Preparatory School to the Winter College on Optics and the Winter College on

 Optics: Advances in Nano-Optics and Plasmonics
30 January - 3 February, 2012

Preparatory School to the Winter College on Optics:

I. Ashraf Zahid
Quaid-I-Azam University, Pakistan

ELECTROMAGNETIC WAVES IN VACUUM

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Advances in Nano-optics and Plasmonics $30^{\text {th }}$ January-3 ${ }^{\text {rd }}$ February 2012

ELECTROMAGNETIC WAVES IN VACUUM
 > THE WAVE EQUATION

* In regions of free space (i.e. the vacuum) - where no electric charges - no electric currents and no matter of any kind are present - Maxwell's equations (in differential form) are:

Set of coupled first-order partial differential equations

ELECTROMAGNETIC WAVES IN VACUUM . .

- We can de-couple Maxwell's equations -by applying the curl operator to equations 3) and 4):

$$
\begin{array}{l|l}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) & \vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\vec{\nabla} \times\left(\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right) \\
=\vec{\nabla}(\vec{y} \cdot \vec{E})-\nabla^{2} \vec{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) & =\vec{\nabla}(\vec{y} \cdot \vec{B})-\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial}{\partial t}(\vec{\nabla} \times \vec{E}) \\
=-\nabla^{2} \vec{E}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right) & =-\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(-\frac{\partial \vec{B}}{\partial t}\right) \\
=\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} & =\nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{array}
$$

ELECTROMAGNETIC WAVES IN VACUUM . . .

> These are three-dimensional de-coupled wave equations.
>Have exactly the same structure - both are linear, homogeneous, 2 nd order differential equations.
> Remember that each of the above equations is explicitly dependent on space and time,

$$
\text { i.e. } \vec{E}=\vec{E}(\vec{r}, t) \text { and } \vec{B}=\vec{B}(\vec{r}, t) \text { : }
$$

$$
\nabla^{2} \vec{E}(\vec{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}=0
$$

$$
\nabla^{2} \vec{B}(\vec{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}(\vec{r}, t)}{\partial t^{2}}=0
$$

ELECTROMAGNETIC WAVES IN VACUUM . . .

- Thus, Maxwell's equations implies that empty space - the vacuum \{which is not empty, at the microscopic scale\} supports the propagation of \{macroscopic\} electromagnetic waves - which propagate at the speed of light \{in vacuum \}:

$$
c=1 / \sqrt{\varepsilon_{o} \mu_{o}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

MONOCHROMATIC EM PLANE WAVES

Monochromatic EM plane waves propagating in free space/the vacuum are sinusoidal EM plane waves consisting of a single frequency f , wavelength $\lambda=c f$, angular frequency $\omega=2 \pi f$ and wave-number $k=2 \pi / \lambda$. They propagate with speed $c=f \lambda=\omega k$. In the visible region of the EM spectrum $\{\sim 380 \mathrm{~nm}$ (violet) $\leq \lambda \leq \sim$ 780 nm (red) $\}$ - EM light waves (consisting of real photons) of a given frequency / wavelength are perceived by the human eye as having a specific, single colour.

Single- frequency sinusoidal EM waves are called mono-chromatic.

MONOCHROMATIC EM PLANE WAVES

EM waves that propagate e.g. in the $+z^{\wedge}$ direction but which additionally have no explicit x - or y-dependence are known as plane waves, because for a given time, t the wave front(s) of the EM wave lie in a plane which is \perp to the \hat{z}-axis,

MONOCHROMATIC EM PLANE WAVES

There also exist spherical EM waves - emitted from a point source - the wave-fronts associated with these EM waves are spherical - and thus do not lie in a plane \perp to the direction of propagation of the EM wave

Portion of a spherical wavefront associated with a spherical wave

MONOCHROMATIC EM PLANE WAVES

If the point source is infinitely far away from observer- then a spherical wave \rightarrow plane wave in this limit, (the radius of curvature $\rightarrow \infty$); a spherical surface becomes planar as $\mathrm{R}_{\mathrm{C}} \rightarrow \infty$.

$$
\text { Criterion for a plane wave: } \lambda \ll R_{C}
$$

Monochromatic plane waves associated with \vec{E} and \vec{B}

$$
\tilde{\tilde{B}}(z, t)=\overrightarrow{\tilde{B}}_{0} e^{i(k-\omega t)}
$$

$$
\overrightarrow{\tilde{E}}(z, t)=\overrightarrow{\tilde{E}}_{0} e^{i(k z-\omega t)}
$$

MONOCHROMATIC EM PLANE WAVES

n.b. complex vectors:

n.b. complex vectors:
e.g. \quad e.g. $\overrightarrow{\tilde{E}}_{o}=E_{o} e^{i \delta} \hat{\tilde{B}}{ }_{o}=B_{o} e^{i \delta} \hat{y}$
n.b. The real, physical (instantaneous) fields are:

$$
\left\{\begin{array}{c}
\vec{E}(\vec{r}, t) \equiv \operatorname{Re}(\overrightarrow{\tilde{E}}(\vec{r}, t)) \\
\hline \vec{B}(\vec{r}, t) \equiv \operatorname{Re}(\overrightarrow{\tilde{B}}(\vec{r}, t))
\end{array}\right\}
$$

Very important to keep in mind!!

MONOCHROMATIC EM PLANE WAVES

Maxwell's equations for free space impose additional constraints on $\overrightarrow{\vec{E}}_{0}$ and $\overrightarrow{\vec{B}}_{0}$

$$
\begin{aligned}
& \text { Since: } \vec{\nabla} \cdot \vec{E}=0 \quad \text { and: } \quad \vec{\nabla} \cdot \vec{B}=0 \\
& =\operatorname{Re}(\vec{\nabla} \cdot \overrightarrow{\tilde{E}})=0 \quad=\operatorname{Re}(\vec{\nabla} \cdot \overrightarrow{\tilde{B}})=0
\end{aligned}
$$

These two relations can only be satisfied

$$
\forall(\vec{r}, t) \text { if } \vec{\nabla} \cdot \tilde{E}=0 \quad \forall(\vec{r}, t) \text { and } \vec{\nabla} \cdot \tilde{B}=0 \quad \forall(\vec{r}, t)
$$

In Cartesian coordinates: $\quad \vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}$

$$
\text { Thus: }(\vec{\nabla} \cdot \overrightarrow{\tilde{E}})=0 \quad \text { and } \quad(\vec{\nabla} \cdot \overrightarrow{\vec{B}})=0 \text { become: }
$$

MONOCHROMATIC EM PLANE WAVES

$$
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(\overrightarrow{\tilde{E}}_{e} e^{i(k-a t)}\right)=0 \text { and } \quad\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(\overrightarrow{\vec{B}}_{0} e^{i(k-\alpha t)}\right)=0
$$

