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THE WAVE EQUATION
In regions of free space (i.e. the vacuum) - where no electric 

charges - no electric currents and no matter of any kind are 

present - Maxwell�’s equations (in differential form) are:

Set of coupled first-order partial differential equations
1/25/2012 2



We can de-couple Maxwell�’s equations -by applying the 
curl operator to equations 3) and 4):
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These are three-dimensional de-coupled wave equations.

Have exactly the same structure �– both are linear,

homogeneous, 2nd order differential equations.

Remember that each of the above equations is explicitly 

dependent on space and time,
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Thus, Maxwell�’s equations implies that empty space �– the 

vacuum {which is not empty, at the microscopic scale} �–

supports the propagation of {macroscopic} electromagnetic 

waves - which propagate at the speed of light {in vacuum}:
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Monochromatic EM plane waves propagating in free space/the

vacuum are sinusoidal EM plane waves consisting of a single

frequency f , wavelength =c f , angular frequency = 2 f and

wave-number k = 2 / . They propagate with speed c= f = k.

In the visible region of the EM spectrum {~380 nm (violet)    ~ 

780 nm (red)}- EM light waves (consisting of real photons) of a 

given frequency / wavelength are perceived by the human eye as 

having a specific, single colour. 

Single- frequency sinusoidal EM waves are called mono-chromatic.
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EM waves that propagate e.g. in the +z�ˆ direction but which

additionally have no explicit x- or y-dependence are known as plane

waves, because for a given time, t the wave front(s) of the EM

wave lie in a plane which is to the �ˆz -axis,
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There also exist spherical EM waves �– emitted from a point 

source �– the wave-fronts associated with these EM waves are 

spherical - and thus do not lie in a plane to the direction of 

propagation of the EM wave
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If the point source is infinitely far away from observer- then a 

spherical wave  plane wave in this limit, (the radius of 

curvature  ); a spherical surface becomes planar as RC .

Criterion for a plane wave:

Monochromatic plane waves associated with     and
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Maxwell�’s equations for free space impose additional constraints 
on

These two relations can only be satisfied

In Cartesian coordinates:
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Now suppose we do allow:

Then

1/25/2012 12



Eox, Eoy , Eoz = Amplitudes (constants) of the electric field 
components in x, y, z directions respectively.
Box, Boy , Boz =Amplitudes (constants) of the magnetic field 
components in x, y, z directions respectively.
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Maxwell�’s equations additionally impose the restriction that an
electromagnetic plane wave cannot have any component of E or
B || to (or anti- ||to) the propagation direction (in this case here,
the z -direction)

Another way of stating this is that an EM wave cannot have
any longitudinal components of E and B (i.e. components of E
and B lying along the propagation direction).
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Thus, Maxwell�’s equations additionally tell us
that an EM wave is a purely transverse wave (at
least for propagation in free space) �– the
components of E and B must be to propagation
direction.

The plane of polarization of an EM wave is
defined (by convention) to be parallel to E.
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Maxwell�’s equations impose another restriction on the
allowed form of E and B for an EM wave:
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Actually we  have only 
two independent 
relations:

But:
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Very Useful Table:

Two relations can be written  compactly into one relation:

Physically this relation states that E and B are:
in phase with each other.
mutually perpendicular to each other - ( B) z�ˆ         
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The E and B fields associated with this monochromatic plane 
EM wave are purely transverse { n.b. this is as also required by 
relativity at the microscopic level �– for the extreme relativistic 
particles �– the (massless) real photons travelling at the speed of 
light c that make up the macroscopic monochromatic plane EM 
wave.}
The real amplitudes of E and B are related to each other by:

with
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EM Power flows in the direction of propagation of the EM 
wave (here, the +z�ˆ direction)
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This is the paradigm for a monochromatic plane wave. 
The wave as a whole is said to be polarized in the x 
direction (by convention, we use the direction of E to 
specify the polarization of an electromagnetic wave). 
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Instantaneous Energy Density Associated with an 
EM Wave:

where

and
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But - EM waves in vacuum, and

