
2384-15

ICTP Latin-American Advanced Course on FPGADesign for Scientific
Instrumentation

CICUTTIN Andres

19 November - 7 December, 2012

ICTP Multidisciplinary Laboratory
Via Beirut 31

(34100) Trieste
ITALY

Introduction to the WISHBONE Bus Interface

The WISHBONE Bus Interface

Introduction to

Andres Cicuttin, ICTP-MLAB 1

A System-on-chip (SoC)
Interconnection Architecture

For Portable IP Cores

Taken from the
WISHBONE SoC Architecture Specification, Revision B.3

What is Wishbone ?
1) A general purpose interface between IP

cores. It defines the standard data
exchange between IP core modules.

Andres Cicuttin, ICTP-MLAB 2

2) A flexible design methodology for use with
semiconductor IP cores.

3) “It is not a bus”

Some of the advantages
– Promotes design reuse by alleviating system-on-

chip integration problems.
– Improves the portability and reliability of the

system.
– Faster design time.

Andres Cicuttin, ICTP-MLAB 3

g
– Can be used for soft core, firm core or hard core IP.
– Does not require the use of specific development

tools or target hardware.
– Fully compliant with virtually all logic synthesis tools.
– Documentation standards simplify IP core

reference manuals.

WISHBONE Features I
• Simple, compact, logical IP core hardware interfaces

requiring very few logic gates.
• Supports structured design methodologies used by

large project teams.
• Full set of popular data transfer bus protocols

including:

Andres Cicuttin, ICTP-MLAB 4

g
– READ/WRITE cycle.
– BLOCK transfer cycle.

– RMW cycle.
• Modular data bus widths and operand sizes.
• Supports both big endian and little endian data ordering.

WISHBONE Features II

• Supports variable core interconnection methods:
Point-to-point, shared bus, crossbar switch, and switched

fabric interconnections.

• Handshaking protocol allows each IP core to throttle
its data transfer speed.

Andres Cicuttin, ICTP-MLAB 5

• Supports single clock data transfers.
• Supports normal cycle termination, retry termination and

termination due to error.
• Modular address widths.
• Partial address decoding scheme for slaves.

WISHBONE Features III

• User-defined tags. These are useful for
applying information to an address bus, a
data bus or a bus cycle.

Andres Cicuttin, ICTP-MLAB 6

• MASTER / SLAVE architecture for very
flexible system designs.

WISHBONE Features IV

• Multiprocessing (multi-MASTER) capabilities. This allows
for a wide variety of System-on-Chip configurations.

• Arbitration methodology is defined by the end user
(priority arbiter, round-robin arbiter, etc.).

• Supports various IP core interconnection means,
i l di

Andres Cicuttin, ICTP-MLAB 7

including:
– Point-to-point
– Shared bus
– Crossbar switch
– Data flow interconnection

• Synchronous design (Assures portability, and ease of use)

Specification Keywords

1. RULES
2. RECOMMENDATIONS
3. SUGGESTIONS
4. PERMISSIONS
5. OBSERVATIONS

RULES
Rules form the basic framework of the specification. Rules are characterized by
an imperative style. The uppercase words MUST and MUST NOT are reserved

Andres Cicuttin, ICTP-MLAB 8

an imperative style. The uppercase words MUST and MUST NOT are reserved
exclusively for stating rules.

RECOMMENDATIONS
Whenever a recommendation appears, designers would be wise to take the
advice given. Doing otherwise might result in some awkward problems or poor
performance. These are provided as guidance for the user.

PERMISSIONS
In some cases a rule does not specifically prohibit a certain design approach,
but the reader might be left wondering whether that approach might violate the
spirit of the rule or whether it might lead to some subtle problem Permissions

SUGGESTIONS
A suggestion contains advice which is helpful but not vital. The reader is
encouraged to consider the advice before discarding it. Some design decisions
are difficult until experience has been gained. Some suggestions have to do
with designing compatible interconnections, or with making system integration
easier.

Andres Cicuttin, ICTP-MLAB 9

spirit of the rule, or whether it might lead to some subtle problem. Permissions
reassure the reader that a certain approach is acceptable and will not cause
problems. The upper-case word MAY is reserved exclusively for stating
a permission and is not used for any other purpose.