Now suppose we do allow:

$$
\begin{aligned}
& \overrightarrow{\tilde{E}}_{o}=\underbrace{\left(E_{o x} \hat{x}+E_{o y} \hat{y}+E_{o z} \hat{z}\right)}_{\text {polarization in } \hat{x}-\hat{y}-\hat{z}(3-D)} e^{i \delta} \equiv \vec{E}_{o} e^{i \delta} \\
& \overrightarrow{\tilde{B}}_{o}=\underbrace{\left(B_{o o} \hat{x}+B_{o y} \hat{y}+B_{o z} \hat{z}\right)}_{\text {polarization in } \hat{x}-\hat{y}-\hat{z}(3-D)} e^{i \delta} \equiv \vec{B}_{o} e^{i \delta}
\end{aligned}
$$

Then

$$
\begin{array}{|l}
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(E_{o x} \hat{x}+E_{o y} \hat{y}+E_{o z} \hat{z}\right) e^{i \delta} e^{i((k z-\omega t)}=0 \\
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(B_{o x} \hat{x}+B_{o y} \hat{y}+B_{o z} \hat{z}\right) e^{i \delta} e^{i(k z-\omega t)}=0 \\
\hline
\end{array}
$$

MONOCHROMATIC EM PLANE WAVES

$E_{o x}, E_{o y}, E_{o z}=$ Amplitudes (constants) of the electric field components in x, y, z directions respectively.
$B_{o x}, B_{o y}, B_{o z}=$ Amplitudes (constants) of the magnetic field components in x, y, z directions respectively.

$$
\begin{array}{|l|}
\frac{\partial}{\partial x} \hat{x} \cdot E_{o x} \hat{x} e^{i(k z-\omega t)} e^{i \delta}=0 \\
\frac{\partial}{\partial y} \hat{y} \bullet E_{o y} \hat{y} e^{i(k z-\omega t)} e^{i \delta}=0 \\
\hline
\end{array}
$$

$$
\frac{\frac{\partial}{\partial x} \hat{x} \cdot B_{o x} \hat{x} e^{i(k z-\omega t)} e^{i \delta}=0}{\frac{\partial}{\partial y} \hat{y} \cdot B_{o y} \hat{y} e^{i(k z-\omega t)} e^{i \delta}=0}
$$

$$
\frac{\partial}{\partial z}\left(e^{a z}\right)=a e^{a z}
$$

MONOCHROMATIC EM PLANE WAVES .. .

$$
\begin{array}{|l}
\frac{\partial}{\partial z} \hat{z} \cdot E_{o z} \hat{z} e^{i(k z-\omega t)} e^{i \delta}=i k E_{o z} e^{i(k z-\omega t)} e^{i \delta}=0
\end{array} \frac{\partial \text { true iff } E_{o z} \equiv 0}{\frac{\partial}{\partial z} \hat{z} \cdot B_{o z} \hat{z} e^{i(k z-\omega t)} e^{i \delta}=i k \mathrm{E}_{o z} e^{i(k z-\omega t)} e^{i \delta}=0} \Leftarrow
$$

$>$ Maxwell's equations additionally impose the restriction that an electromagnetic plane wave cannot have any component of \mathbf{E} or B \| to (or anti- I| to) the propagation direction (in this case here, the z-direction)
$>$ Another way of stating this is that an EM wave cannot have any longitudinal components of \mathbf{E} and \mathbf{B} (i.e. components of \mathbf{E} and \mathbf{B} lying along the propagation direction).

MONOCHROMATIC EM PLANE WAVES . . .

> Thus, Maxwell's equations additionally tell us that an EM wave is a purely transverse wave (at least for propagation in free space) - the components of \mathbf{E} and \mathbf{B} must be \perp to propagation direction.
> The plane of polarization of an EM wave is defined (by convention) to be parallel to \mathbf{E}.

MONOCHROMATIC EM PLANE WAVES

Maxwell's equations impose another restriction on the allowed form of E and B for an EM wave:

$$
\begin{aligned}
& \vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \\
& =\operatorname{Re}(\vec{\nabla} \times \overrightarrow{\tilde{B}})=\operatorname{Re}\left(\frac{1}{c^{2}} \frac{\partial \overrightarrow{\tilde{E}}}{\partial t}\right) \\
& \text { Can only be satisfied } \forall(\vec{r}, t) \text { iff: } \\
& \vec{\nabla} \times \overrightarrow{\tilde{E}}=-\frac{\partial \vec{B}}{\partial t} \\
& \text { and/or: } \\
& \vec{\nabla} \times \overrightarrow{\tilde{B}}=\frac{1}{c^{2}} \frac{\partial \overrightarrow{\tilde{E}}}{\partial t}
\end{aligned}
$$

MONOCHROMATIC EM PLANE WAVES

$$
\begin{aligned}
& \left.\vec{\nabla} \times \overrightarrow{\tilde{E}}=\left(\frac{\partial \tilde{\tilde{F}}_{z}}{\partial y}-\frac{\partial \tilde{E}_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial \tilde{E}_{x}}{\partial z}-\frac{\partial \tilde{\tilde{F}}_{y}}{\partial x}\right) \hat{y}+\left(\frac{\partial \tilde{\tilde{F}}_{y}}{\partial x}-\frac{\partial \tilde{\tilde{F}}_{x}}{\partial y}\right) \hat{z}=-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x}-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y}-\frac{\partial \tilde{\tilde{H}}_{z}}{\partial t} \hat{z}\right) \\
& \vec{\nabla} \times \tilde{B}=\left(\frac{\partial \tilde{B}_{z}}{\partial y}-\frac{\partial \tilde{B}_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial \tilde{B}_{x}}{\partial z}-\frac{\partial \tilde{B}_{y}}{\partial x}\right) \hat{y}+\left(\frac{\partial \tilde{B}_{y}}{\partial x}-\frac{\partial \tilde{B}_{x}}{\partial y}\right) \hat{z}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x}+\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}+\frac{1}{c^{2}} \frac{\partial \tilde{\tilde{p}}_{z}}{\partial t} \hat{z}
\end{aligned}
$$

$$
\begin{array}{|l}
\hline \overrightarrow{\tilde{E}}=\tilde{E}_{x} \hat{x}+\tilde{E}_{y} \hat{y}+\tilde{\tilde{}}_{z}^{\bar{z}} / \hat{z}=\left(E_{o x} \hat{x}+E_{o y} \hat{y}+E_{o z}^{=0} / \hat{z}\right) e^{i(k-\omega t)} e^{i \delta} \\
\hline \overrightarrow{\tilde{B}}=\tilde{B}_{x} \hat{x}+\tilde{B}_{y} \hat{y}+\tilde{B}_{z} \hat{z} \hat{z}=\left(B_{o x} \hat{x}+B_{o y} \hat{y}+B_{o z}^{=0} \hat{z}\right) e^{i(k z-\omega t)} e^{i \delta}
\end{array}
$$

