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IMAGES
Images can be made made by using:

Mirrors: of many different shapes, such as flat, parabolic, spherical, cylindrical

Lenses: traditional

others such as aspherical or graded index (promising negative index)

Systems: more or less sophisticated using lenses and/or mirrors

Near field imaging: utilizes near field sensors and suitable elaboration

Other systems to image: electronic microscopy and atomic force microscopy (out of our
purposes)



Methods:

1 - Geometrical optics:

simple
rays
allows accounting for aberrations
neglects diffraction

2 - Wave optics:

allows accounting for:
diffraction
aberrations

direct by using diffraction formulas
• scalar approximation

development based on linear systems theory
approximate results



1 - GEOMETRICAL OPTICS

Recall some fundamentals by thin lens

1) 1 = 7i f

paraxial approximation, gaussian optics

2) ±=(n_i)J__ J_ ffocallength

Sign convention

o>0 if on left lens side
i>0 if on right side

lens radius >o if
centre on right side

in fig Rj>0,

£>0 converging lens, f<0 diverging lens



When o->oo, i=Focus. Perfect lens makes parallel rays
converge to (or diverge as from back) focus.
Ex: f>0: the lens makes rays converge. It transforms
plane wave into spherical converging wave, see
below.

Images: Real or Imaginary

In general, for lenses or systems of elements:

From source to image optical path along each ray
the same (Fermat principle). Phase along each ray
the same; at image point positive interference.

In paraxial approximation, one image point
corresponds to source point; the rays from source
only have one cross point. In general rays do not all
cross at the same point; aberrations. (Here we
neglect magnification and image reversal)

In addition diffraction effect. Images by systems
without aberrations are called diffraction limited.



2 - WAVE OPTICS

MONOCHROMATIC ILLUMINATION

THIN LENS

Lens introduces phase effect on impinging wave u(P)
where P -coordinates x,y- point on entrance plane,

t(P)=- t(P) u in(P)

t(P) thickness function

=• A[x,y)

V.

• * v 4.

A(P)

= k n A(P)+k [Ao - A(P)]



Simple computation (Goodman)

= A0-Ri 1 - 1 -
x 2 +y2 \

1- 1 -

Paraxial approximation:

1-
\

1-
2 2

x +y x2 +y2

2R?

= iknAo - ik(n-l)
H2



If ujn(P) = 1, unit amplitude plane wave, (point
source at infinity) one has

1 k

First tenn constant phase delay of no importance

Second term: quadratic approximation, at z=0, to a
spherical wave converging towards the focus behind
the lens, if f >0 (and then diverging) or diverging from
the lens as if originating from focus before the lens if
f<0.

Example f>0. ^ _
2 2 2 ^ ( 2 2r= # - z ) 2 + x 2 + y 2 = ( f - z ) + ^ j ( x 2 + y

RESULT: In paraxial approximation the lens adds a quadratic phase term, i.e. transforms
a plane into spherical wave. In first approximation: this result can be extended to plane
waves impinging at small angles and the wave is focused on a point of the focal plane.



ABERRATIONS (see in the sequel)

In general case: although the lens has spherical
surfaces, the wavefront departs from spherical
shape. Aberrations.

PUPIL FUNCTION: To take into account the finite
dimensions of apertures (and also aberrations):
pupil function. Will be useful in the sequel.

For systems without aberrations (diffraction limited)

1 inside lens aperture
0 o u t s i d e

Note: here x,y point on the pupil.
Some authors include on the pupil function the field
on the pupil due to a source point.



3 - WAVE OPTICS
COHERENT IMAGING: OBJECT ILLUMINATED
WITH MONOCHROMATIC COHERENT FIELD

The problem of images is: given the field distribution
at the object find the field distribution at the image.

