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DIFFRACTION 

Diffraction requires wave treatment 

Light ~ electromagnetic waves 

Optics approximation: one Cartesian 
component of the e.m. field 

v(p,t) 

is representative of the entire field 
Energy is proportional to the square of this 
component (power pux a Poynting vector) 

Complex form (coher ent monocromatic) 

v(P, t) = u (P) e - trot 

time dependence: 

oscillation with frequency v = w I 2n 

w ~ source 

u(P) complex amplitude 
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complex amplitude 

u(P) = A(P) eicp 

A amplitude 

cp phase 
wavefronts: surfaces cp = constant 

plane wave 

A is constant 

k = m is wavenumber 
c 

k = 2rc/ A A wavelength 

a, {3, r direction cosines of the normal to the 
wavefront, i. e. of the propagation 

direction 

X 

y 

z 

a = easel 

f3 = cose2 

r = cose3 
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spherical wave 

u(P) = A eikr -in/2 
r 

wavefronts: spheres with center in P
0 

X X 

,., 
p1 ~I 

Po 
Po 

lto 
I 

I 

Y.o . I 

z 

y 

y 

cylindrical wave 

u(P)= _Jp e ikp-in/ 4 

z 

wavefronts: cylinders with axis parallel to y 
through P0 useful for bidimensional cases 
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GRIMALDI 1660 

LIGHT propagates 

1- Straight 

2 - Reflection 

3 - Refraction 

4 - Diffraction (go round obstacles) 

( 

/~ 
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DIFFRACTION 

Occurs where there is an abrupt discontinuity 
in amplitudel 

Examples 

0 
a) 

1 J; 
I 2 I 

b) 

1 k 

C) 

1 ~_.,·· 

d) ······ .... 

L 1 1: ...... ~ rn::::: 
e) jJ 

Fig. XII. I 

from: G.Toraldo di Francia and P.Bruscaglioni "Onde 
Elettromagnetiche" seconda edizione. Zanichelli 1988. 

First observation: Grimaldi (1660) 

1 The key point in the theory is that diffraction takes place 
where the term V 2 A ( V2 laplacian) is not negligible with 
respect to A n2k~ (n refractive index, ko wave number in the 
free space). This implies that amplitude variations (second 
difference) taking place in the space of a wavelength must be 
negligible in order to neglect diffraction. 



 6 

Due to diffraction, light reaches regions 
behind the screen or the obstacle, that are 
expected to be in the shade according to ray 
theory (geometrical optics). 

Rigorous theory of diffraction requires: 

solutions of Maxwell's equations with appro­
priate boundary conditions. 

Approximate solutions 

1) Huygens-Fresnel principle 

2) Helmholtz-Kirchhoff theory and formula 

3) Plane wave expansion (Toraldo-Duffieux) 

ihistorically first 
H u y gens-Fresnel principle 

sirl:Jfiest 

Helmholtz-Kirchhoff: general formula,classic 

Plane wave expansion: introduction to Fourier 
optics and holography 
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i- Huygens-Fresnel principle 

Huygens (1678) 
Each point of a wavefront can be considered a 
source of a spherical wave, "wavelet", 
propagating in the same direction with the 
same velocity. The wavefront at a later time is 
the geometrical "envelope" of the secondary 
waves. 
Fresnel (1818): the different wavelets interfere 
at each point. 

imping ing 
plane wave 

wavefront 

' 

\ 
\ 

\ 
\ 

., \ 
' \ ' \ ' \ 

' ,, ' 

r = (c~c.W ) 
wavefront 

'PIC:t . 2-

diffraction: slit 
in absorbing 
screen 

'\_fi 
observer sees 
brillant borders 
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Use of Huygens-Fresnel principle: 

pattern of a slit illuminated by a normally 
impinging plane wave. 
From each point x a cylindrical wave. From 
each element dx a c.1l1 n d rical wave of amplitude 
a(x)dx; a(x) is a linear density. Let us assume 
a(x) = a on the aperture. Its contribution to the 
field u(P) at point P = (x

1
, d) is (apart from a 

multiplicative factor, see Kirchhoff) 

X 

a eikpdx p = [(x- xl)2 + d2r /2 
.JP a / 2 

dx 

(P) = J a;2 a tkp dx 
u -a/2 .fP e -a / 2 

If point P is at a distance d large with respect 
to both x and x 1 one can develop p in a 
series and stop at the second term in the 
exponent: 

k = kd 1 + x - x1 ~ kd + -- - 1 + - -1 

[ 
( )2 ].f.J2. kx2 kxx kx2 

p ld2 2d d 2d 

a more accurate analysis could be carried out by considering 

higher order terms, but it is beyond the scope of the present 

lessons. 