MONOCHROMATIC EM PLANE WAVES

$$
\begin{array}{|l|}
\mid \overrightarrow{\tilde{E}}=\tilde{E}_{x} \hat{x}+\tilde{E}_{y} \hat{y}=\left(E_{o x} \hat{x}+E_{o y} \hat{y}\right) e^{i(k-\omega t)} e^{i \delta} \\
\hline \overrightarrow{\tilde{B}}=\tilde{B}_{x} \hat{x}+\tilde{B}_{y} \hat{y}=\left(B_{o x} \hat{x}+B_{o y} \hat{y}\right) e^{i(k z-\omega t)} e^{i \delta} \\
\hline
\end{array}
$$

$$
\begin{array}{|l}
\vec{\nabla} \times \overrightarrow{\tilde{E}}=-\frac{\partial \tilde{E}_{y}}{\partial z} \hat{x}+\frac{\partial \tilde{E}_{x}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x}-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y} \\
\vec{\nabla} \times \overrightarrow{\tilde{B}}=-\frac{\partial \tilde{B}_{y}}{\partial z} \hat{x}+\frac{\partial \tilde{B}_{x}}{\partial z} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x}+\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}
\end{array}
$$

Can only be satisfied/ can only be true iff the \hat{x} and \hat{y} relations are separately / independently satisfied $\forall(\vec{r}, t)$!

MONOCHROMATIC EM PLANE WAVES

$$
\begin{align*}
& \vec{\nabla} \times \tilde{B}: \begin{array}{|c|}
-\frac{\partial \tilde{B}_{y}}{\partial z} \hat{x}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x} \\
+\frac{\partial \tilde{B}_{x}}{\partial z} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}
\end{array} \Rightarrow \frac{-\frac{\partial \tilde{B}_{y}}{\partial z}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t}}{} \Rightarrow \begin{array}{l}
\frac{\partial \tilde{B}_{x}}{\partial z}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t}
\end{array} \Rightarrow i k B_{o y}=-\frac{1}{c^{2}} i \omega E_{o x} \tag{2}
\end{align*}
$$

From (1):

$$
\begin{equation*}
i k \tilde{E}_{o y}=-i \omega B_{o x} \Rightarrow E_{o y}=-\left(\frac{\omega}{k}\right) B_{o x} \text { or: } B_{o x}=-\left(\frac{k}{\omega}\right) E_{o y} \tag{4}
\end{equation*}
$$

MONOCHROMATIC EM PLANE WAVES

From (2):

$$
\Rightarrow E_{o x}=+\left(\frac{\omega}{k}\right) B_{o y} \quad \text { or: } \quad B_{o y}=+\left(\frac{k}{\omega}\right) E_{o x}
$$

From (3): $\quad-i k B_{o y}=-\frac{1}{c^{2}} i \omega E_{o x} \Rightarrow B_{o y}=+\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{o x}$
From (4): $\quad i k B_{o x}=-\frac{1}{c^{2}} i \omega E_{o y} \Rightarrow B_{o x}=-\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{o y}$

$$
c=f \lambda=(2 \pi f)\left(\frac{\lambda}{2 \pi}\right)=\left(\frac{\omega}{k}\right) \quad \frac{1}{c}=(k / \omega) \quad(k=2 \pi / \lambda)
$$

MONOCHROMATIC EM PLANE WAVES . . .

$\overrightarrow{\vec{\nabla}} \times \overrightarrow{\tilde{E}}:$
$\vec{\nabla} \times \tilde{B}:$

$B_{o x}=-\frac{1}{c} E_{o y}$
$B_{o y}=+\frac{1}{c} E_{o x}$
$B_{o y}=+\frac{1}{c} E_{o x}$
$B_{o x}=-\frac{1}{c} E_{o y}$

Maxwell's Equations also have some redundancy encrypted into them!

Actually we have only two independent relations:

MONOCHROMATIC EM PLANE WAVES

Very Useful Table:

$$
\begin{array}{|l|l|}
\hline \hat{x} \times \hat{y}=\hat{z} & \hat{y} \times \hat{x}=-\hat{z} \\
\hat{y} \times \hat{z}=\hat{x} & \hat{z} \times \hat{y}=-\hat{x} \\
\hat{z} \times \hat{x}=\hat{y} & \hat{x} \times \hat{z}=-\hat{y} \\
\hline
\end{array}
$$

Two relations can be written compactly into one relation:

$$
\overrightarrow{\tilde{B}}_{o}=\frac{1}{c}\left(\hat{z} \times \overrightarrow{\tilde{E}}_{o}\right)
$$

Physically this relation states that E and B are:
$>$ in phase with each other.
$>$ mutually perpendicular to each other $-(\mathbf{E} \perp \mathbf{B}) \perp$ z $^{\wedge}$

MONOCHROMATIC EM PLANE WAVES . . .

The E and B fields associated with this monochromatic plane EM wave are purely transverse $\{$ n.b. this is as also required by relativity at the microscopic level - for the extreme relativistic particles - the (massless) real photons travelling at the speed of light c that make up the macroscopic monochromatic plane EM wave.\}
The real amplitudes of E and B are related to each other by:

$$
B_{o}=\frac{1}{c} E_{o} \quad \text { with } B_{o}=\sqrt{B_{o x}^{2}+B_{o y}^{2}} \text { and } E_{o}=\sqrt{E_{o x}^{2}+E_{o y}^{2}}
$$

Instantaneous Poynting's Vector for a linearly polarized EM wave

$$
\begin{aligned}
& \vec{S}(z, t)=\frac{1}{\mu_{o}} \vec{E}(z, t) \times \vec{B}(z, t)=\frac{1}{\mu_{o}} \operatorname{Re}\{\tilde{\tilde{E}}(z, t)\} \times \operatorname{Re}\{\tilde{\tilde{B}}(z, t)\} \\
& \vec{S}(z, t)=\frac{1}{\mu_{o}} E_{o} B_{o} \cos ^{2}(k z-\omega t+\delta) \underbrace{(\hat{x} \times \hat{y})}_{=2} \\
& \vec{S}(z, t)=\frac{1}{\mu_{o}} E_{o} B_{o} \cos ^{2}(k z-\omega t+\delta) \hat{z} \quad\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
\end{aligned}
$$

\Rightarrow EM Power flows in the direction of propagation of the EM wave (here, the $+z^{\wedge}$ direction)

Instantaneous Poynting's Vector for a linearly polarized EM wave

This is the paradigm for a monochromatic plane wave. The wave as a whole is said to be polarized in the x direction (by convention, we use the direction of E to specify the polarization of an electromagnetic wave).

