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RIFLECTION AND  REFRACTION OF PLANE  
WAVES

FRESNEL FORMULAE

The electric field is written as
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Reflected wave                 (1b)
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n sin cos i sin sin j cos k (2b)
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Due to continuity relations on the plane z = 0

x x x
x x x
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y y y
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which automatically implies

e 0 o          

For the points for which z = 0

1 1 2

n r n r n r
(4)

v v v

     
 

     

from which the reflection and refraction laws
are immediately obtained.

To obtain the amplitudes of the field we
rewrite eqs.(3) considering the field
components in the incidence plane (Ep, Bp),
called parallel component (p wave), and
orthogonal (Es, Bs), perpendicular (wave s
from German senkrecht). So each wave is
due to the superposition of two polarized
waves

(3)
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p wave

t p

t p

t p

E E cos

E E cos (5)

E E cos









 

  

Due to (3)

p p pE cos E cos E cos (6)     

Similarly for B remembering that By = Ex /v putting n1 = c/v1, n2 =
c/v2,

y y y

1 1 2

p p p
1 p p 2 p

1 1 1 1 2 2

B B B
(7)

E E E
n (E E ) n E (8)

v v v

  

  
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 
     

if
r1 r2 . 

s wave

s s sE E E . (9)  

For the magnetic field

t x

t x

t x

B B cos

B B cos (10)

B B cos









  

  
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s s s

1 1 1 1 2 2

1 s s 2 s

E cos E cos E cos

v v v

n (E E )cos n E cos (11)
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if 1 2 . 

So we have two equations with Ep and two equations with Es. The two waves
parallel and normal to the incident plane are therefore independent one from
the other.

Eqs. (6), (8), (9), (11) may be solved.
From (6) we have

p p p

cos
E E E (12)

cos





  

which, substituting into (8), tking into account that

1

2

n sin
(13)

n sin







gives

p p p

2sin cos 2sin cos
E E E .

sin cos sin cos sin( )cos( )

   
       

 
  

     

Substituting into (12)

p p

tg( )
E E . (15)

tg( )

 
 

 


Similarly from (9) and (11)

s s

s s

sin( )
E E (16)

sin( )

2sin cos
E E (17)

sin( )

 
 
 
 

  



 



which, with n = n2/n1,can be written

2 2

s s 2 2

2 2 2

p p 2 2 2

cos n sin
E E (16a)

cos n sin

n cos n sin
E E (15a)

n cos n sin

 

 



 

  
 

  
 

These expressions are the Fresnel relations.

(14)
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REFRACTION AND REFLECTION FROM A LESS 
DENSE MEDIUM TO A DENSER ONE

Assume medium 1 be optically less dense, for ex. air (n1 = 1) and
medium 2 be denser, f.e. water or glass, with refractive index n2 and
put n= n2/n1.
We define a coefficient

E
r (18)

E


 

that we call amplitude reflection coefficient. The reflection
coefficient for intensity is

2
2

2

E I
R r .

IE

 
  

Let us consider eparately the two cases

A. Parallel case:

2 2 2
p

p 2 2 2
p

E tg( ) n cos n sin
r (19)

E tg( ) n cos n sin

   
   

   
     

  
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A plot of rp is a parabole starting from

n 1

n 1






ending with a positive value for  =π/2

p

tg
2

r 1 . (20)
tg

2

 

 

   
   
  
 

The curve of rp cut the abscissa at an angle p. From (19) the denominator
should change from + to - and therefore

p p

p

2 2
sin cos . (21)

    

 

     

 
From the refraction law

p p

1
sin sin cos

n
    

from which

ptg n . (22) 

For glass (n = 3/2) and water (n = 4/3), p = 57° and 53° respectively.
Because rp = 0 at that angle, the reflected light is completely polarized with
the electric field vibrating perpendicularly to the incident plane ( Brewster
law). Similarly we may define an amplitude transmission coefficient:

p
p

p

E 2sin cos
t .