- EM waves propagating in the vacuum !!!!
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For a linearly polarized monochromatic plane EM 
wave propagating in the vacuum,

But
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The propagation velocity of energy

Poynting�’s Vector = Energy Density * Propagation Velocity

Instantaneous Linear Momentum Density Associated 
with an EM Wave:
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For linearly polarized monochromatic plane EM waves 
propagating in the vacuum:

But:
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But:

For an EM wave propagating in the +z�ˆ direction:

Depends on the choice of origin
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The instantaneous EM power flowing into/out of volume v
with bounding surface S enclosing volume v (containing
EM fields in the volume v) is:

The instantaneous EM power crossing (imaginary) surface  is:

The instantaneous total EM energy contained in volume v 
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The instantaneous total EM linear momentum contained in the 
volume v is:

The instantaneous total EM angular momentum contained in the 
volume v is:
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Usually we are not interested in knowing the instantaneous
power P(t), energy / energy density, Poynting�’s vector, linear
and angular momentum, etc.- because experimental
measurements of these quantities are very often averages
over many extremely fast cycles of oscillation. For example
period of oscillation of light wave

We need time averaged expressions for each of these
quantities - in order to compare directly with experimental
data- for monochromatic plane EM light waves:
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If we have a �“generic�” instantaneous physical quantity of 
the form:

The time-average of Q(t) is defined as:
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The time average of the cos2 ( t) function:

Thus, the time-averaged quantities associated with an EM 
wave propagating in free space are:
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EM Energy Density:

Total EM Energy:

Poynting�’s Vector:

EM Power:
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Linear Momentum Density:

Linear Momentum:

Angular Momentum Density:

Angular Momentum:
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For a monochromatic EM plane wave propagating in free 
space / vacuum in �ˆz direction:
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Intensity of an EM wave:

The intensity of an EM wave is also known as the
irradiance of the EM wave �– it is the radiant power
incident per unit area upon a surface.
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Consider EM wave propagation inside matter - in regions 
where there are NO free charges and/or free currents ( the 
medium is an insulator/non-conductor).
For this situation, Maxwell�’s equations become:
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The medium is assumed to be linear, homogeneous and 
isotropic- thus the following relations are valid in this 
medium:

and

 = electric permittivity of the medium.
 = o (1 + e), e = electric susceptibility of the medium.
= magnetic permeability of the medium.

 = o (1 + m), m = magnetic susceptibility of the medium.

o= electric permittivity of free space = 8.85 × 10 12 Farads/m.

o= magnetic permeability of free space = 4 × 10 7 Henrys/m.
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Maxwell�’s equations inside the linear, homogeneous and 
isotropic non-conducting medium become:

In a linear /homogeneous/isotropic medium, the speed of 
propagation of EM waves is:
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The E and B fields in the medium obey the following wave 
equation:
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For linear / homogeneous / isotropic media:

If thus
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Note also that since are dimensionless

quantities, then so is

Define the index of refraction { a dimensionless quantity} of the 
linear / homogeneous / isotropic medium as:
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Thus, for linear / homogeneous / isotropic media:

because

Now for many (but not all) linear/homogeneous/isotropic 
materials:

( True for many paramagnetic and diamagnetic-type materials)

Thus
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The instantaneous EM energy density associated with a 
linear/homogeneous/isotropic material

with
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The instantaneous Poynting�’s vector associated with a 
linear/homogeneous/isotropic material

The intensity of an EM wave propagating in a 
linear/homogeneous /isotropic medium is:

Where
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The instantaneous linear momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

The instantaneous angular momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:
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Total instantaneous EM energy:

Total instantaneous linear 
momentum:

Instantaneous EM 
Power:

Total instantaneous angular 
momentum:
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Suppose the x-y plane forms the boundary between two linear media. A 
plane wave of frequency - travelling in the z- direction and polarized in the 
x- direction- approaches the  interface from the left
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Incident EM plane wave (in medium 1):

Reflected EM plane wave (in medium 1):
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Transmitted EM plane wave (in medium 2):

Note that {here, in this situation} the E -field / polarization 
vectors are all oriented in the same direction, i.e.