Instantaneous Energy \& Linear Momentum \& Angular Momentum in EM Waves

Instantaneous Energy Density Associated with an EM Wave:

$$
u_{E M}(\vec{r}, t)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\frac{1}{\mu_{o}} B^{2}(\vec{r}, t)\right)=u_{\text {elect }}(\vec{r}, t)+u_{\text {mag }}(\vec{r}, t)
$$

where $u_{\text {elect }}(\vec{r}, t)=\frac{1}{2} \varepsilon_{o} E^{2}(\vec{r}, t)$

$$
\text { and } u_{\text {mag }}(\vec{r}, t)=\frac{1}{2 \mu_{o}} B^{2}(\vec{r}, t)=\frac{1}{2} \varepsilon_{o} E^{2}(\vec{r}, t)
$$

Instantaneous Energy \& Linear Momentum \& Angular Momentum in EM Waves

But $B^{2}=\frac{1}{c^{2}} E^{2}$ - EM waves in vacuum, and $\frac{1}{c^{2}}=\varepsilon_{o} \mu_{o}$

$$
\begin{gathered}
u_{E M}(\vec{r}, t)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\frac{\varepsilon_{o} \mu_{o}}{\mu_{o}} E^{2}(\vec{r}, t)\right)=\frac{1}{2}\left(\varepsilon_{o} E^{2}(\vec{r}, t)+\varepsilon_{o} E^{2}(\vec{r}, t)\right) \\
u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(\vec{k} \bullet \vec{r}-\omega t+\delta)\left(\frac{\mathrm{Joules}}{\mathrm{~m}^{3}}\right)
\end{gathered}
$$

$u_{\text {elect }}(\vec{r}, t)=u_{\text {mag }}(\vec{r}, t)$ - EM waves propagating in the vacuum !!!!

Instantaneous Poynting's Vector Associated with an EM Wave

$$
\vec{S}(\vec{r}, t)=\frac{1}{\mu_{o}} \vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t)=\frac{1}{\mu_{o}} \operatorname{Re}\{\tilde{\vec{E}}(z, t)\} \times \operatorname{Re}\{\tilde{\vec{B}}(z, t)\}\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

For a linearly polarized monochromatic plane EM wave propagating in the vacuum,

$$
\vec{S}(\vec{r}, t)=c\left(\frac{\varepsilon_{o} \mu_{o}^{\prime}}{\mu_{o}^{\prime}}\right) E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}=c \varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}
$$

But

$$
u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)
$$

$$
\vec{S}(\vec{r}, t)=c u_{E M}(\vec{r}, t) \hat{z}
$$

Instantaneous Poynting's Vector Associated with an EM Wave

The propagation velocity of energy $\vec{v}_{\text {prop }}=c \hat{z}$
Poynting's Vector = Energy Density * Propagation Velocity

$$
\vec{S}(\vec{r}, t)=u_{E M}(\vec{r}, t) \vec{v}_{\text {prop }}
$$

Instantaneous Linear Momentum Density Associated with an EM Wave:

$$
\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{0} \mu_{0} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t) \quad\left(\frac{\mathrm{kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

Instantaneous Linear Momentum Density Associated with an EM Wave

For linearly polarized monochromatic plane EM waves propagating in the vacuum:

$$
\vec{\wp}_{E M}=\frac{1}{c^{\underline{z}}} \ell c \varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta) \hat{z}=\frac{1}{c} \underbrace{\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)}_{=u_{I M}} \hat{z}
$$

But: $\quad u_{E M}(\vec{r}, t)=\varepsilon_{o} E^{2}(\vec{r}, t)=\varepsilon_{o} E_{o}^{2} \cos ^{2}(k z-\omega t+\delta)$

$$
\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{0} \mu_{0} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t) \hat{z}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

Instantaneous Angular Momentum Density Associated with an EM wave

$$
\vec{\ell}_{E M}(\vec{r}, t)=\vec{r} \times \vec{\wp}_{E M}(\vec{r}, t)\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right)
$$

But:

$$
\vec{\wp}_{E M}(\vec{r}, t)=\varepsilon_{o} \mu_{o} \vec{S}(\vec{r}, t)=\frac{1}{c^{2}} \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t) \hat{z}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)
$$

For an EM wave propagating in the $+z^{\wedge}$ direction:

$$
\begin{array}{r}
\vec{\ell}_{E M}(\vec{r}, t)=\frac{1}{c^{2}} \vec{r} \times \vec{S}(\vec{r}, t)=\frac{1}{c} u_{E M}(\vec{r}, t)(\vec{r} \times \hat{z})\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right) \\
\uparrow
\end{array}
$$

Depends on the choice of origin ${ }_{31}$

Instantaneous Power Associated with an EM wave

The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing volume v (containing EM fields in the volume v) is:

$$
P_{E M}(t)=\frac{\partial U_{E M}(t)}{\partial t}=\int_{v} \frac{\partial u_{E M}(\vec{r}, t)}{\partial t} d \tau=-\oint_{S} \vec{S}(\vec{r}, t) \cdot d \vec{a}
$$

The instantaneous EM power crossing (imaginary) surface is:

$$
P_{E M}(t)=-\int_{S} \vec{S}(\vec{r}, t) \cdot d \vec{a}_{\perp}
$$

The instantaneous total $E M$ energy contained in volume v

$$
U_{E M}(t)=\int_{v} u_{E M}(\vec{r}, t) d \tau \quad \text { (Joules) }
$$

Instantaneous Angular Momentum Density Associated with an EM wave

The instantaneous total EM linear momentum contained in the volume v is:

$$
\vec{p}_{E M}(t)=\int_{v} \vec{\wp}_{E M}(\vec{r}, t) d \tau \quad\left(\frac{\mathrm{~kg}-\mathrm{m}}{\mathrm{sec}}\right)
$$

The instantaneous total EM angular momentum contained in the volume v is:

$$
\overrightarrow{\mathcal{L}}_{E M}(t)=\int_{v} \vec{\ell}_{E M}(\vec{r}, t) d \tau \quad\left(\frac{\mathrm{~kg}-\mathrm{m}^{2}}{\mathrm{sec}}\right)
$$

Time-Averaged Quantities Associated with EM Waves

Usually we are not interested in knowing the instantaneous power $\mathrm{P}(\mathrm{t})$, energy / energy density, Poynting's vector, linear and angular momentum, etc.- because experimental measurements of these quantities are very often averages over many extremely fast cycles of oscillation. For example period of oscillation of light wave

$$
\left.\tau_{\text {light }}=1 / f_{\text {light }} \simeq \frac{1}{10^{15} \mathrm{cps}}=10^{-15} \mathrm{sec} / \text { cycle }=1 \text { femto-sec }\right)
$$