z 
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The region where this approximation holds is 
called Fresnel region. 

a/2 _ 

u(P) = J ~ e1kpdx::::: 
-a /2 \I p 

ikx~ 
a e2d 

- - -
{(f 

a/2 

eikd f e k":l eik;~ dx 
-a/2 

If d is large enough for the maximum value of 
the exponent (at the borders) to be near zero 
one can write: 

this requires condition 

ka2 

--<<1 
8d 

na2 
--<< 1 
4A.d 

or, what amounts to the same 

Fraunhofer condition 
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the region where 

a2 
ltd<< 1 Fraunhofer region (2) 

Therefore 

af2 

J .kxx\ 
u(P) = K e' d'" dx 

-a/2 

where K is a complex quantity including all 
terms multiplying integral. 
Evaluation of integral: 

sin _k_ax--=-1 sin(-na __ x_l ) 
= aK 2d = aK It d 

kax1 na X1 
2d It d 

~ax) = aK Sinc\lt d 

2note: Fraunhofer condition is opposite to the condition 
A. a2 

required for geometrical optics to hold -d <<a --7- >> 1 
a dl 
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The energy is proportional to u(P) u *(P) 

u(P)u.(P) = 

X 
Note: d =sin 8 angular direction of point P. 

This function oscillates, has maximum for 
x 1=0. on the axis, and subsequent zeros and 
maxima 
First zero at 

a x 1 n--= n 
A.d 

a 

1.0 

0 

angular semi width 

of diffracted beam. 

For small aperture, in optics) the Fraunhofer 
region can be easily reached in a few meters 
Example: a=lmm A=.63 Jlm 

Note that dependence is with square of 
aperture: for a= 2 mm, one needs d >> 7 m. 
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The Fraunhofer diffraction pattern can be 
easily seen at finite distance by means of a 
lens (in our case a cylindric lens). The lens 
transfers at P, in the focal plane, the field of P' 
at infinity. 

lens 

P' 

focal plane 

If there is no aperture, the border of the lens 
acts as an aperture, producing diffraction. All 
instruments present diffraction and give an 
image of a point source which is a "pattern", 
not a point. This strongly affects the resolving 
power of any instrument from microscopes to 
the larger telescopes. This effect cannot be 
avoided because it originates from the nature 
of light. 

12 
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,2- KIRCHHoff lfi£OR'f 
Homogeneous, isotropic, non absorbing medium. 

From Maxwell equations any Cartesian 
component v(P, t) satisfies: 

a2 v(P, t) 
ae 

v light velocity in the medium 

c in empty space 

For simplicity empty space 

For complex amplitude 

k=m 
c 

equation of 

d'Alembert 

laplacian operator 

Helmoholtz eq. 
orVJaveeq. 
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Green's Theorem 

Let us consider a space V surrounded by a 
closed surface S. 

Let u 1 and u 2 be two scalar functions regular in 
Vand on S. 

A regular function is continuous and derivable. 

Green's theorem states that: 

J (u1 V
2
U 2 - U 2 V

2u 1 ) dV 
v 

- J(u au2 -u aul ~s 
1 dn 2 anr s 

where V2 is the laplacian operator, 

andJ jon denotes partial derivative in normal 

outward direction at a point on S. 
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Helmholtz-Kirchhoff formula 

Derivation of field at Q from field over L:. 

e ikr 

W=­
r 

v 

L closed surface 

Q point 

let L 1 
be spherical 

surface of radius 

r 0 surrounding Q 

chose a spherical wave 

centered at Q (Green function) 

wave eq. for w 

wave eq. for complex 
amplitude 

Multiply 1 by u and 2 by w and subtract 

Integrate into the space between L: and L: 
I 

J (u V 2w - wV2u) dV == 0 
v 

15 
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from Green's formula 

1) 

one has (over 2:': avv I an= -avv I ar) 

I (w au - u aw ~L = J (-.!.au + ik u - ~) e 1krdL,' = 
1: ' dn dn r 1:' r ar r r 

ikr ( 1 au .k u u J4 2 = e 0 ---- + 1 - - 2 nro 
ro ar ro ro 

- au 
u and ar average values over L,' 

Three terms: first and second terms ----7 0 

last term ----7- 4 n u(Q) 

From (1) 

u(Q) = ___!__I (w au - u avv)dL, 
4n dn. n 

1: 
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and finally : Helmholtz-Kirchhoff formula 

1 e lkr { Ju ( 1) } 
u(Q) = 4 n I r Jn- ik- r u cos(n,r) dL 

cos(n, r)= cosinus of the angle between n and r 

Famous equation derived by Helmholtz (1859)­
Kirchhoff gave a more general case ( 1883). 