OBSERVATIONS
Observations do not offer any specific advice. They usually clarify what has
just been discussed. They spell out the implications of certain rules and bring
attention to things that might otherwise be overlooked. They also give the
rationale behind certain rules, so that the reader understands why the rule
must be followed.

Examples: Rules and Permissions

• RULE 3.00
All WISHBONE interfaces MUST initialize themselves at the rising [CLK_I] edge following

the assertion of [RST_I]. They MUST stay in the initialized state until the rising [CLK_I] edge that
follows the negation of [RST_I].

• RULE 3.05
[RST_I] MUST be asserted for at least one complete clock cycle on all WISHBONE

interfaces.

Andres Cicuttin, ICTP-MLAB 10

• PERMISSION 3.00
[RST_I] MAY be asserted for more than one clock cycle, and MAY be asserted indefinitely.

• RULE 3.10
All WISHBONE interfaces MUST be capable of reacting to [RST_I] at any time.

• RULE 3.15
All self-starting state machines and counters in WISHBONE interfaces MUST initialize

themselves at the rising [CLK_I] edge following the assertion of [RST_I]. They MUST stay in the
initialized state until the rising [CLK_I] edge that follows the negation of [RST_I].

Examples: Recomendations,
suggestions and observations

• RECOMENDATION 3.00
Design SYSCON modules so that they assert [RST_O] during a

power-up condition. [RST_O] should remain asserted until all voltage levels
and clock frequencies in the system are stabilized. When negating
[RST_O], do so in a synchronous manner that conforms to this
specification.

• SUGGESTION 3 00

Andres Cicuttin, ICTP-MLAB 11

• SUGGESTION 3.00
Some circuits require an asynchronous reset capability. If an IP core

or other SoC component requires an asynchronous reset, then define it as
a non-WISHBONE signal. This prevents confusion with the WISHBONE
reset [RST_I] signal that uses a purely synchronous protocol, and needs to
be applied to the WISHBONE interface only.

• OBSERVATION 3.20
All WISHBONE interfaces respond to the reset signal. However, the IP

Core connected to a WISHBONE interface does not necessarily need to
respond to the reset signal.

The Wishbone Modules

RST_I

CLK_I

ADR_O()

DAT_I()

RST_I

CLK_I

ADR_I()

DAT_I()

S
TE

R

A
LV

E

SYSCON

SYSCON: drives the system clock
[CLK_O] and reset [RST_O] signals.

MASTER: IP Core interface that
generates bus cycles.

Andres Cicuttin, ICTP-MLAB 12

DAT_O()

WE_O

SEL_O()

STB_O

ACK_I

CYC_O

TAGN_O

TAGN-I

DAT_O()

WE_I

SEL_I()

STB_I

ACK_O

CYC_I

TAGN_I

TAGN-O

W
IS

H
B

O
N

E
 M

A
S

W
IS

H
B

O
N

E
 S

A

SLAVE: IP Core interface that receives
bus cycles.

INTERCON: an IP Core that connects
all of the MASTER and SLAVE
interfaces together.INTERCON

INTERCON
(Wishbone Interconnection)

slave

master slave

slave

master

master
slave

SYSCON

* Point-To-Point
* D t Fl

Andres Cicuttin, ICTP-MLAB 13

slave

master
slave

master* Data Flow
* Shared Bus
* Crossbar Switch

The Wishbone Interconnection is created by the SYSTEM
INTEGRATOR, who has total control of its design!

