50±0.10 (A. Barabash, Phys.Rev.C, 81 (2010) 035501)

- **BI definition**: $Q_{\beta\beta} \pm 100 \text{ keV}$ (minus blinded 40 keV region)
- Achieved BI: 0.020^{+0.006}/_{-0.004} cts/(keV⋅kg⋅yr)
 → Design BI of 0.01 cts/(keV⋅kg⋅yr) almost reached !
- GERDA Phase I vs. HdM: continuum around Q_{ββ} and most gamma lines are 1 order of magnitude less intense
- ⁴²Ar: non-problematic for Phase I

Goal of Phase II: Lowering the BI to $\leq 0.001 \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$

Determination of the half-life

$$T_{1/2} \propto a \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta E \cdot B}},$$
 (if background is present)

where:

- a: Abundance of $0\nu\beta\beta$ candidate isotope \rightarrow Enrichment
- ϵ : Efficiency \rightarrow precise characterisation via dedicated acceptance tests
- M: Mass → Increasing target mass
- T: DAQ life-time high duty cycle
- ΔE : energy resolution \rightarrow Novel detector technology with improved resolution
- B: Background
 - \rightarrow Avoid cosmogenic activation of germanium
 - \rightarrow Pulse shape discrimination using novel detector technology
 - \rightarrow Instrumentation to detect LAr scintillation light

GERDA Phase II detectors

A/E [a.u.]

0.08

0.06

0.04

0.02

0

- Goal: Background rejection in the bulk by distinguishing single-site events (SSE) from multi-site events (MSE); additionally, surface events on the p^+ (i.e. amplified current pulses) and n^+ (i.e. slow pulses) contact can be discriminated
- Solution: Unsegmented Broad Energy germanium detectors (BEGe) with enhanced pulse shape discrimination (PSD) properties

10

10

10

SSE-MSE cut:

energy dependent

cut calibration

2500 300 Energy [keV]

2000

SSE band

1500

MSE region

1000

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Status: BEGe detector procurement

• Crystal pulling at Canberra in Oak Ridge, TN (USA): accomplished

Diode production at Canberra in Olen (BE): ongoing
 → 12 out of 30 crystal slices converted into diodes
 → diode acceptance tests on-site at SCK, Mol (BE):
 ongoing
 → 5 BEGe's (3.63 kg) in GERDA since July 7, 2012

 \rightarrow 5 BEGe's (3.03 kg) in GERDA since July 7, 2012 for tests and intrinsic background studies

● Expected additional mass: ~20 kg

First 5 BEGe diodes: preliminary averaged results

	In Vacuum	In LAr
FWHW @ 2.6 MeV	2.35 keV	3.18 keV
PSD	DEP: 0.90	DEP: 0.90
efficiency	SEP: 0.09	SEP: 0.11
	FEP: 0.13	FEP: 0.15
	ROI: 0.38	ROI: 0.46

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 〔の�(

GERDA Phase II: 'Light instrumentation'

- Goal: Background rejection via detection of scintillation light in liquid argon (λ=128 nm)
- R&D with LArGe test facility at LNGS

Results for ⁶⁰Co and ²²⁸Th source (M. Heisel, Diss.2011)

source	position	LAr Veto	PSD	total
⁶⁰ Co	int	27±2	76±9	$3900 {\pm} 1300$
²²⁸ Th	ext	25±1	$2.8{\pm}0.1$	$129 {\pm} 15$
	int	$1180{\pm}250$	$2.4{\pm}0.1$	$5200{\pm}1300$

ヽ µ 〃 ヽ ጬ 〃 ヽ ゠ 〃 ヽ ゠ 〃 り

Preparations for Phase II: LAr scintillation read-outs

- Option: PMT light instrumentation (based on LarGe experience)
- Option: Wavelength-shifter glass-fibre with SiPMs
- Option: large area avalanche photodiodes or UV sensitive SiPMs on custom-made low-activity substrates

 \rightarrow Most advanced solution: combination of 1. and 2. option

・ロト ・ 雪 ト ・ ヨ ト

ъ

Summary GERDA

Phase I:

- Running since November 9, 2011;
- Background index almost within specs
- Exposure: ~9.55 kg·y (September 6, 2012) $2\nu\beta\beta$: New measurement of halflife of $T_{1/2}^{2\nu}$ in ⁷⁶Ge
- Analysis: blinded in $Q_{\beta\beta}$ region; unblinding in spring 2013

Phase II:

- Preparations ongoing (det.procurement, light instr., elec.readout)
- Planned installation of new infrastructure: early 2013

Summary: status of $0\nu\beta\beta$ search experiments

- If range $\langle m_{\beta\beta} \rangle = 0.1$ -0.5 eV holds (if KK claim confirmed):
 - \rightarrow Observation by EXO-200, KamLAND-Zen ($^{136} \rm Xe)$ and GERDA ($^{76} \rm Ge)$ in (early) 2013

 \rightarrow Other experiments that will be finalized in the next years will observed the $0\nu\beta\beta$ decay in other isotopes (SNO+ ^{150}Nd , Cuore in $^{130}Te,...)$

 \rightarrow Precision-experiments have to follow (to improve NME and understand exchange mechanisms)

• If range $\langle m_{\beta\beta} \rangle = 0.02 - 0.05 \text{ eV}$ holds:

 \rightarrow Necessity for large scale enrichment and lower background reduction

 \rightarrow Possible experiments: Gerda Phase III and Majorana, Cuore marginally, KamLand-Zen(2),...

 \rightarrow Discovery in 3-4 isotopes necessary to confirm the observation and to

improve the theoretical nuclear calculations

2013+ will be exciting time for $0\nu\beta\beta$ search !