E sin( )cos( )

 
   

 
 

  
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In this case:
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Figura 4



8

For small  (nearly normal incidence):

s

n 1nr . (24)
n 1

n





 
 



For ex. For water (n = 4/3), rs = 1/7

For glass (n = 3/2), rs = 1/5, Rs = 4%.

Nor water nor glass may be suitable as mirrors for
perpendicular incidence because they have very low
reflectivity. In glass mirrors the reflectivity is
provided by the silver covering. The glass is only a
protection.

2 s
s s

s

I
R r 2% .

I


  

A plot of rs versus  starts from =0 with an horizontal tangent
and increases parabolically with . At  = /2, Snell law becomes

2

1
sin (25)

n

n 1
sin( ) sin cos (26)
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

   

 

        
 

therefore rs = 1.
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0 
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Figura 5
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At grazing incidence reflection is cull. This is the reason for the
beautiful specular image of the opposite side in a lake waters, or of
the sunset specular image over a quiet sea: this image has an intensity
near the one of the sun itself.

The expressions for E and E are real. Therefore the phases are either
0 or  with respect to the phase of the incident wave and are simply
indicated by the amplitude sign. Figs. 4 and 5 show that for all
incidence angles a phase shift of  is produced for s polarization
(remember that rs = - Es/Es). On the contrary Ep is in phase with Ep

for all incidence angles lower than p and is phase shifted by  for
larger angles.

In the interpretation of this result, attention should be given to which
is the positive vibration direction for the vibration of the field parallel
to the incidence plane (s. fig. 6).

Fig. 6
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For grazing light the positive direction of Ep for incident and reflected
field are mostly parallel as shown in fig.6°. Therefore a phase shift of
 means that to an observer on the x-axis the direction of Ep appear
suddenly inverted due to the reflection. This behaviour is important for
the interference phenomena.

If the incident light is not polarized it could be considered the sum of
two p and s polarized lights. Fof normal incidence the intensity
reflection coefficient is the same for the two waves.
This is obvious because for normal incidence an incidence plane cannot
be defined so p and s cannot be distinguished. Therefore reflected and
refracted wave are not polarized. For all the other incidence angle the
intensity reflection coefficients for the two components are different.
The amplitude transmission coefficient is:

2
R r I / I 

s
s 2 2

s

E 2sin cos 2cos
t

E sin( ) cos n sin

  
   

 
  

  

The reflecting power R, is defined as:

2
R r .
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The transmission power T is

R T 1 

Because in absence of absorption the light is only reflected or transmitted

2

2

1

n cos E
T .

n cos E



    
 

This expression is due to the fact that the cross section of the transmitted beam
has a different area of the incident and reflected beam

Reflection and refraction from a denser medium to a less dense
one:

For example medium2 is air (n2 = 1). Let us put n = n1/n2.. The formulae
previously studied are still valid if 1/n is put to replace n. For the refraction law
f.e. it is

1 sin 1
n (27) . (28)

n sin n




 
  

From this relation > for small , but there is no solution for

n sin 1 . (29) 

In this case the coefficients for Ep and
Es become complex.

In fig. 7 viene the amplitude reflection
coefficient is plottedversus  for 0 < 
< /2.

In this case we consider the
coefficient:

E
r (30)

E




That is

s

sin( ) n cos cos
r (31)

sin( ) n cos cos

   
   
   

 
   

Fig. 7
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and

p

tg( ) n cos cos
r . (32)

tg( ) n cos cos

   
   
    

  
   

Pay attension that for r we choose the opposite sign of (18). In fig. 7
the limit angle 1 for total reflection is marked

1n sin 1 . (33) 

The plots for rp and rs are stil similar to the ones of figs.4 and 5, but
now the ordinate 1 is reached not at  = /2 but for  = 1. Infact,
because in that point  = /2, we have:

s

p

sin
cos2

r 1 (34)
cos

sin
2

tg
2

r 1 . (35)
tg

2

 


