

2372-23

Joint ICTP-IAEA Workshop on Sustainable Energy Development: Pathways and Strategies after Rio+20

1 - 5 October 2012

Finding CLEWs Exploring Sustainable Energy Developments: Looking at Climate-Land-Energy-Water Interactions methodology and components

Sebastian Hermann

KTH, Royal Institute of Technology, Stockholm Sweden

Finding CLEWs

Exploring Sustainable Energy Developments: Looking at Climate-Land-Energy-Water Interactions

methodology and components

Joint ICTP-IAEA Workshop on Sustainable Energy Development: Pathways and Strategies after Rio20

01-05 October, 2012, Trieste, Italy

- 1. Introduction: Why integrated CLEWs are important?
- 2. The CLEW methodology

Overview

- 3. Overview about Modelling tools
- 4. Integration of Tools and Summary

Climate

- Land-use
- Energy
- Water

Summary

Why finding CLEWs is important

We need to find sustainable development CLEWS: Climate, Land, Energy and Water strategies. This is an acronym given to a set of methodologies that are being developed at a number of leading institutions. Some specific goals are to address questions such as:

- How we can meet common development needs (food, water, energy) in a sustainable manner?
- What technologies and configurations of technologies are best going to help?
- What policies are going to make this feasible and economically viable and thereby help reduce future conflicts?
- And what happens if we do nothing ?

Intro

Climate, Land-use, Energy and Water (CLEW) – some well known facts ...

- The world's food, water and energy resources are already under stress
- Renewed concerns over food security and increased commercial pressure on land
- Water scarcity is estimated to affect one in three people globally
- Energy prices are high and volatile
- Energy supply has to increase by an estimated one-third by 2030
- Mounting concerns over climate change

Summary Tools

CLEW resources are inter-linked

ROYAL INSTITUTE OF TECHNOLOGY

Intro

CLEWS xplained

Tools

Summary

 The energy system and agriculture and forestry sectors account for the majority of anthropogenic GHG emissions

ntro

Tools

Summary

CLEW resources are inter-linked

 A growing share of cropland is dedicated to producing energy

 On average 11% of coarse grains, 11% of oil seeds and 21% of sugar cane was used for biofuel production over the 2008-2010 period.

ntro

Tools

Summary

- Energy is required to produce, treat and transport water
- The supply and treatment of water accounts for approximately 7% of electricity demand world-wide

CLEW resources are inter-linked

- Energy is required to power agricultural machinery for field preparation, crop harvesting, drying and processing. Direct energy use accounts for roughly 2.1% of global final energy demand
- Energy is required to produce fertilizers, pesticides and other agricultural inputs. Indirect energy use in agriculture is about 1.2% of global final energy demand

Tools CLEWs Intro

Summary

ROYAL INSTITUTI

CLEW resources are inter-linked

- About 70% of freshwater withdrawals worldwide are for agriculture
- Approximately 20% of freshwater withdrawals are for cooling thermal processes in the power and manufacturing sectors

Intro Tools Summary

The CLEW challenge for coming decades

- Need for more "crop per drop" and more crop per hectare
- Produce more energy for a larger and more affluent population in a more sustainable manner.
- Adopt sustainable practices for supply of more freshwater and disposal of wastewater.
- Integrate the possible Effects of Climate Change into our planning.

Intro Tools Summary Policy formulation and assessments are often done in isolation by separate and disconnected institutional entities – this might lead to:

- Lack of incentives and institutional structures required for effective action
- Risk that incoherent policies are promoted
- High probability that inefficient resource use will ensue.

The CLEW Framework

ROYAL INSTITUTE OF TECHNOLOGY Energy - Energy for water Energy for fertilizer Model processing and treatment production Energy for water pumping and Energy required for field - Energy for desalination preparation and harvest - Water available for Biomass for biofuel hydropower production and other - Water for power plant energy uses cooling J - Water for (bio-)fuel processing Land-Water use Model Model GHG, - Water for biofuel crops (rain -fed and irrigated) - Water needs for food, feed and fibre crops (rain-fed and irrigated)

Scenario based analysis

- Simple idea: the land, energy and water resource systems are highly integrated and any assessment of these resources should ideally treat them as such
- Collaborative effort across disciplines needed
- Allows for integrated assessment of the water-food-energy nexus.
- Enables evaluation of the general robustness of a particular strategy or policy with respect to risks of climate change.