3-1 LENS AND PLANE OBJECT

\
\

uowt

uob field, complex amplitude, from object

uin field on input plane of the lens (entrance pupil), uout field after the lens (exit pupil)

ui field on image plane (e.g. as defined by geom. optics)

PROBLEM: given Uob find ui



Typical diffraction problem: the field from object can
be considered a diffraction field: from the object
plane waves in all directions (Fourier components).
u i n is result of interference on input plane. Field uou^
at the output of lens can be obtained by multiplying
u i n for the lens function t(P), and pupil function. Field
Uj by using one of different formulas of diffraction
theory, such as Kirchhoff s, which takes into account
the finite dimension of the aperture.
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Let us consider decomposition of diffracted field in plane waves (Fourier).
Each plane wave is focused by the lens at focal plane.
On each plane behind the lens all waves interfere;
In the image plane interference is expected to reproduce the object field



FACTORS AFFECTING AN IMAGE

An image is never equal to the object, for different reasons:

- not all plane waves from the object enter the lens, but only those with angle a respect
to the axis less than p=a/o, where a = aperture radius, o = object distance
from the lens.

- due diffraction from the limited aperture, a plane incident wave, source at infinity,
gives rise to an Airy diffraction pattern not a simple point as expected from
geometrical optics

- lens aberrations play an important role, they can be corrected. When the aberrations
are corrected or negligible, the lens is said perfect and the image is a
"diffraction limited image"



3-2 IMAGES BY A SYSTEM - COHERENT CASE

Let us now think of a general imaging system, of
which the lens is a particular case.
First, let us consider, in the source plane, an object
constituted by a simple point (source point); in
general, due to diffraction and aberrations, the image
is not a point but a "pattern". A point source can be
represented by a Dirac delta function.

Let h(x,y;xo,yo) denote the field at point x,y in the
image produced by a source point located at point
xo ,yo in the source plane. In a first approximation
and no aberrations, h(x,y;xo,yo) is the Airy diffraction
pattern. In general it is a diffraction pattern.

Function h(x,y;xo,yo) which represents the impulse
response of the system is called the Spread Function



source
point

object plane (x0 ,yo)

h(x,y;xo,yo)
Spread function

lens plane image plane (x,y)

Let us assume to have an extended source. Let
uob(xo,yo) be the complex amplitude distribution
density (surface density). Each element dxodyo gives
a contribution to the field at x,y, given by

Wx,y:xo,yo)
 dxod>'o

The field uj(xty) at point x.y on image plane, due to the
object is obtained by integrating over all the object



oo

3) Ui(x,y) =J {uob(xo,yo) h(x,y;xo,yo) dxodyo

-oo

Typicajly the object will be of finite dimension and
the integrand different from zero on a finite area.

The fact that one can easily write the total field at x,y
as the integral (sum) of the contributions produced
by the different points of the object is direct
consequence of the linearity of Maxwell's equations.
According to this linearity the total field at x,y is the
superposition (interference) of the contributions
from the different elements of the object.

Linearity implies use of the basic elements of linear
systems. They are used here, when necessary.



ISOPLANATIC SYSTEM

If Spread Function only depends on coordinates
difference

4) h(x,y:xo.yo) = h(x-xo. y-yo)

the system is called isoplanatic (or space-invariant).
In practice isoplanatism means that the system
"response" is independent of the object location on
the source plane.
For a isoplanatic system one has

•-v-

5) u,(x.y) =J Juob(xo,yo) h(x-x0, y-yo) dxodyo

-oo

As already noted, even in the ideal case of a perfect lens (system), Spread
Function is a diffraction pattern, not a simple Dirac function as in the
geometrical optics approximation. Therefore the field at a point (x,y) is
affected by all source points and not only by the corresponding points of
the object. In general this means that the image due to diffraction (and
aberrations) is a smeared version of the object.



In the integral of Equation 5, we recognize a (bidimensional) convolution
operation, which is the mathematical formulation of this fact.

In convolution formalism the integral can be written

6) Ui(x,y) = uob(x,y) ® h(x,y)

where ® denotes the convolution operation1.