or equivalently:
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At the interface between the two linear / homogeneous / 
isotropic media -at z = 0 {in the x-y plane} the boundary 
conditions 1) �– 4) must be satisfied for the total E and B -fields 
immediately present on either side of the interface:
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( to x-y boundary, i.e. in the +z�ˆ direction)

( to x-y boundary, i.e. in x-y plane)
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For plane EM waves at normal incidence on the boundary at z =
0 lying in the x-y plane- no components of E or B (incident,
reflected or transmitted waves) - allowed to be along the ±z�ˆ
propagation direction(s) - the E and B-field are transverse fields
{constraints imposed by Maxwell�’s equations}.

BC 1) and BC 3) impose no restrictions on such EM waves since:

The only restrictions on plane EM waves propagating with
normal incidence on the boundary at z = 0 are imposed by BC 2)
and BC 4).
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At z = 0 in medium 1) (i.e. z  0) we must have:

While at z = 0 in medium 2) (i.e. z  0) we must have:
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BC 2) (Tangential E is continuous @ z = 0) requires that:

BC 4) (Tangential H is continuous @ z = 0) requires that:
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Using explicit expressions for the complex E and B fields 

into the above boundary condition relations- equations become
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Cancelling the common e i t factors on the LHS & RHS of
above equations - we have at z = 0 { everywhere in the x-y
plane- must be independent of any time t}:
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 Solve above equations simultaneously for

First (for convenience) let us define:
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BC 4) (Tangential H continuous @ z = 0) relation becomes:

BC 2) (Tangential continuous @ z = 0):

BC 4) (Tangential H continuous @ z = 0):

with
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Add and Subtract BC 2) and BC 4) relations:

Insert the result of eqn. (2+4) into eqn. (2 4):
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Now if the two media are both paramagnetic and/or
diamagnetic, such that

Very common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then
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Then

We can alternatively express these relations in terms of
the indices of refraction n1 & n2:

1/25/2012 68



Now since:

 = phase angle (in radians) defined at the zero of time - t = 0

Then for the purely real amplitudes

these relations become:
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Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic
media

1/25/2012 70



For a monochromatic plane EM wave at normal incidence
on a boundary between two linear / homogeneous /
isotropic media, with note the following points:
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What fraction of the incident EM wave energy is reflected?
What fraction of the incident EM wave energy is
transmitted?
In a given linear/homogeneous/isotropic medium with

The time-averaged energy density in the EM wave is:
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The time-averaged Poynting�’s vector is:

The intensity of the EM wave is:

Note that the three Poynting�’s vectors associated with this
problem are such that
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For a monochromatic plane EM wave at normal incidence on a 
boundary between two linear /homogeneous / isotropic media, 
with 
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Take the ratios                                                    - then square them:

and
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Define the reflection coefficient as:

Define the transmission coefficient as:
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For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with

Reflection coefficient:

Transmission coefficient:
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But:

Thus Reflection and Transmission  coefficient:
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Thus:

EM energy is conserved at the
interface/boundary between two L/H/I media
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For a linearly-polarized monochromatic plane EM wave at 
normal incidence on a boundary between two linear / 
homogeneous / isotropic media, with
Reflection coefficient:

Transmission coefficient:
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A monochromatic plane EM wave incident at an oblique
angle inc on a boundary between two linear/
homogeneous/isotropic media, defined with respect to the
normal to the interface- as shown in the figure below:
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The incident EM wave is:

The reflected EM wave is:

The transmitted EM wave is:
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All three EM waves have the same frequency-

The total EM fields in medium 1
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Must match to the total EM fields in medium 2:

Using the boundary conditions BC1) BC4) at z = 0.