We need time averaged expressions for each of these quantities - in order to compare directly with experimental data- for monochromatic plane EM light waves:

Time-Averaged Quantities Associated with EM Waves

If we have a "generic" instantaneous physical quantity of the form:

$$
Q(t)=Q_{o} \cos ^{2}(\omega t)
$$

The time-average of $Q(t)$ is defined as:

$$
\langle Q(t)\rangle \equiv\langle Q\rangle=\frac{1}{\tau} \int_{t=0}^{t=\tau} Q(t) d t=\frac{Q_{o}}{\tau} \int_{t=0}^{t=\tau} \cos ^{2}(\omega t) d t
$$

Time-Averaged Quantities Associated with EM Waves

The time average of the $\cos ^{2}(\omega t)$ function:

$$
\begin{aligned}
& \frac{1}{\tau} \int_{0}^{\tau} \cos ^{2}(\omega t) d t=\frac{1}{\tau}\left[\frac{t}{2}+\frac{\sin 2 \omega t}{4 \omega}\right]_{t=0}^{t=r}=\frac{1}{2 \tau}\left[(\tau-0)+\left(\frac{\sin 2 \omega \tau}{2 \omega}-0\right)\right]=\frac{1}{2 \tau}\left[\tau+\frac{\sin 2 \omega \tau}{2 \omega}\right] \\
& \omega \tau=2 \pi f \tau \quad f=1 / \tau \quad \omega \tau=2 \pi(\tau / \tau)=2 \pi \quad \sin (\omega \tau)=\sin (2 \pi)=0 \\
& \frac{1}{\tau} \int_{0}^{\tau} \cos ^{2}(\omega t) d t=\frac{1}{2 \not t}[\not t]=\frac{1}{2} \quad\langle Q(t)\rangle=\langle Q\rangle=\frac{1}{2} Q_{o}
\end{aligned}
$$

Thus, the time-averaged quantities associated with an EM wave propagating in free space are:

Time-Averaged Quantities Associated with EM Waves

EM Energy Density: $\quad u_{E M}(\vec{r}, t) \Rightarrow\left\langle u_{E M}(\vec{r}, t)\right\rangle$

Total EM Energy:

$$
U_{E M}(t) \Rightarrow\left\langle U_{E M}(t)\right\rangle
$$

Poynting's Vector:

$$
\vec{S}(\vec{r}, t) \Rightarrow\left\langle\vec{S}_{E M}(\vec{r}, t)\right\rangle
$$

EM Power:

$$
P_{E M}(t) \Rightarrow\left\langle P_{E M}(t)\right\rangle
$$

Time-Averaged Quantities Associated with EM Waves

Linear Momentum Density:

$$
\vec{\wp}_{E M}(\vec{r}, t) \Rightarrow\left\langle\vec{\wp}_{E M}(\vec{r}, t)\right\rangle
$$

Linear Momentum:

$$
\vec{p}_{E M}(t) \Rightarrow\left\langle\vec{p}_{E M}(t)\right\rangle
$$

Angular Momentum Density:

$$
\vec{\ell}_{E M}(\vec{r}, t) \Rightarrow\left\langle\vec{\ell}_{E M}(\vec{r}, t)\right\rangle
$$

Angular Momentum:

$$
\overrightarrow{\boldsymbol{L}}_{E M}(t) \Rightarrow\left\langle\overrightarrow{\boldsymbol{\mathcal { L }}}_{E M}(t)\right\rangle
$$

Time-Averaged Quantities Associated with EM Waves

For a monochromatic EM plane wave propagating in free space / vacuum in 'z direction:

$$
\begin{gathered}
\left\langle u_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2} \varepsilon_{o} E_{o}^{2}\left(\frac{\mathrm{Joules}}{\mathrm{~m}^{3}}\right) \\
\left.\langle\vec{S}(\vec{r}, t)\rangle=\frac{1}{2} c \varepsilon_{o} E_{o}^{2} \hat{z}=c\left\langle u_{E M}(\vec{r}, t)\right\rangle \hat{z}\right\rangle\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right) \\
\left\langle\left\langle\vec{\wp}_{\mathrm{EM}}(\vec{r}, t)\right\rangle=\frac{1}{2 c} \varepsilon_{o} E_{o}^{2} \hat{z}=\frac{1}{c^{2}}\langle\vec{S}(\vec{r}, t)\rangle=\frac{1}{c}\left\langle u_{E M}(\vec{r}, t)\right\rangle \hat{z}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{2}-\mathrm{sec}}\right)\right. \\
\left\langle\left\langle\ell_{E M}(\vec{r}, t)\right\rangle=\left(\vec{r} \times\left\langle\vec{\rho}_{E M}(\vec{r}, t)\right\rangle\right)=\frac{1}{c^{2}}(\vec{r} \times\langle\vec{S}(\vec{r}, t)\rangle)=\frac{1}{c}\left\langle u_{\mathrm{EM}}(\vec{r}, t)\right\rangle(\hat{r} \times \hat{z})\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right)\right.
\end{gathered}
$$

Time-Averaged Quantities Associated with EM Waves

Intensity of an EM wave:

$$
I(\vec{r}) \equiv\langle S(\vec{r}, t)\rangle=\langle | \vec{S}(\vec{r}, t)| \rangle=c\left\langle u_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2} c \varepsilon_{o} E_{o}^{2}\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

The intensity of an EM wave is also known as the irradiance of the EM wave - it is the radiant power incident per unit area upon a surface.

ELECTROMAGNETIC WAVES IN MATTER

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Advances in Nano-optics and Plasmonics $30^{\text {th }}$ January-3 ${ }^{\text {rd }}$ February 2012

Electromagnetic Wave Propagation in Linear Media

Consider EM wave propagation inside matter - in regions where there are NO free charges and/ or free currents (the medium is an insulator/non-conductor).
For this situation, Maxwell's equations become:

$$
\begin{array}{ll}
\text { 1) } \vec{\nabla} \cdot \vec{D}(\vec{r}, t)=0 & \text { 2) } \vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0 \\
\text { 3) } \vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t} & \text { 4) } \vec{\nabla} \times \vec{H}(\vec{r}, t)=\frac{\partial \vec{D}(\vec{r}, t)}{\partial t}
\end{array}
$$

Electromagnetic Wave Propagation in Linear Media

The medium is assumed to be linear, homogeneous and isotropic- thus the following relations are valid in this medium:

$$
\vec{D}(\vec{r}, t)=\varepsilon \vec{E}(\vec{r}, t) \quad \text { and }
$$

$$
\vec{H}(\vec{r}, t)=\frac{1}{\mu} \vec{B}(\vec{r}, t)
$$

$>\varepsilon=$ electric permittivity of the medium.
$>\varepsilon=\varepsilon_{o}\left(1+\chi_{e}\right), \chi_{e}=$ electric susceptibility of the medium.
$>\mu=$ magnetic permeability of the medium.
$>\mu=\mu_{o}\left(1+x_{m}\right), x_{m}=$ magnetic susceptibility of the medium.
$>\varepsilon_{o}=$ electric permittivity of free space $=8.85 \times 10^{-12}$ Farads $/ \mathrm{m}$.
$>\mu_{o}=$ magnetic permeability of free space $=4 \pi \times 10^{-7}$ Henrys $/ \mathrm{m}$.