Well known theorem, called the convolution theorem,
states that the spectrum of a convolution of two
functions is the product of the spectra of the two
functions. In formula

7) Ui(u,v) = H(u.v) Uob(u.v)

Capital letters denote the spectra; note that they are
bidimensional Fourier transforms.

:•>">

1 Bydefinliion uav =J J u{xo ,yo)v(x-xo ,y-yJdx0dy (



Summary of functions and corresponding transforms here used:

Fourier transform

Uob(u,v)

H(u,v)

of

Uob(x,y) object
u ^ y ) image
h(x,y) spread function

H(u,v), Fourier transform of the Spread Function, is
called the Optical Transfer Function. OTF or, as in
linear systems theory, the System Transfer Function,
or simply the Transfer Function. Sometimes the
adjective Coherent is added to avoid confusion with
the case of incoherent radiation, see below.
Eq. 6 is very important, both for theory and
applications, because in the realm of spectra the
convolution becomes a simple product and allows
optical images to be exploited by the techniques
commonly used in systems applications, such as
filtering in electric systems.



3-3 SPREAD FUNCTION OF A SOURCE POINT
of unit amplitude and a thin lens without aberrations
(diffraction limited)

As an application of the previous theory, let us evaluate the diffraction pattern by a
lens of circular aperture in the limit of paraxial approximation. As expected an Airy
pattern will be found.

From a source point on the axis spherical wave. In
paraxial approximation, the field incident at point
x,y on the lens, at distance ro from the source, is (see

thin converging lens

diffraction lessons)

a ^1^ I eiko+ik(x2+y2)/(2o)
r oro o

D

Here a includes the constant phase term and o
denotes source-lens distance. The field uou^ at the
OUtpUt plane Of the lens iS image plane

o



The quadratic phase term is the paraxial approximation to a spherical wave converging to a
point at distance i from the lens given by:

1 = 1 _ 1
~ t o f

as from geometrical optics. The field Uj at a point
X{,y( is obtained by using any diffraction formula,
e.g. the paraxial form of Huygens-Fresnel principle
(see lessons on diffraction). One obtains

ik

tii=c

aperture

where complex constant c takes into account constant amplitude and phase terms. By
developing the squares the phase term can be rewritten as

i k f l 1

On the image plane the fist term in parenthesis is zero. Let us assume that also Fraunhofer
condition is satisfied, so that first and second term in square brackets can be neglected.



Under Fraunhofer condition the integral reduces to

U i = c $)z zt dxdy

aperture

This is a well known integral in diffraction theory, when the field diffracted by an aperture
uniformly illuminated is evaluated in the Fraunhofer approximation, "far field". The result is
the well known Airy pattern (see diffraction lectures).

Therefore, in the considered limits and apart from a complex constant factor, the spread
function of a source point is the diffraction pattern, in the Fraunhofer region of a uniformly
illuminated aperture. In other words, the spread function of a source point at finite distance is
proportional to that of the source at infinity. Note also that when the source distance is
infinite the patter location is in the focal plane. This corresponds to the well known fact that,
in general, a lens transfers on its focal plane the Fraunhofer pattern of the field on its
aperture.

The Fraunhofer pattern diffracted by an aperture is the Fourier transform of the aperture field
(see diffraction lectures) therefore a lens transfers on the focal plane the Fourier transform of
the field on its entrance plane.



TRANSFORM PROPERTIES OF A LENS

IT IS IMPORTANT TO NOTE:

- the transform properties of a lens only depend on its limited dimension,

- the effect of the lens is to "move" the transform from the far field to its focus.