Interconnections

WISHBONE
MASTER

WISHBONE
SLAVE

Point-To-Point Interconnection

IP Core “A” IP Core “B” IP Core “C”

Andres Cicuttin, ICTP-MLAB 14

Data Flow Interconnection

W
IS

H
BO

N
E

M
AS

TE
R

W
IS

H
BO

N
E

S
LA

V
E

W
IS

H
BO

N
E

M
AS

TE
R

W
IS

H
BO

N
E

S
LA

V
E

W
IS

H
BO

N
E

M
AS

TE
R

W
IS

H
BO

N
E

S
LA

V
E

Direction of Data Flow

IP Core A IP Core B IP Core C

Interconnections

WISHBONE
MASTER

“MA”

WISHBONE
MASTER

“MB”

Shared Bus

Andres Cicuttin, ICTP-MLAB 15

WISHBONE
SLAVE

“SA”

Shared Bus Interconnection

WISHBONE
SLAVE

“SB”

WISHBONE
SLAVE

“SC”

Interconnections
WISHBONE

MASTER
“MA”

WISHBONE
MASTER

“MB”
NOTE: Dotted lines indicate one
possible connection option

CROSSBAR SWITCH
INTERCONNECTION

Andres Cicuttin, ICTP-MLAB 16

WISHBONE
SLAVE

“SA”

Crossbar Switch Interconnection

WISHBONE
SLAVE

“SB”

WISHBONE
SLAVE

“SC”

The Main Wishbone Signals (Ports)

RST_I

CLK_I

ADR_O()

DAT_I()

RST_I

CLK_I

ADR_I()

DAT_I()

S
TE

R

A
LV

E

SYSCON RST_I: receives the reset output signal
[RST_O] from the SYSCON.

CLK_I: receives the clock output signal
[CLK_O] from the SYSCON.

ADR_I: receives the address from MASTER

ADR_O: drives the address to the SLAVE

DAT I i h d

Andres Cicuttin, ICTP-MLAB 17

DAT_O()

WE_O

SEL_O()

STB_O

ACK_I

CYC_O

TAGN_O

TAGN-I

DAT_O()

WE_I

SEL_I()

STB_I

ACK_O

CYC_I

TAGN_I

TAGN-O

W
IS

H
B

O
N

E
 M

A
S

W
IS

H
B

O
N

E
 S

A

DAT_I: receives the data

DAT_O: drives the data

WE_I, WE_O: Write Enable (active high)

STB_I, STB_O: Strobe (kind of chip select)

ACK_I, ACK_O: Acknowledge (active high)

CYC_I, CYC_O: Bus Cycle (active high)

WISHBONE Classic Bus Cycles

CLK_I

RST I

The Reset Cycle

Andres Cicuttin, ICTP-MLAB 18

RST_I

STB_O

CYC_O

Local Bus Handshaking Protocol

CLK_I

STB_O

Andres Cicuttin, ICTP-MLAB 19

ACK_I

Tag Types
Master Slave

Description TAG TYPE Associated with TAG TYPE Associated with
Address tag TGA_O() ADR_O TGA_I() ADR_I()

Data tag input TGD_I() DAT_I() TGD_I() DAT_I()
Data tag output TGD O() DAT O() TGD O() DAT O()

Andres Cicuttin, ICTP-MLAB 20

Data tag output TGD_O() DAT_O() TGD_O() DAT_O()
Cycle tag TGC_O() Bus Cycle TGC_I() Bus Cycle

SINGLE READ cycle
(Master Signals) 1

VALID

VALID

CLK_I

ADR_O ()

DAT_I ()

DAT_O ()

WE_O

2-wss-

Andres Cicuttin, ICTP-MLAB 21

VALIDSEL_O ()

STB_O

ACK_I

CYC_O

SINGLE WRITE cycle
(Master Signals)

1

VALID

CLK_I

ADR_O ()

DAT_I ()

DAT_O ()

WE_O

2-wss-

VALID

Andres Cicuttin, ICTP-MLAB 22

VALIDSEL_O ()

STB_O

ACK_I

CYC_O

D Q

CE

DAT_O(7…0)

DAT_I(7…0)

ACK_O

STB_I

WE_I

O
N

E
IN

TR
FA

C
E

PRT_O(7…0)

A Simple Example: WISHBONE SLAVE port

8

8

Andres Cicuttin, ICTP-MLAB 23

RESET
RST_I

CLK_I

W
IS

H
B

O

8-BIT D-TYPE REGISTER

library ieee;
use ieee.std_logic_1164.all;

entity WBOPRT08 is
port(

-- WISHBONE SLAVE interface:

ACK_O: out std_logic;
CLK_I: in std_logic;
DAT_I: in std_logic_vector(7 downto 0);
DAT_O: out std_logic_vector(7 downto 0);
RST_I: in std_logic;
STB_I: in std_logic;

VHDL implementation of the 8-bit output port interface (pag. 109)

architecture WBOPRT081 of WBOPRT08 is

signal Q: std_logic_vector(7 downto 0);

Begin

internal_DAT_I <= DAT_I;

REG: process(CLK_I)
begin

if(rising_edge(CLK_I)) then
if(RST_I = '1') then --synchronous reset

Q <= B"00000000";

Andres Cicuttin, ICTP-MLAB 24

WE_I: in std_logic;

-- Output port (non-WISHBONE signals):

PRT_O: out std_logic_vector(7 downto 0)
);

end entity WBOPRT08;

elsif((STB_I and WE_I) = '1') then
Q <= internal_DAT_I(7 downto 0);

else
Q <= Q;

end if;
end if;

end process REG;

ACK_O <= STB_I; --(Asynchronous assignments !)
DAT_O <= Q;
PRT_O <= Q;

end architecture WBOPRT081;

WB Clasic Bus Cycles

BLOCK READ (Page 54)

BLOCK WRITE (Page 57)

Andres Cicuttin, ICTP-MLAB 25

RMW (Read-Modify-Write) (Page 60)

Other WB Bus Cycles (WISHBONE Registered Feedback)
Both Master and Slave MUST support “Cycle Type Identifier”: [CTI_O()], [CTI_I()]

4.2 Signal Description

CTI_IO()
The Cycle Type Identifier [CTI_IO()] Address Tag provides additional
information about the current cycle. The MASTER sends this information
to the SLAVE. The SLAVE can use this information to prepare the
response for the next cycle.

PERMISSION 4.05
MASTER and SLAVE interfaces MAY be designed to support the [CTI_I()]
and [CTI O()] signals Also MASTER and SLAVE interfaces MAY be

Table 4-2 Cycle Type Identifiers

CTI_O(2:0) Description

‘000’ Classic cycle.
‘001’ Constant
address burst cycle
‘ ’

Andres Cicuttin, ICTP-MLAB 26

and [CTI_O()] signals. Also MASTER and SLAVE interfaces MAY be
designed to support a limited number of burst types.

RULE 4.05
MASTER and SLAVE interfaces that do support the [CTI_I()] and
[CTI_O()] signals MUST at least support the Classic cycle
[CTI_IO()=’000’] and the End-of-Cycle [CTI_IO()=’111’].

RULE 4.10
MASTER and SLAVE interfaces that are designed to support a limited
number of burst types MUST complete the

‘010’ Incrementing
burst cycle
‘011’ Reserved
‘100’ Reserved
‘101 Reserved
‘110’ Reserved
‘111’ End-of-Burst

Classic Cycle (with wait states –ws-) (Page 77)

Constant Address Burst (Page 83)

(e.g. for fifos, ports, etc)

Other WB Bus Cycles

Andres Cicuttin, ICTP-MLAB 27

Incrementing Burst Cycle (Page 86)

An incrementing burst is defined as multiple accesses to consecutive addresses. Each
transfer the address is incremented. The increment is dependent on the data array
[DAT_O()], [DAT_I()] size; for an 8bit data array the increment is 1, for a 16bit data array
the increment is 2, for a 32bit data array the increment is 4, etc.

All the information related to the

Wishbone SoC Architecture Specification

is contained in its official documentation:

wbspc_b3.pdf

•It is very clear and easy to read and understand

•It includes design examples

Andres Cicuttin, ICTP-MLAB 28

•It includes design examples

•The specification doesn’t infringe patents,
copyright, trademarks or trade secret rights of
others

Conclusion

1. There are many and very good reasons to adopt the
Wishbone SoC Architecture Specification as the
standard interface for open-source projects such as
the Reconfigurable Virtual Instrumentation project

Andres Cicuttin, ICTP-MLAB 29

the Reconfigurable Virtual Instrumentation project
proposed by ITCP.

2. Your are strongly encouraged to use it to develop
reusable IP blocks that can be easily shared by a
large community of users and developers