Electromagnetic Wave Propagation in Linear Media

Maxwell's equations inside the linear, homogeneous and isotropic non-conducting medium become:

1) $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=0$
2) $\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0$
3) $\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}$
4) $\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu \varepsilon \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}$

In a linear / homogeneous/isotropic medium, the speed of propagation of EM waves is:

$$
v_{\text {prop }}^{\prime}=\frac{1}{\sqrt{\varepsilon \mu}}
$$

Electromagnetic Wave Propagation in Linear Media

The \boldsymbol{E} and \boldsymbol{B} fields in the medium obey the following wave equation:

$$
\nabla^{2} \vec{E}(\vec{r}, t)=\varepsilon \mu \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}=\frac{1}{v_{\text {prop }}^{\prime 2}} \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}
$$

$$
\nabla^{2} \vec{B}(\vec{r}, t)=\varepsilon \mu \frac{\partial \vec{B}(\vec{r}, t)}{\partial t}=\frac{1}{v_{\text {prop }}^{\prime 2}} \frac{\partial^{2} \vec{B}(\vec{r}, t)}{\partial t^{2}}
$$

Electromagnetic Wave Propagation in Linear Media

For linear / homogeneous / isotropic media:

$$
\begin{array}{ll}
\varepsilon=K_{e} \varepsilon_{o}=\left(1+\chi_{e}\right) \varepsilon_{o} & K_{e}=\frac{\varepsilon}{\varepsilon_{o}}=\left(1+\chi_{e}\right)=\text { relative electric permittivity } \\
\mu=K_{\mathrm{m}} \mu_{0}=\left(1+\chi_{\mathrm{m}}\right) \mu_{o} & K_{\mathrm{m}}=\frac{\mu}{\mu_{o}}=\left(1+\chi_{\mathrm{m}}\right)=\text { relative magnetic permeability }
\end{array}
$$

$$
v_{p r o p}^{\prime}=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{1}{\sqrt{K_{e} \varepsilon_{o} K_{m} \mu_{o}}}=\frac{1}{\sqrt{K_{e} K_{m}}} \frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}=\frac{1}{\sqrt{K_{e} K_{m}}} c
$$

$$
\text { If } \sqrt{K_{e} K_{m} \geq 1} \text { thus } \frac{1}{\sqrt{K_{e} K_{m}}} \leq 1 \Rightarrow v^{\prime 20012} \quad v_{\text {prop }}^{\prime}=\frac{1}{\sqrt{K_{e} K_{m}}} c \leq c
$$

Electromagnetic Wave Propagation in Linear Media

Note also that since $K_{e}=\frac{\varepsilon}{\varepsilon_{0}}$ and $K_{m}=\frac{\mu}{\mu_{0}}$ are dimensionless
quantities, then so is $\frac{1}{\sqrt{K_{e} K_{m}}}$
Define the index of refraction \{ a dimensionless quantity\} of the linear / homogeneous / isotropic medium as:

$$
n \equiv \sqrt{K_{e} K_{m}}=\sqrt{\frac{\varepsilon \mu}{\varepsilon_{o} \mu_{o}}}
$$

Electromagnetic Wave Propagation in Linear Media

Thus, for linear / homogeneous / isotropic media:

$$
v_{p r o p}^{\prime}=c / n(\leq c) \quad \text { because } \quad n \geq 1
$$

Now for many (but not all) linear/homogeneous/isotropic materials:

$$
\mu=\mu_{o}\left(1+\chi_{m}\right) \simeq \mu_{o}
$$

(True for many paramagnetic and diamagnetic-type materials)

$$
\left|\chi_{m}\right| \sim \vartheta\left(10^{-8}\right) \sim 0
$$

Thus

$$
K_{m}=\frac{\mu}{\mu_{o}}=\left(1+\chi_{m}\right) \simeq 1 \Rightarrow n \simeq \sqrt{K_{e}} \text { and } v_{\text {prop }}^{\prime}=\frac{c}{n} \simeq \frac{c}{\sqrt{K_{e}}} \text {. }
$$

Electromagnetic Wave Propagation in Linear Media

The instantaneous EM energy density associated with a linear/homogeneous/isotropic material
$u_{\mathrm{EM}}(\vec{r}, t)=\frac{1}{2}\left(\varepsilon E^{2}(\vec{r}, t)+\frac{1}{\mu} B^{2}(\vec{r}, t)\right)=\frac{1}{2}(\vec{E}(\vec{r}, t) \cdot \vec{D}(\vec{r}, t)+\vec{B}(\vec{r}, t) \cdot \vec{H}(\vec{r}, t))\left(\frac{\text { Joules }}{\mathrm{m}^{3}}\right)$
with

$$
\vec{D}(\vec{r}, t)=\varepsilon \vec{E}(\vec{r}, t) \text { and } \vec{H}(\vec{r}, t)=\frac{1}{\mu} \vec{B}(\vec{r}, t)
$$

Electromagnetic Wave Propagation in Linear Media

The instantaneous Poynting's vector associated with a linear/homogeneous/isotropic material

$$
\vec{S}(\vec{r}, t)=\frac{1}{\mu}(\vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t))=(\vec{E}(\vec{r}, t) \times \vec{H}(\vec{r}, t))\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

The intensity of an EM wave propagating in a linear/homogeneous /isotropic medium is:

$$
I(\vec{r}) \equiv\left\langle\langle\vec{S}(\vec{r}, t)\rangle=v_{\text {prop }}^{\prime}\left(u_{\mathrm{EM}}(\vec{r}, t)\right\rangle=\frac{1}{2} v_{\text {prop }}^{\prime} \varepsilon E_{0}^{2}(\vec{r})=\frac{1}{2}\left(\frac{c}{n}\right) \varepsilon E_{0}^{2}(\vec{r})=\left(\frac{c}{n}\right) \varepsilon E_{o_{m \times x}^{2}}^{2}(\vec{r})\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)\right.
$$

$$
E_{o_{m s}} \equiv \frac{1}{\sqrt{2}} E_{o}
$$

Electromagnetic Wave Propagation in Linear Media

The instantaneous linear momentum density associated with an EM wave propagating in a linear/homogeneous/isotropic medium is:

$$
\left.\vec{S}_{\mathrm{BM}}(\vec{r}, t)=\varepsilon \mu \vec{S}(\vec{r}, t)=\frac{1}{v_{p r o p}^{v^{2}}} \vec{S}(\vec{r}, t)=\varepsilon\right\rangle \frac{1}{\lambda}(\vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t))=\varepsilon(\vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t))\left(\frac{\mathrm{kg}}{\mathrm{~m}^{2}-\sec }\right)
$$