The value of the field u(Q) at point Q in the 

volume requires knowledge of the field and its 

normal derivative on all points of the surface :E . 

This result is not the solution of the problem 
because it implies knowledge of the field and its 
normal derivative on :E, that is solution of the 
problem on the surface region. Hypothesis for 
the field on the surface necessary. 
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Kirchhoff-Diffraction by a plane screen 

Aperture in a plane screen illuminated from left 

~I 

u(P) ---") 

Closed surface: screen 2:+ hemisphere 2:' of large 
radius R 

1 e ikr {au ( 1 J } u(Q) = 4 f - -- ik -- u cos(n, r) dl: 
n :E+:E' r an r 

The integral over 2:' requires (d:E = r 2 dQ) 

This is known as Sommerfeld radiation 
condition: in practice the field vanishes at 
infinity at least as a diverging spherical wave. 
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Assumption over surface L:: 
On the opening the field and its normal 
derivative have the same values as in the 
absence of the screen and the values are zero 
everywhere else. 

Example: a plane wave impinging ortogonally on 
the screen. The aperture is circular 

plane 

wave -11 

impinging wave 

u(P) =A e1
kz 

C1u .k A lkz -=-I e 
dn 

1 e~ . . 
u(Q) = - J -{ -ik A elkz - ikAelkz cos(n, r)}dL: 

4n L r 

( 1 j r< <k, term neglected) Over L:: z = 0 

"kA ikr 
-I J e ] = -[1 + cos(n,r) dL: 
4n L r 

-i A J e1
kr = -- -[1 + cos(n,r)]dL: 

A 2 L r 
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-i A J elkr 
u(Q) - T2 -[1 + cos(n,r)] d:L 

r r 

express Huygens-Fresnel principle. 

- From the aperture elementary spherical 
waves 

- Obliquity factor (1 +cos(n,r))/2 

The phase of each spherical wave i s 
decreased by n /2 (e·in/2 = -i) with respect 
to incident wave 

- The amplitude of each elementary wave is 
smaller by a factor 1 I A with respect to 
that, A, of incident wave. 

This is a more complete form of Huygens­
Fresnel principle valid far from the screen. On 
screen even at a large distance inconsistency: 
u(Q) is not zero due to obliquity factor. 
The inconsistency was removed in the 
Rayleigh-Sommerfed theory where a obliquity 
factor cos(n, r) was found. 
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Fraunhofer approximation [paraxial rays] 
P(x,y) , Q(x1,y1,d) 

---7 d- xxl - yyl 
d d 

source plane 

{

X= p C~SqJ 

y = p Slll(/J 

cos(n,r) ~ 1 

dL = p dp dq; 

xxl + yy 1 = ppl cos(m - m ) 
d d d 't" 't"l 

(discussion about higher order terms) 
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Intemal integral: Bessel function of zero order *1 

Recalling that 
z I J v-l (t)tv dt = Zv J )z) 
0 

dt = kpl dp 
d 

* 1 Bessel function of order n J n (z) can be defined as 
2n+a 

J n (z) = 2ln f e i(nB-,inB)de 

a 

In our case n = 0' change of variable qJ = e - a gives 
2n 

J (z) = 2_ I e · izsin(q>+a)d(/J 
0 2n 

0 

1C 
choice a =- cp

1 
+- gives sin(cp + d) =cos(cp- (/)1 ) and 

2 
1 27t . 

therefore Jo(z) =-I e ·lZCOS(q>- q>l)dqJ 

2n o 
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one finally has 

u(Q) = -iA2na eikd J 1 (ka sine) 
A d (k sine) 

field in Fraunhofer region, distant in the 
direction e 

d 

• -in:/2 
-1 = e 

a 
ka = 2n A 

spherical wave 

dephasing factor 

parameter for angular 

dependence 
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energy (intensity) in direction e apart from 
unessential constant 

I= u u· oc J~(ka sin 8) 
(ka sin 8)2 

first four zeros of J 1 (x) 