To be precise it is also to be noted that the Fraunhofer pattern that the lens brings to its focus
does not contains all frequencies of the field on the aperture because at least the frequency
corresponding to the evanescent waves are lost. As these are high spatial frequencies the
Fourier transform in the focus is a "band limited" angular spectrum of the object.
Spread Function = Fourier Transform of the Pupil Function
Valid in general: .Easy to understand by plane wave development

3 - 4 LINE SPREAD FUNCTION

Let the object be a line, infinitely thin and coincident with the y axis

uob( x o *y o) = £(xo) f r o m E ( l 5 o n e o b t a i n s u i M " ' h(x<yo) &Yo



3 - 5 ABERRATIONS

According to Wolf function W(x,y) is the departure
from spherical shape in the exit pupil. Phase
distortion due to aberrations kW(x,y).

Effect of aberration on diffraction patter: lowering
the maxima, filling the zeros and rising the minima.

Gaussian
reference sphere

Plane of
exit pupil

Gaussian
image plane

W(x.y) from Born and Wolf



Quality of a system is described by Strehl ratio for
source point:

S_ Intensity in the (nominal) central maximum
Theoretical intensity with no aberrations

General definition suitable also for partial
coherence and for aberrations introduced by

propagation in random media, such as turbulent
atmosphere.

An image is well corrected If S not less than 0.8.

It can be shown, for small enough aberrations, that
intensity at point P is

i(P) = 1 - k2 (AOP)
2

where (A<I>p)2 mean square deformation of the
wavefront and k wavenumber. It follows that
condition S > 0.8, requires |AO| < A /14.
(Criterion by Rayleigh A/4 for spherical aberration)



SEIDEL ABERRATIONS.
Best focus

Point on axis. Aberrations function Wa . with respect
to a sphere centered on best focus is expanded in
terms of r, position on pupil, or (Q~r/dj field angle)

Wa = a 4 r4 + a 6 r6 +... = W4 +

W4 primary aberrations, Wg secondary aberrations
and so on.
F*or points off axis in general there are also angles,
total power of primary aberrat ions is always 4.
including angles. Primary Seidel aberrations.
(Extended theory: Born and Wolf, Goodman,see also
R.W. Ditchburn for instrument applications)

ZERNIKE POLYNOMIALS: alternative way to describe aberrations used
in modern applications such as adaptive optics systems.



EFFECT OF ABERRATIONS ON OTF

One introduces a Generalized Pupil Function including W

P(x,y) = exp( ikW) inside pupil

= 0 outside

W is a phase factor

W does not affect total intensity, but add phase factor to the different (spatial) frequencies

Result: BLURRING OF THE IMAGE

Example in terms of rays (recall source point): the normal to the wavefront (ray) changes
direction and the rays no longer cross at a common point.

In term of plane wave development of the field, each wave has a change in phase , and they
are no longer focused at the same point.

General consequences on images:

- Lowering of the maxima

- Disappearing of zeros

- Increase of minima



3 - 6 IMAGING - INCOHERENT CASE

The most common light found in nature, emitted by
bodies much larger than the wavelength, is
incoherent radiation. The emitting atoms of a body,
emit randomly, in time and space, wave trains which
are completely uncorrelated, unless the atoms are
very near each other, with respect to wavelength.
Only the laser emits coherent radiation. At a point
outside an emitting source (not a laser) the field is
constituted by many wave trains with random phase,
which interfere with each other but continuously and
rapidly change. One cannot think of a "wave", as in
the case coherence, but rather of energy. For
incoherent radiation one has to deal with the
modulus square of the field.

Although the general case is partial coherence, both
in time and space, we will consider here only the
limiting case of incoherent quasi-monochromatic
light, as the case corresponding to the coherent
monochromatic one already considered.

Quasi-monochromatic light has a bandwidth Av
which is very small with respect to the central
frequency v, that is Av/v«l.



Quantity of interest here is the average value of the
intensity in a long time with respect to the period of
oscillation (infinite time). In practice the response
time of the eye or of typical instruments. In this case
approximating time and space incoherent radiation
with monochromatic (time coherent) radiation i\ is a
good approximation. Frequency =central frequency
of incohrerent radiation. Therefore the radiation is
only spatially incoherent.