The instantaneous angular momentum density associated with an EM wave propagating in a linear/homogeneous/isotropic medium is:

$$
\vec{\ell}_{E M}(\vec{r}, t)=\vec{r} \times \vec{\wp}_{E M}(\vec{r}, t)=\varepsilon \vec{r} \times(\vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t))\left(\frac{\mathrm{kg}}{\mathrm{~m}-\mathrm{sec}}\right)
$$

Electromagnetic Wave Propagation in Linear Media

Total instantaneous EM energy: $U_{E M}(t)=\int_{v} u_{E M}(\vec{r}, t) d \tau$ (Joules)
$\begin{aligned} & \text { Total instantaneous linear } \\ & \text { momentum: }\end{aligned} \quad \vec{p}_{E M}(t)=\int_{v} \vec{\wp}_{E M}(\vec{r}, t) d \tau\left(\frac{\mathrm{~kg}-\mathrm{m}}{\mathrm{sec}}\right)$
Instantaneous EM Power:

$$
P_{E M}(t)=\frac{\partial U_{E M}(t)}{\partial t}=-\oint_{S} \vec{S}(\vec{r}, t) \cdot d \vec{a}
$$

(Watts)

Total instantaneous angular momentum:

$$
\overrightarrow{\mathcal{L}}_{E M}(t)=\int_{v} \vec{\ell}_{E M}(\vec{r}, t) d \tau \quad\left(\frac{\mathrm{~kg}-\mathrm{m}^{2}}{\mathrm{sec}}\right)
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Suppose the x-y plane forms the boundary between two linear media. A plane wave of frequency ω - travelling in the z - direction and polarized in the x - direction- approaches the interface from the left

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Incident EM plane wave (in medium 1):
Propagates in the $+\hat{z}$-direction (i.e. $\hat{k}_{i m c}=+\hat{k}_{1}=+\hat{z}$), with polarization $\hat{n}_{m c c}=+\hat{x}$

Reflected EM plane wave (in medium 1):
Propagates in the $-\hat{z}$-direction (i.e. $\hat{k}_{\text {ref }}=-\hat{k}_{1}=-\hat{z}$), with polarization $\hat{n}_{\text {reff }}=+\hat{x}$

$\tilde{\tilde{E}}_{\text {ref }}(z, t)=\tilde{E}_{\text {vep }} e^{i\left(-\xi_{1} z-\alpha t\right)} \hat{x}$	with:	$k_{\text {ref }}=\left\|\vec{k}_{\text {ref }}\right\|=k_{1}=\left\|\vec{k}_{1}\right\|=2 \pi / \lambda_{1}$

$$
\tilde{B}_{r e f}(z, t)=\frac{1}{v_{1}} \hat{k}_{\text {ref }} \times \overrightarrow{\tilde{E}}_{\text {ref }}(z, t)=-\frac{1}{v_{1}} \tilde{E}_{o_{\text {ref }}} e^{i\left(-k_{1} z-a t\right)} \hat{y} \quad \text { since: } \quad \hat{k}_{\text {ref }} \times \hat{n}_{\text {ref }}=-\hat{z} \times \hat{x}=-\hat{y}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Transmitted EM plane wave (in medium 2):
Propagates in the $+\hat{z}$-direction (i.e. $\hat{k}_{\text {rame }}=+\hat{k}_{2}=+\hat{z}$), with polarization $\hat{n}_{\text {rasus }}=+\hat{x}$ $\tilde{\tilde{E}}_{\text {maxs }}(z, t)=\tilde{E}_{\text {orma }} e^{i\left(k_{2} z-\alpha\right)} \hat{x} \mid$ with: $k_{\text {maxs }}=\left|\vec{k}_{\text {maxs }}\right|=k_{2}=\left|\overrightarrow{\vec{k}_{2}}\right|=2 \pi / \lambda_{2}=\omega / v_{2}$

Note that \{here, in this situation\} the E-field / polarization vectors are all oriented in the same direction, i.e.

$$
\hat{n}_{\text {inc }}=\hat{n}_{\text {reff }}=\hat{n}_{\text {trans }}=+\hat{x} \quad \text { or equivalently: }
$$

$$
\vec{E}_{\text {inc }}(\vec{r}, t)\left\|\vec{E}_{\text {refl }}(\vec{r}, t)\right\| \vec{E}_{\text {trans }}(\vec{r}, t)
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

At the interface between the two linear / homogeneous / isotropic media -at $z=0$ \{in the $x-y$ plane \} the boundary conditions 1) - 4) must be satisfied for the total E and B -fields immediately present on either side of the interface:

$$
\text { BC 1) Normal } \vec{D} \text { continuous: } \quad \varepsilon_{1} E_{1_{\text {rot }}}^{\perp}=\varepsilon_{2} E_{2_{\text {Tot }}}^{\perp}
$$

(n.b. \perp refers to the $x-y$ boundary, i.e. in the $+\hat{z}$ direction)

$$
\text { BC 2) Tangential } \vec{E} \text { continuous: } \quad E_{1_{\text {Tot }}}^{\|}=E_{2_{\text {Tot }}}^{\|}
$$

($n . b$. \|| refers to the $x-y$ boundary, i.e. in the $x-y$ plane)

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

BC 3) Normal \vec{B} continuous: $\quad B_{1_{\text {Tou }}}^{\perp}=B_{2_{\text {Tou }}}^{\perp}$
(\perp to $x-y$ boundary, i.e. in the $+z^{\wedge}$ direction)
BC 4) Tangential \vec{H} continuous: $\frac{1}{\mu_{1}} B_{1_{\text {Tot }}}^{\|}=\frac{1}{\mu_{2}} B_{2_{\text {rot }}}^{\|}$
(|| to $x-y$ boundary, i.e. in $x-y$ plane)

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

For plane EM waves at normal incidence on the boundary at $\mathrm{z}=$ 0 lying in the x-y plane- no components of E or B (incident, reflected or transmitted waves) - allowed to be along the $\pm z^{\wedge}$ propagation direction(s) - the E and B-field are transverse fields \{constraints imposed by Maxwell's equations\}.
$\mathrm{BC} 1)$ and BC 3) impose no restrictions on such $E M$ waves since:
$\left\{E_{1_{\text {Tot }}}^{\perp}=\mathrm{E}_{\mathrm{I}_{\text {Tot }}}^{z}=0 ; E_{2_{\text {Tot }}}^{\perp}=E_{2_{\text {Tot }}}^{z}=0\right\}$ and $\left\{B_{1_{\text {Tot }}}^{\perp}=B_{1_{\text {Trot }}}^{z}=0 ; B_{2_{\text {Tot }}}^{\perp}=B_{2_{\text {Tot }}}^{z}=0\right\}$
\Rightarrow The only restrictions on plane EM waves propagating with normal incidence on the boundary at $\mathrm{z}=0$ are imposed by BC 2) and BC 4).