X= 3.83 ; 7. 02 ; 10.17 ; 13.23 

when ka sine = 0 maximum 

when ka sine = 3.83 first zero 

l a sine= 3 ·83 = 1.22 
It 3.14 

.... 11 

Values of subsequent maxima, with respect to 
the central one 

central 1 
first 0.0175 
second 0.0042 
third 0.0016 

It can be shown (Rayleigh 1899) that the energy 
flux the i-th ring is 
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Through the central disc and subsequent rings 
Energy flux (total flux = 1) 

central disc 
first ring 
second '' 
third ,, 

and so on 

0.8378 
0.0722 
0.0276 
0.0147 

The energy in the central disc of the pattem is 
~ 84°/o of the total. 
Energy is mostly concentrated in the central 
ring, whose total angular with is 

k a sine = 3.83 

2a sine= 3 ·83 = 1.22 
A- 3.14 

2a = D diameter 

A­
sine= 1.22-

D 

effect on Resolving power of instruments. 

sin!? 
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3 - Decomposition in plane waves 
Diffraction as decomposition in plane waves 
is the basis of Fourier optics (Duffieux) 

The decomposition by the so called "inverse 
interference principle", Toraldo ( 1941), and 
valid for surfaces planar or not. 
Inverse interference principle: 

A screen is illuminated from the left by a field 
W, that produces phase cp(P) and amplitude 
A(P) distribution at points P over the output 
side surface L:. 

: .. 

If a system of waves outgoing from L: is found 
whose interference produces the field 
v(P) = A exp(icp) over L:, these waves are the 
true diffracted waves 
- uniqueness of the solution 
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Screen: 
-partially transparent: transmitted diffracted 

waves 
-partially refecting: reflected diffracted waves 
-both 
(eigenfunctions) 

Generally: v(P) unknown on the screen 
Hypotheses about v(P) necessary. 

Examples: amplitude or phase or both 
1) A 
2) CfJo (P) = cpi (P) + ki\(P) 
3) both 

Plane screen: amplitude 

.Q 

~
·~ assume: v(P) on the aperture has the same 

value as in the absence of the screen 
no need to know the normal derivative 
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Periodic aperture: grating 

example: unidimensional periodic grating 

a(x) periodic, period p 

f~dl\t.. 
1)\cidt\\t" 
w~v~ 

m ~ t-h wave. 
I)V0 w(roVI t-

Fourier series for a(x) 

00 

a(x) = LAm ei2mn~ 
m=-oo 

p/2 

A 1 f ( ) -i2mn~ d 
m =- axe p X 

p -p/2 

System 
of plane 
waves 
propagating 
in direction z 
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A system of plane waves am = cos em = sin cpm 

00 

v(x, z) = L Bm e ik(amx+rmzl 

m=-oo 

Condition v(x, 0) = a(x) gives 

00 

v(x, 0) = L Bm e ik amx 

m=-oo 

Comparison with a(x) gives 

X A 
2mn- = ka x ~ a = m-p m m p 

00 

v(x,z) = L,Am A. 'k~ ikm- x el ,l-- 2 z 
m=-oo 

for a = m A < 1 ~ 
m p 

a = m 
rnA > 1 ~ 
p 

e P ~ p 

real waves 

evanescent waves 

N=2max integer (~~+ 1 =number of real waves 

A cp :::.:: m-
m p forsmal cpm 
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Plane screen xy with transparency or opening; 
symmetric with respect to y. Complex 
amplitude on the screen a(x) 

Plane wave of unit amplitude 

X 

z 

a= cose 
f3 =cos yr 
y =COS(/) 

Let us construct a continuous system of plane 
waves. In our case no dependence on y ----7 f3 = 0 1J 

II Let us consider a d cp . Let 
U AdqJ 

She amplitude of all waves having propagation 
direction between qJ and qJ + d qJ 

a= sin qJ da =cos qJ dqJ = -J1- a
2
dqJ 

da 
dqJ = -J 2 1- a 

A eik(ax+rzl 

v(x, z) = J -J 2 da 
1- a 

on the aperture v(x,O) = a(x) 

wo~f i MVOVS 

b/ !.T e 1/11\ of 
d,·nt\t'l..cf'""'V 

IN' /.l,Ve.. J 
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 de xki
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In terms of cp A( a) -7 A(cp) 

00 

cosm J A(cp) = A Y a(x) e ·tkstnqzxdx 

by denoting 

and recall that f =a = sincp 
A A 

then A(f) -7 Fourier transform of a(x) 

The amplitude A(f) of the wave diffracted in 

the direction cp is the component at 
sincp 

frequency f = of the Fourier transform 
A 

of a(x) 

In other words the system of diffracted waves 
is the Fourier Transform of the field a(x) on the 
screen. Diffraction -7 Fourier transform 

