

2372-33

Joint ICTP-IAEA Workshop on Sustainable Energy Development: Pathways and Strategies after Rio+20

1 - 5 October 2012

Innovation in the Nuclear Industry: International Perspectives

Ferenc L. Toth

IAEA, Vienna
Austria

Innovation in the Nuclear Industry: International Perspectives

Ferenc L. Toth

Planning & Economic Studies Section (PESS)

Department of Nuclear Energy

IAEA-ICTP Workshop on

"Sustainable Energy Development: Pathways and Strategies after Rio+20"

ICTP, Trieste, Italy, October 1-5, 2012

"If at first, the idea is not absurd, then there is no hope for it."

(Albert Einstein)

Overview

- 1. Context: Innovation and economics
- 2. IAEA INPRO
- 3. GIF
- 4. Summary and conclusions

1. Context: Innovation and economics

Schumpeter: Invention – Innovation – Diffusion – extend:

Stages in technological R&D&D&D

to Commercial Utilization:

Basic research: discoveries (materials sci, chemistry,)

Applied research: inventions, improvements

Development: producing working prototype

Demonstration: testing, scaling up, proving feasibility

< "valley of death" >

Deployment: implementation in pre-commercial stage

Commercial utilization: widespread use, diffusion

1. Context: Innovation and economics

Nuclear industry – current challenges:

- Operation safety
- Waste disposal resource use
- Proliferation, diversion of N material
- Costs, competitiveness
- Public acceptance
- Globally shared concerns
 - global cooperation to find solutions
- AND: Globally shared opportunities:
- need for low-C tech, supply security, price stability

1. Context: Innovation and economics

Generation I

Early prototype reactors

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

Commercial power reactors

- LWR-PWR,BWR
- CANDU
- VVER/RBMK

Generation III

Advanced LWRs & HWRs

- AP1000, ABWR,System 80+
- ACR
- EPR

Generation III+

Evolutionary designs with improved economics and safety for near-term deployment

Generation IV

- Highly economical
- Enhanced safety
- Minimal waste
- Proliferation resistant

International Project on

Innovative Nuclear Reactors and Fuel Cycles:

- global forum on innovative NESs and deployment
- international studies and collaborative projects

Foster innovation & sustainable NE development

Help MSs assess sustainability of existing/planned NES

- → linked to national energy strategy/planning
- > related to broad sustainability

synoptic assessment, comparison, directions

Application: Joint Studies – here: CNFC FR

Closed Nuclear Fuel Cycle with Fast Reactors

Resource: practically inexhaustible

Environment: avoid mining and enrichment

Waste: reduced volume, heat load, radiotoxicity

Safety: meets current standards

Proliferation resistance: higher

Infrastructure: needs international arrangements

Economics: not yet competitive with thermal or fossil

3. GIF

Generation IV International Forum:

collaborative effort to develop next generation NESs

4 areas - 8 technology goals:

Sustainability: environment, resource, waste

Economics: cost advantages, comparable financial risk

Safety and reliability: of operation, very low likelihood and degree of reactor core damage, eliminate the need for offsite emergency response

Proliferation resistance and physical protection: unattractive for diversion, protection against terrorism

3. GIF

Objectives widely shared → international R&D progr.

Members: 12 countries + Euratom

Target: market deployment from 2030

Process: review and select reactor systems, related R&D plans and framework agreements

Now: System agreements – specific R&D projects for 6 GIF systems

and: cross-cutting issues, common to all systems:

Proliferation Resistance and Physical Protection; Economic modeling; Risk and Safety

3. GIF

(Source: gen-4.org)

System	Neutron spectrum	Coolant	Temp. °C	Fuel cycle	Size (MWe)
VHTR (Very high temperature gas reactor)	thermal	helium	900 to 1000	open	250-300
SFR (Sodium-cooled fast reactor)	fast	sodium	550	closed	30-150, 300-1500, 1000-2000
SCWR (Supercritical water-cooled reactor)	thermal/ fast	water	510-625	Open/ closed	300-700 1000-1500
GFR (Gas-cooled fast reactor)	fast	helium	850	closed	1200
LFR (Lead-cooled fast reactor)	fast	lead	480-800	closed	20-180, 300-1200, 600-1000
MSR (Molten salt reactor)	epithermal	fluoride salts	700-800	closed	1000

4. Summary and conclusions

Nuclear industry: most interconnected globally

esp. negative events: anywhere \rightarrow impacts everywhere

Joint concerns: proliferation resistance to resource availability

Implication: combination of competition and cooperation

in innovation/R&D to operation (WANO)

and international organizations and projects:

IAEA, OECD NEA, GIF, GNEP, many others

5. Summary and conclusions

Costs and competition:

- with other resources/technologies: fossil, renewables
- among NP technologies: LWR vs FR now increasing complementarity in the future (CFS FR)
- Innovation: Gen IV concepts need for basic research
- → public good, collaboration (free riders?)
- Innovation: GEN IV designs development & demo:
- → public good, collaboration (free riders?)
- Innovation: GEN IV PPs demonstration & deploymt:

→ private good, competition

5. Summary and conclusions

Innovation in NE:

imperative: safety and proliferation resistance

necessary: economics and sustainability

Complex multi-attribute problem: all necessary

Economics of innovation: increase efficiency by

international cooperation in R&D&D&..?

http://www.iaea.org/OurWork/ST/NE/Pess/

...atoms for peace.