 

 

 

  
   
  
 
  
   
  
 

Before that point the plot for rp cut the abscissa at the polarization
angle

pol pol

1
tg . (36)

2 n

     


What happens for  > 1 ?.
In this case n sin  is greater than 1 and we may write

2 2 2 2 2cos 1 sin 1 (n ) sin i (n ) sin 1 . (37)           

Substituting in (31) and (32)

2 2

s 2 2

2 2

p 2 2

n cos i (n ) sin 1
r (38)

n cos i (n ) sin 1

cos in (n ) sin 1
r . (39)

cos in (n ) sin 1

 

 

 

 

  


  

  


  
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Another way to look at the problem is to think that for  > 1 the 
angle becomes complex: that is

As required by the refraction law (*)

sin n sin 1 . (41)   

Using (40) 

s

sin i
cos( i ) cos cosh isin sinh2

r . (42)
cos( i ) cos cosh isin sinh

sin i
2

  
     

       

       
   

 




Deriving the modulus of r, we have

2 *
s s s

(cos cosh isin sinh )(cos cosh isin sinh )
r r r 1 .

(cos cosh isin sinh )(cos cosh isin sinh )

       
       


  






This means that rs may be written as
i

sr e . (43)

Similarly for rp

2 2
i

p 2 2

tg i
cos in (n ) sin 12

r e . (44)
cos in (n ) sin 1tg i

2



  
 

   

          
      
 

_____________________

(*)     Because ie cos isin   

It is
i ie e

cos
2

 






And if  = i,

e e
cosi cosh

2

 

 
 

 

  1coshcos
2







   iisinsin (40)
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The absolute values of rp and rs are easily seen to have absolute value equal to
one. The quantities  and  are real phase angles. They may be derived
observing that

2 2 i
i

s i2 2

cos cosh isin sinh n cos i n sin 1 ae
r e . (45)

cos cosh isin sinh aen cos i n sin 1






     
     



   
   

  

From (45)

2 

so
2 2

2 2

(n ) sin 1sin sinh
tg tg (46)

2 cos cosh n cos

n (n ) sin 1
e tg . (47)

2 cos

  
  




 
   



  
 

The relative phase between the two
waves

is

   

2 2

2

cos (n ) sin 1
tg .

2 n sin

 


 




It is shown in fig.8 for n = 1.5. The
amplitudes of the reflected fields are

i i
s s p pE E e e E E e . (49)   

Or 
 

 

i t k(x sin z cos )
s s

i t k(x sin z cos )
p i

E A e (50)

E A e . (51)

   

   

  

  

 

 

The phase shift  between the two components of the reflected field brings a
change in the properties of the totally reflected light.

(48)

50.14
°

53.15
°













0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

33.7
°

41.8
°

Figura 8
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Let us consider a specific example. Let us take a polarized light
incident on a glass-air interface with the vibration plane tilted by an
angle 45° with respect to the incidence plane. In this case Ep = Es

and therefore also E’p = E's . It is not so for the phases. From (48) for
n’ = 1.5 the phase difference between the two reflected components
is 45° when the incidence angle is 53° 15’ or 50° 14’. The
reflected light is therefore elliptically polarized.
More generally, because

E


p i( )

s

r cos( i ) ctg( i ) sin( i )
e (52)

r cos( i ) ctg( i ) sin i )
       

     
   

  
  

for  = l, because '' = /2, that is  = 0, the ratio

sin( i ) sin

sin( i ) sin

  
  





Becomes real (and equal to one) and therefore  = . The same is valid for  =
/2 because in this case

sin i 0sin i cosh .
2 2

           
   

Between these two points there must be a point for which  =  -  is a
maximum. This can be seen making the derivative of (52) and putting it to zero

m m
m2

m m

cos( i ) sin( i )d d
0 1 i cos( i ) 1 i . (53)

sin( i ) d dsin ( i )