The Aim of CLEW

Solve Problem

(e.g. energy shortage, water shortage, food shortage)

Conclusions and way forward

- Major improvements to efficiency in natural resources use is required
- The CLEW framework provide a foundation for assessing resource use in an integrated manner that allows trade-offs and co-benefits to be explored
- Governments must take the lead and promote public-private-civil alliances to address the CLEW challenges.

CLEW TOOLS

OF TECHNOLOGY

Overview about Modelling Tools and their Potential for Integration

OF TECHNOLOGY

Modelling Tools used ...

	Energy	Water	Land Use
Model	MESSAGE ^(IAEA,IIASA) LEAP ^(SEI) OSeMOSYS ^(KTH)	WEAP ^(SEI) plus several others	AEZ ^(IIASA)
"Scale of Operation"	From small island systems to large country analysis	Local water systems based on geographical data	Small scale to country analysis (flexible grid cells sizes)
Input	 Demand (current / future, load curves), Existing + planned Power plants, Imports and exports, and resource availability, GHG emission factors 	 Climatic data, Land cover data, Soil data and water avail., Water consumption, Desalination and hydropower 	 Climatic data (plus projections), Land cover data, Soil data,
Output & Results	 Future optimal energy mix under different conditions, Future GHG emissions Costs 	• Water availability under different scenarios (CC and/or w. demand change) for ALL points in a modelled system	 Crop Map (most suitable crops per area) Crop Calendar Future water demand Fertilizer demand

Intro

CLEWs explained

Summary

ROYAL INSTITUTE

Water Evaluation And Planning

Stockholm Environmental Institute (SEI)

www.weap21.org

CLEW - Integrated Climate, Land Use, Energy and Water Modelling

Intro

CLEWs explained

Summary

Water Evaluation And Planning

CLEW - Integrated Climate, Land Use, Energy and Water Modelling

OF TECHNOLOGY

Intro

CLEWs explained

Tools

Summary

Water Evaluation And Planning

- Definition of all Catchement areas (60)
- Real Climatic Data (1996 2005):Rainfall, min & max temperature, humidity
- All main rivers & reservoirs plus stream flow data and reservoirs levels
- Modelling of existing canals / distribution systems
- Using GIS: land cover classes to calculate evapotranspiration
- Water Demand data (urban and agricultural) according to national statistics and population density

Result: Water availabilty for each point in the system

OF TECHNOLOGY

Intro

CLEWs explained

Tools

Summary

Results – Scenario B (40% rainfall reduction): Reservoir levels

www.energycommunity.org

ROYAL INSTITUTE OF TECHNOLOGY

Software available from Stockholm Environmental Institute (SEI)

Intro CLEWs explained Summary

F TECHNOLOGY

Intro

CLEWs explained

Tools

Summary

<u>Input Data</u>

- Supply:
 - All existing and planned power plants (capacities and plant factors)
 - Hydropower Plants and monthly production
 - Potential renewable energy targets
 - Energy production from bagasse
 - Oil and Coal imports
 - In the Scenarios: 1st & 2nd generation from biomass plus bioethanol production
- Demand:
 - from national statistics and official projections, assumptions for pumping water and desalination
 - Demand for ethanol production from sugar cane (1st and 2nd gen.)
 - Energy needs for fertilzer production

- Water Evaluation And Planning System.
- Integrated watershed hydrology and water planning.
- www.weap21.org

- Long range Energy Alternatives Planning System.
- Integrated Energy Planning and GHG Mitigation Assessment.
- <u>www.energycommunity.org</u>

Both Tools:

- General purpose model building, data management and scenario analysis tools.
- Environmental engineering perspective on long-term resource allocation problems.
- Integrated analysis across demand and supply.
- Transparent, flexible and user-friendly with low initial data requirements.
- Common code and modeling language.
- Similar user interfaces and terminologies.
- Closely coordinated Application Programming Interfaces.
- Widely used in Governments, Universities, Consulting Companies, Utilities and NGOs: 100s of users worldwide.
- Available at no charge to non-profit, academic and governmental institutions based in developing countries.

Linking Water and Energy Issues

Groundwater depletion Water quality Unmet ecological flows Costs

Insufficient water for hydro and cooling, even with increased groundwater pumping.

Still insufficient water--further enhance supply with desalination.

Water requirements for hydropower & thermal cooling Water conservation Limited hydropower & cooling water, increased energy requirements for pumping.