The instantaneous intensity Iinst(P) at a point P is
the field square (see diffraction). The space
coherence of a field is described by the field
correlation function I3U(P,P') defined as

8) BU(P,P) = <u(P) U*(F)>

Asterisk as usual denotes complex conjugate and
brackets infinite time average. The average intensity
I(P) is given by (assume homogeneity)

I(P) • ton <u(P)u*(P')>
F->P



For spatially incoherent radiation:

9) ButP.P*) = HP) S(P-P')

The intensity in the image of incoherent radiation is

oo oo

I(x,y)=<ui(x.y)uJ(x.y)>=J J
-c>o - o o

h(x-x0,y-yo)h*(x-x'0,y'-yo)

where average and integral operations have been
interchanged and the fact that the impulse response
does not depend on time has been taken into
account. This relationship holds for partially
coherent light and could be further developed.



In the case of complete incoherence, introduction of
Eq. 9 gives2 the important final result:

oo

10) I(x,y) = J J I(xo,yo) |h(x-xo,y-yofdxody,
- c o

CONCLUSIONS for INCOHERENT CASE:

- Intensity

- Convolution relationship between source intensity and (incoherent) point
spread function

- Incoherent point spread function is the modulus square of the coherent
spread function

Example: The incoherent spread function of a source on the axis of a thin perfect
(free from aberrations) lens is the Airy function (Airy Function is the modulus
square of the Fraunhofer diffraction pattern (see lessons of diffraction) centred on
the geometrical image point.

2 Recall that |ltx)JT3c-a)da: =



Let Eo and Ij and H Fourier Transforms of the
intensities of object, image and spread function
respectively. By convolution theorem:

1 1 * 7 TUT V

JLJ A\= H J n

His called Incoherent Optical Transfer Function;
its modulus:

MODULATION TRANSFER FUNCTION, MTF.

Generally normalization to 1 at zero frequencies,
where there is the maximum (see e.g. Goodman).



General relationship between incoherent, H
(normalized), and coherent, H, transfer functions:

J |H(u.v)H*(u+fx,v+fy)dudv

12) H(fx.fy) = —oo

}J|H(u.v)|zdudv
—oo

valid for systems both with and without aberrations.

For coherent systems one has (see diffraction)
H(u,v) = P(Aiu.Aiv)

A wavelength, i image distance from the lens.



For incoherent system, introduction of H(u,v) into Eq.
12 shows that H (normalized) is the spatial
autocorrelation function of the pupil function:

CO

I J P(Aiu,Aiv)p(Aiu+fx.Aiv+fyjdudv

H(rx ,fy) = —
""• J co

\\ P(u,v)dudv
—oo

Recall P(x,y) real function of modulus one.
Denominator=pupil area. Numerator the common
area of pupil and displaced pupil.



FOR INCOHERENT SYSTEMS THE SPECTRUM IS
DIFFERENT THAN FOR COHERENT

In particular it has a larger widht (due to convolution
of the pupil function)

Consequence the same system gives different images
with coherent or incoherent radiation.

Advantages and disadvantages depend also on the
object.



Effect of aberrations on incoherent systems

ALWAYS DECREASE MTF

In general lower ihe contrast of each spatial
frequency component, leaving the cut off unchanged.
However the higher frequencies can be severely
reduced, so that, in practice cut oiTcan be much lower
than in the diffraction limited ease.

Aberrations can also give rise to negative values of
OTF in some ranges of frequencies. Consequence:
c onstrast reversal In image, that is intensity maxima
can become zeros and viceversa.
lypical example of this case is defocusing error

10



4 - RESOLVING POWER

1- Rayleigh criterion (v diffraction)

2- OTF or MTF half width

3 Degrees of freedom of images

Superresolution

Special Systems based on near field sensing

Electronic microscopy

X ray microscopes
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