At z = 0- four boundary conditions are of the form:

They must hold for all (x,y) on the interface at z = 0 - and also must
hold for all times, t. The above relation is already satisfied for
arbitrary time, t - the factor e i t is common to all terms.
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The following  relation must hold for all (x,y) on interface at 
at z = 0:

When z = 0 - at interface we must have:

@ z = 0 

The above relation can only hold for arbitrary (x, y, z = 0) iff
( = if and only if):
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The above relation can only hold for arbitrary (x, 
y, z = 0) iff ( = if and only if):
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The problem has rotational symmetry about the z �–axis- then 
without any loss of generality we can choose k to lie entirely
within the x-z plane, as shown in the figure

The transverse components of are all equal and 
point in the +x�ˆ direction.
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The incident, reflected, and transmitted wave vectors form a plane
(called the plane of incidence), which also includes the normal to
the surface (here, the z axis).

From the figure, we see that:

Angle of Incidence = Angle of Reflection Law of 
Reflection!
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For the transmitted angle, trans we see that:

In medium 1):

where

and

In medium 2):
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Which can also be written as:

Since trans refers to medium 2) and inc refers to medium 1)
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Because of the three laws of geometrical optics, we see that:

everywhere on the interface at z = 0 {in the x-y plane}

Thus we see that:

everywhere on the interface at z = 0 {in the x-y plane}, valid 
also for arbitrary/any/all time(s) t, since  is the same in 
either medium (1 or 2).
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The BC 1) BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two
linear/homogeneous/isotropic media become:

BC 1): Normal ( z-) component of D continuous at z = 0 (no
free surface charges):

BC 2): Tangential (x-, y-) components of E continuous at z = 0:
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BC 3): Normal (z-) component of B continuous at z = 0:

BC 4): Tangential (x-, y-) components of H continuous at
z = 0 (no free surface currents):

Note that in each of the above, we also have the relation
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For a monochromatic plane EM wave incident on a
boundary between two L / H/ I media at an oblique angle
of incidence, there are three possible polarization cases to
consider:

Transverse Electric (TE) 
Polarization

Transverse Magnetic 
(TM) Polarization
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•A monochromatic plane EM wave is incident on a boundary
at z = 0 -in the x-y plane between two L/H/I media - at an
oblique angle of incidence.
•The polarization of the incident EM wave is transverse ( )
to the plane of incidence {containing the three wave-vectors
and the unit normal to the boundary n�ˆ = +z�ˆ }).
•The three B-field vectors are related to their respective E -
field vectors by the right hand rule - all three B-field vectors
lie in the x-z plane {the plane of incidence},
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The four boundary conditions on the {complex} E and B
fields on the boundary at z = 0 are:
BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

BC 2) Tangential (x-, y-) components of E continuous at z = 0:
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BC 3) Normal (z-) component of B continuous at z = 0:
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BC 4) Tangential (x-, y-) components of H continuous at z = 0 
(no free surface currents):

Using the Law of Reflection on the BC 3) result:
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Using Snell�’s Law / Law of Refraction:

From BC 1)  BC 4) actually have only two independent 
relations for the case of transverse electric (TE) polarization:
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Now we define:

Then eqn. 2) becomes:

Adding  and subtracting Eqn�’s  1 &2 to get:
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Plug eqn. (2+1) into eqn. (2 1) to obtain:
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with
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Incident Intensity

Reflection Intensity

Transmission Intensity
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•A monochromatic plane EM wave is incident on a boundary
at z = 0 in the x-y plane between two L / H/ I media at an
oblique angle of incidence.
•The polarization of the incident EM wave is now parallel to
the plane of incidence {containing the three wavevectors and
the unit normal to the boundary n�ˆ = +z�ˆ }).
• The three B -field vectors are related to E -field vectors by the
right hand rule �–then all three B-field vectors are to the
plane of incidence {hence the origin of the name transverse
magnetic polarization}.
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The four boundary conditions on the {complex}E and B-fields
on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

BC 2) Tangential (x-, y-) components of E continuous at z = 0:
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BC 3) Normal (z-) component of B continuous at z = 0:

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):
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From BC 1) at z = 0:

From BC 4) at z = 0:

where:
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From BC 2) at z = 0:

where:

Thus for the case of transverse magnetic (TM) polarization:

Solving these two above equations simultaneously, we obtain:
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Alternate versions of the Fresnel Relations
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Ignoring the magnetic properties of the two media

the Fresnel Relations  become:
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Using Snell�’s Law and various trigonometric identities
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Use Snell�’s Law to eliminate
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Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.
Comparing results for TE vs. TM polarization for the

cases of external reflection (n1 < n2) and internal
reflection n1 > n2)

Comment 1):
When (Erefl /Einc)< 0 - Eorefl is 180o out-of-phase with Eoinc
since the numerators of the original Fresnel Equations
for TE & TM polarization are (1 ) and ( )
respectively.
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Comment 2):
•For TM Polarization (only)- there exists an angle of incidence
where (Erefl /Einc)= 0 - no reflected wave occurs at this angle for
TM polarization!
•This angle is known as Brewster�’s angle B (also known as the
polarizing angle P - because an incident wave which is a linear
combination of TE and TM polarizations will have a reflected
wave which is 100% pure-TE polarized for an incidence angle

inc = B = P !!).
•Brewster�’s angle B exists for both external (n1 < n2) & internal
reflection (n1 > n2) for TM polarization (only).
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From the numerator of -the originally-derived

expression for TM polarization- when this ratio = 0 at

Brewster�’s angle B = polarizing angle - this occurs when (

)=0 , i.e. when = .

and Snell�’s Law:
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So what�’s so interesting about this???

Comment 3):
For internal reflection (n1 > n2) there exists a critical angle of
incidence past which no transmitted beam exists for either TE
or TM polarization. The critical angle does not depend on
polarization �– it is actually dictated / defined by Snell�’s Law:
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For no transmitted beam exists  incident 

beam is totally internally reflected.

For the transmitted wave is actually exponentially 

damped �– becomes a so-called:
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Free charge and free currents are zero for propagation 
through a vacuum or insulating materials such as glass or pure 
water.

Inside a conductor, free charges can move around in response 
to EM fields contained therein- free current is not zero.

Assume that the conductor is linear/homogeneous/ isotropic 
media.

From Ohm�’s Law

where C = conductivity of the metal conductor (Ohm-1/m) and C

=1/ C where C = resistivity of the metal conduct  or (Ohm-m).
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For such a conductor, we can assume that the linear/ 
homogeneous/isotropic conducting medium has electric 
permittivity  and magnetic permeability  . Maxwell�’s 
equations inside such a conductor are thus:
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Electric charge is (always) conserved- thus the continuity 
equation inside the conductor is:

thus:

1st order linear, homogeneous differential equation
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The {physical} general solution of this differential equation for 
the free charge density is of the form:

A damped exponential!!!
The continuity equation inside a conductor tells us that any free 
charge density  initially present at time t = 0 is exponentially 
damped in a characteristic time                        = charge relaxation 
time.
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Maxwell�’s equations for a charge-equilibrated conductor
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These equations are different from the previous
derivation(s) of monochromatic plane EM waves
propagating in free space/vacuum and/or in
linear/homogeneous/ isotropic non-conducting materials
Re-derive the wave equations for E&B from scratch. As
before, we apply × ( ) to equations 3) and 4):

We get

and
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General solution(s) - are usually in the form of an oscillatory  
function times a damping term ( a decaying exponential) �– in the 
direction of the propagation of the EM wave. A complex plane-
wave type solutions for E and B associated with the above wave 
equation(s) are of the general form:
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With {frequency-dependent} complex wave number:
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The imaginary part of k , = m(k) results in an
exponential attenuation/damping of the
monochromatic plane EM wave with increasing z:

These solutions satisfy the above wave equations for any 
choice
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The characteristic distance over which E and B are
attenuated/reduced to 1/e=0.3679- of their initial
values (at z = 0) is known as the skin depth

1/25/2012 143



The real part of k- determines the spatial wavelength
( )-the propagation speed v( ) and also the index of
refraction
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The above plane wave solutions satisfy the above wave 
equations(s). Maxwell�’s equations rue out the presence 
of any longitudinal i.e, z- component of E and B.
E and B are purely transverse waves (as before), even in 
a conductor!
If we consider - a linearly polarized monochromatic
plane EM wave propagating in the +z�ˆ -direction in a
conducting medium, e.g.

then
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The complex wave-number
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Then we see that:

has

has
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inside a conductor, E and B are no longer in phase with each other!!!