Transform relationship 
00 00 

a(x) = J A(f) e2 mexdf A(f) = J a(x) e·2 mfxdx 
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ENERGY FLUX - POYNTING VECTOR 

Let us recall Parceval theorem for transforms 

~ ~ 

f a(s) b·(s)ds = f A(j) B.(j)dj 

where A(f) Fourier transform of a(s) and B(f) 
of b(s) 

if a(s) = b(s) 
~ ~ 

J a(x)a·(x)dx = J A(f)A.(f)df 

A(f) = AA(a) = AA(cp) 
-J1 - a 2 cos cp 

a= sin cp 

~ s in cp=~ • 

J a(x)a·(x)dx =A J A(<p)A (<p) d<p 
-~ sin cp=-- COS qJ 

left side term: energy p er unit time transmitted 
per unity through the screen 

right side term: the energy per unity carried by 
each wave is that whicJ:l a wave of intensity 
A(<p)A.(<p)d<p carries through a slit of width 
A I coscp 



 34 

 

 

PLANE SCREEN Bidimensional case 

Analogous to unidimensional case 
g_(x,y) 

X 

z 

y 

a= cos tJ­

/3 = cos lfl 

y =cos qJ 

One choses a system of plane waves of any 
direction. Amplitude in small solid angle AdQ, 
dQ solid angle, A amplitude density 

dad/3 
A( a, /3) ~1 - a2 - 132 

( ) = JJ A (a, /3) eik(ax+PY+f'Zldad ~ 
V X, y, Z ~ 2 ~2 fJ 

1 -a -JJ 

on the aperture 

v{~y,O) = a(~y) 

a(x,y) is Fourier transformed 
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Procedure analogous to previous case gives 
the same result. 
Diffracted waves are a continuous system of 

plane waves and evanescent waves. The 
diffracted field is the Fourier transform of the 
field on the aperture, with frequencies 

f=aand f=/3 
X A y A 

respectively. Therefore 

in the space direction e' lfl 

[ specified by a and f3 (a = cos e, f3 = cos lfl), one 
has : 

a 
frequency components fx = A 

respectively. 

and 

Limited aperture: no upper limit to diffraction 
angles and always presence of evanescent 
waves. A well known property of Fourier 
transform: if the support of the function is 
finite the support of the transform is infinite. 

In systems: loss of information 

HOLOGRAPHY easy to explain with expansion 
in plane waves 
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u(Q) =A elkct 1- e1 2ct 
[ 

ka
2 J 

impinging 

T = 1 _ elka2
/2d 

multiplicative 

factorT 

ka2 ka2 

= 1 - cos-- - i sin--
2d 2d 

For a given d, phase proportional to a2 

ka2 /2d a 2 T 

0 0 0 (real) 

n Ad 2 (real) 

2n 21d 0 (real) 

3n 31d 2 (real) 

and so on. 

a 2 = n1d 
Fresnel zone of order n 

a = -JnA.d 
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a 2 = nA-d 

central circle 
then rings 

a radius of n-th 
Fresnel zone 

contribution from each 
zone cancels contribution 
from the preceding one 

IF THE AREA CONTAINS 

4 

1) an odd number of Fresnel zones, at point Q 
field is maximum = 2 times the incident wave. 

2) an even number: zero field at Q. 

Moving along axis (d) field ___, maxima and zeros. 

Soret grating - zone grating - is based on 
removing even zones and has focussing 
properties. 

The Fraunhofer approximation (a2 I A-d << 1) 
requires that a small portion of the first Fresnel 
zone is seen from point Q, at distance d. 

For the case of a slit: see Goodman. Fresnel 
integrals. 
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BABINET PRINCIPLE: DIFFRACTION 

by COMPLEMENTARY APERTURES 

screen with 
circular aperture 

opaque 
disc 

Solution of one problem allows solution of the 
other one 

From the field diffracted from an aperture one 
derives the field diffracted by the complementary 
aperture by: adding a phase = n to all diffracted 
waves and adding to them a wave equal to the 
incident wave. 

Therefore : apart from the phases, the ensemble 
of the waves diffracted by two complementary 
screens differ only for the central wave 
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OPEN CAVITIES FOR LASERS 

Devices based on diffraction: Large 
Fresnel 
Numbers 

a 

X 

-a 

Mirror 

a 
u(y) 

y 

-a 

Mirror 

a ikp 

u(y) = J e-in14u(x) e dx 
-a fj:P 

CJm complex quantity 

example: 
bidimensional case 

modes' eq. 

l-ICJml2 ~ loss of m-th mode 

arg (J m ~ phase shift 
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