     
    

               

but
nsin cosi (54) 

The derivattive

d in cos
. (55)

d sin i

 
 


Substituting (55) into (53) 

m msin 2 cos
0 sin 2i n

sin i

 



 
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From (54) 

 2 2m
m

sin
0 2n 2 (n 1)sin

sin i





  

or
2

max 2

2
sin . (56)

n 1
 



The (52) may be written now as
max

max

i

i

e 1 cos sin i

sin cosie 1

 
 






 



or
maxitg ctg tgi .
2

 




Because
2

2

n 1
ctg

2

i n 1
tgi

n 2











It is
2

max n 1
tg . (57)

2 2n

 


Let us apply this result to a glass with n= 1.5. It is

max
max

max max

( )
tg 0.417 ( ) 45 24'

2
sin 0.7845 51 67' .

 
 

 


    

   

It is not possible to obtain circular polarization ( = 90°) through a
single total reflection because  -   45° 24' for all incidence
angles
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However circular polarization may be obtained with two reflections. For 53°
15' or 50° 14' a phase shift of 45° may be obtained. If now there is a second
internal reflection at one of these angles an additional shift of 45° is obtained
so that the total phase difference is now 90°.

Because the components have equal amplitude the light is circularly polarized.
Fig.9, shows a Fresnel romb. In the example is used glass with n = 1.5 and
incidence angles 53° 15'. The light impinges normally on the first face with
the vibration plane at 45° with respect to the figure plane.

Evanescent waves:

Even if the incident energy is totally reflected for n' sin >1, a wave is
propagating in the second medium. Let us write the complete expression of
the electric field of the transmitted wave

m

m

E E expi(k r t)

E expi(k xsin k ycos t) . (58)


  

    
      

 

Substituting from the refraction law (37)
2 2cos i (n ) sin 1   

with
1

2

n
n

n
 

one has

 2 2 1
m

2

y i(kx t )
m

n
E E exp k y (n ) sin 1 expi k x sin t

n

E e e (59) 

  

 

 
       

 


Polarizzazione
piana

Polarizzazione
circolare

Polarizzazione
ellittica

45°

53°15’

53°15’

n=1.5

Fig. 9

y

x

n2

n1



Fig. 10
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where 2

21

2

1

2

n
k sin 1

n

n
e k k sin . (60)

n

 



 
  
 



The first exponential function is real and represents a
sharp decreasing of the amplitude of the wave while it
penetrates in the less dense medium. If there is no
absorption the Poynting vector turs and comes back in
the denser medium.

Looking at eq.(59) one may see that this wave has an
entirely different structure from a plane wave and that
we call homogeneous. It is called inhomogeneous and
it propagates like an ordinary planbe wave along x, in
the plane z = 0, while its amplitude decreases
perpendicularly along y. Because k'' = 2/ the
amplitude of the wave is sensibly different from zero
only at distances of the order of a few wavelengths
from the limit surface.

The magnetic field of the wave (59) has the same
inhomogeneous structure and may be derived through
Maxwell equation

B
rot E .

t


 




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Once B is derived the Poynting vector may be calculated

0

E B
P .




 
 

One finds that the component of parallel to the limit surface is
allways positive. The flux of energy in the direction perpendicular to
the limit surface chnges instead periodically its sign.Its mean value is
therefore zero. There is an effective flux of energy parallel to the
limit surface. The energy does not penetrate in the second medium
but flows along the separation plane. This analysis refers to the
stationary state. At the start before the stationary state is settled on a
small quantity of energy goes in the second medium

P


That the wave penetrates in the 
less dense medium may be 
demonstrated experimentally with 
two prisms as shown in fig.11. 
This disposition may be used to 
built optical couplers. The 
passage of the light through the 
air layer in these conditions is 
called optical tunnelling or
frustrated total reflection

Fig. 11
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