Increased energy requirements for desalination.

Hydropower energy & cooling water requirements Reduced water demands

Electricity demand Energy efficiency

Hydropower & fossil generation Wind & solar, less waterintensive cooling

Fuel Use GHGs Local air pollution Costs

Intro CLEWs explained Summary

Online tool provided by IIASA and FAO. Available at:

- <u>http://gaez.fao.org/Main.html#</u> (FAO)
- http://www.gaez.iiasa.ac.at/w/ (IIASA)

CLEW - Integrated Climate, Land Use, Energy and Water Modelling

Intro

CLEWs explained

Tools

Summary

AEZ - The Land-Use Model ...

•Input:

- Climatic Data
- Detailed soil map and data from soil profils
- Slopes and marginal land
- GIS data for landcover
- Irrigated areas

•Output:

- Grid map of Mauritius show optimal crops, potential water use, and potential yield, plus crop calendar

Input Maps used for AEZ ...

Summary

Integration of Tools and Common Problems and Difficulties

- -Geographical / Spatial Distribution
- -Time resolution
- Policy decisions / national priorities / socioeconomic constrains

Integration of Tools and Common Problems and Difficulties

"Squaring the circle"

Integration of Tools and Common Problems and Difficulties

OF TECHNOLOGY

Intro

CLEWs explained

Tools

Summary

Integration of Tools and Common Problems and Difficulties

Climate Impact ... on water, food, energy Energy and Land Use Impact on Climate Change

Important additional Factors (boundary conditions):

- GHG emissions
- Land Use Change and Induced Land Use Change

Thank You

Horizontal integration: the Grail of sustainable development

- Lack of horizontal (cross-sector) integration long identified as a major cause for relative lack of progress on SD
 - Economic/ technical choices:
 - misses systemic links, feedbacks,
 - potentially adverse consequences
 - In the CLEW nexus, potential for adverse consequences important
 - Land use/ land use change as the meeting point of conflicting demands: integrated models critical
 - Institutional side (most important)
- Major links/feedbacks well identified a priori
 - See Bazilian et al. (2001), Energy Policy
- BUT relative importance of links varies across countries
 - Messages based on results from global models potentially misleading / not best guide to national policies
 - Actual strength of the feedbacks/links unknown where it matters most

Tools

CLEW tool as a crucial missing link

ROYAL INSTITUTE OF TECHNOLOGY

Intro

CLEWs explained

Tools

Summary

(shade of green: degree of Increased economic - biophysical integration)

Potential CLEW applications and levels of details

- ncreasingly challenging
- Prototype (not fully calibrated): awareness raising and capacity building in government
 - Common understanding of the « key » issues, of potential links/ feedbacks
- Full model: shared diagnosis platform
- Agreement on common baseline for different actors (e.g. ministries)
 - Improvement over traditional macro models by design: single actions are intrinsically "checked" regarding their effects on other sectors
 - Common understanding of trade-offs and synergies
- Platform for common (national) vision
 - Shared with broader public, interactive
 - "forces" clarification of priorities
 - Everything has a cost / opportunity cost
 - How do you value food security, energy security, access to water for all?

CLEWs explained

Tools

International level: what can we learn from CLEW for Rio+20 and beyond?

- Strength of various interlinkages in different sociogeographical contexts
 - Typologies: constraints / limiting factors for development
 - Differentiated national (development) strategies / narratives
 - Needs other case studies!
- Risk-based strategies versus BAU+ strategies (e.g. CC mitigation)
 - Robust national strategies
 - Are incentives from international mechanisms right?
- The three « access » goals (water, clean energy, food security) in practice
 - What does it mean at the national level?
 - Everything has a cost/ opportunity cost: what priorities, and how are they determined?
 - "Aggregating back" to the global level: new story?
 - No "spatial" externalities (e.g. more land in Africa, more renewables elsewhere): does it change the conclusions?

CLEWs explained

Tools

OYAL INSTITUT

• Considering the energy, water and food nexus: Towards an integrated modelling approach Original Research Article Energy Policy, Volume 39, Issue 12, December 2011, Pages 7896-7906 Morgan Bazilian, Holger Rogner, Mark Howells, Sebastian Hermann, Douglas Arent, Dolf Gielen, Pasquale Steduto, Alexander Mueller, Paul Komor, Richard S.J. Tol, Kandeh K. Yumkella