Phases of E and B

With phase difference:

We also see that:

1/25/2012 149



The real/physical E and B fields associated with linearly 
polarized monochromatic plane EM waves propagating in a 
conducting medium are exponentially damped:
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where

and
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Definition of the skin depth in a conductor:
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In the presence of free surface charges and free surface 
currents- the Bc�’s for reflection and refraction at e.g. a 
dielectric-conductor interface become:

BC 1): (normal D at interface):

BC 2): (tangential E at interface):

BC 3): (normal B at interface):

BC 4): (tangential H at interface):

1/25/2012 154



Where  n21  is a unit vector to the interface, pointing 
from medium (2) into medium (1).

Incident EM wave {medium (1)}:

and
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Reflected EM wave {medium (1)}:

and

Transmitted EM wave {medium (2)}:

and

complex wave-number in {conducting} medium (2):
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In medium (1) EM fields are:

In medium (2) EM fields are:
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Apply BC�’s at the z = 0 interface in the x-y plane:

but
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Thus we obtain:

with

The relations for reflection/transmission of EMW at normal incidence on a
non-conductor/conductor boundary are identical to those obtained for
reflection / transmission of EMW at normal incidence on a
boundary/interface between two non-conductors- except for the replacement
of with a complex .
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For the case of a perfect conductor, the conductivity

Thus, for a perfect conductor, we see that:
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For a perfect  conductor the reflection and transmission 
coefficients are:

We also see that for a perfect conductor, for normal
incidence, the reflected wave undergoes a 180 degree phase
shift with respect to the incident wave at the interface at z = 0
in the x-y plane. A perfect conductor screens out all EM
waves from propagating in its interior.
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For a good conductor- the conductivity is large- but finite. The 
reflection coefficient R for monochromatic plane EM waves at 
normal incidence on a good conductor is not unity- but close 
to it. {This is why good conductors make good mirrors!}. 

Where
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Define

Thus, the reflection coefficient R for monochromatic plane 
EM waves at normal incidence on a good conductor is:

with
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Obviously, only a small fraction of the normally-incident
monochromatic plane EM wave is transmitted into the good
conductor- since

Note that the transmitted wave is exponentially attenuated
in the z-direction; the E and B fields in the good conductor
fall to 1/e of their initial {z = 0} values (at/on the interface)
after the monochromatic plane EM wave propagates a
distance of one skin depth in z into the conductor:
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Note also that the energy associated with the transmitted
monochromatic plane EM wave is ultimately dissipated in the
conducting medium as heat.
In {bulk} metals-the transmitted wave is {rapidly}
absorbed/attenuated in the metal- we can only study the
reflection coefficient R.
A full description of the physics of reflection from the surface
of a metal conductor as a function of angle of incidence-
requires the use of a complex dispersion relation
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The electromagnetic state of matter at a given observation point 
r at a given time t is described by four macroscopic quantities:

1.) The volume density                 
of free charge:

2.) The volume density 
of electric dipoles:

3.) The volume density 
of magnetic dipoles:

4.) The free electric current 
/unit area:

electric polarization

magnetization

{free} current density
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These four quantities are related to the macroscopic E and B fields by the 
four Maxwell equations for matter
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Then Maxwell�’s equations in matter, for
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We also have Ohm�’s Law

and the Continuity eqn.

Then applying the curl operator to Faraday�’s Law:

We thus obtain the inhomogeneous wave equation:

{and a similar one for B }
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For non-oronducting/poorly-conducting media, i.e.
insulators/ dielectrics- the first two terms on the RHS are
important �– they explain many optical effects such as
dispersion (wavelength/frequency-dependence of the index of
refraction), absorption, double �– refraction/bi-refringence,
optical activity, . . . .

Note that the                                          term is often zero- P uniform 
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For good conductors (e.g. metals), the conduction term

is the most important, because it explains the opacity of
metals (e.g. in the visible light region) and also explains the
high reflectance of metals.
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