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

At $z=0$ in medium 1) (i.e. $z \leq 0$) we must have:

$$
\begin{aligned}
& \overrightarrow{\tilde{\tilde{E}}}_{1_{\text {Tot }}^{\|}}(z=0, t)=\overrightarrow{\tilde{E}}_{\text {inc }}(z=0, t)+\overrightarrow{\tilde{E}}_{\text {ref }}(z=0, t) \text { and } \\
& \frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{1_{\text {Tot }}}^{\|}(z=0, t)=\frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{\text {inc }}(z=0, t)+\frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{r e f}(z=0, t)
\end{aligned}
$$

While at $z=0$ in medium 2) (i.e. $z \geq 0$) we must have:

$$
\begin{array}{r}
\overrightarrow{\tilde{E}}_{2_{\text {Tot }}}(z=0, t)=\overrightarrow{\tilde{E}}_{\text {trans }}(z=0, t) \text { and } \\
\frac{1}{\mu_{2}} \overrightarrow{\tilde{B}}_{2_{\text {Tot }}}^{\|}(z=0, t)=\frac{1}{\mu_{2}} \overrightarrow{\tilde{B}}_{\text {trans }}(z=0, t) \\
\hline
\end{array}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

BC 2) (Tangential E is continuous @ $\mathrm{z}=0$) requires that:

$$
\left.\overrightarrow{\tilde{E}}_{\mathrm{T}_{\text {tor }}^{\|}}\right|_{z=0}=\left.\overrightarrow{\tilde{E}}_{2 \text { Trot }}^{\|}\right|_{z=0} \text { or: } \overrightarrow{\tilde{E}}_{\text {inc }}(z=0, t)+\overrightarrow{\tilde{E}}_{\text {refl }}(z=0, t)=\overrightarrow{\tilde{E}}_{\text {trans }}(z=0, t) \text {. }
$$

BC 4) (Tangential H is continuous @ $z=0$) requires that:

$$
\begin{gathered}
\left.\frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{{ }_{\text {Irot }}}^{\|}\right|_{z=0}=\left.\frac{1}{\mu_{2}} \overrightarrow{\tilde{B}}_{\text {Irot }}^{\|}\right|_{z=0} \\
\text { or: } \frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{\text {inc }}(z=0, t)+\frac{1}{\mu_{1}} \overrightarrow{\tilde{B}}_{\text {ref }}(z=0, t)=\frac{1}{\mu_{2}} \overrightarrow{\tilde{B}}_{\text {rans }}(z=0, t)
\end{gathered}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Using explicit expressions for the complex E and B fields
$\overrightarrow{\tilde{\tilde{E}}}_{\text {inc }}(z, t)=\tilde{E}_{o_{\mathrm{inc}}} e^{i\left(k_{1} z-\alpha t\right.} \hat{x}$
$\overrightarrow{\tilde{E}}_{\text {ref }}(z, t)=\tilde{E}_{o_{r a t}} e^{i\left(-k_{1} z-c t\right)} \hat{x}$
$\overrightarrow{\tilde{E}}_{\text {trams }}(z, t)=\tilde{E}_{o_{\text {zax }}} e^{i\left(k_{2} z-a t\right)} \hat{x}$
into the above boundary condition relations- equations become

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

BC 2) (Tangential \vec{E} continuous @ $z=0$):
BC 4) (Tangential \vec{H} continuous @ $z=0$):

Cancelling the common $\mathrm{e}^{-\mathrm{i} \omega t}$ factors on the LHS \& RHS of above equations - we have at $z=0\{$ everywhere in the $x-y$ plane- must be independent of any time $t\}$:

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

BC 2) (Tangential \vec{E} continuous @ $z=0$):
BC 4) (Tangential \vec{H} continuous @ $z=0$):

$$
\begin{array}{|l|}
\tilde{E}_{o_{\text {mex }}}+\tilde{E}_{o_{\text {mex }}}=\tilde{E}_{o_{\text {max }}} \\
\hline \frac{1}{\mu_{1} v_{1}} \tilde{E}_{o_{\text {max }}}-\frac{1}{\mu_{1} v_{1}} \tilde{E}_{o_{\text {ere }}}=\frac{1}{\mu_{2} v_{2}} \tilde{E}_{o_{\text {omax }}} \\
\hline
\end{array}
$$

Assuming that $\left\{\mu_{1}\right.$ and $\left.\mu_{2}\right\}$ and $\left\{v_{1}\right.$ and $\left.v_{2}\right\}$ are known / given for the two media, we have two equations (from BC 2) and BC 4) \} and three unknowns $\left\{\tilde{E}_{0_{\text {inc }}} \tilde{E}_{o_{\text {ret }}}, \tilde{E}_{o_{\text {rous }}}\right\}$
\rightarrow Solve above equations simultaneously for
$\left\{\tilde{E}_{o_{r e f}}\right.$ and $\left.\tilde{E}_{o_{\text {rast }}}\right\}$ in terms of / scaled to $\tilde{E}_{o_{m e}}$.
First (for convenience) let us define:

$$
\beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

BC 4) (Tangential \boldsymbol{H} continuous @ $\mathrm{z}=0$) relation becomes:

$$
\tilde{E}_{o_{m e x}}-\tilde{E}_{o_{r e f t}}=\beta \tilde{E}_{o_{\text {onems }}}
$$

BC 2) (Tangential \mathbf{E} continuous @ $z=0$):

$$
\tilde{E}_{o_{m e c}}+\tilde{E}_{o_{\text {ref }}}=\tilde{E}_{o_{\text {raxu }}}
$$

BC 4) (Tangential \boldsymbol{H} continuous @ $z=0$):

$$
\tilde{E}_{O_{\text {me }}}-\tilde{E}_{o_{r a f}}=\beta \tilde{E}_{o_{\text {trass }}} \quad \text { with } \quad \beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Add and Subtract BC 2) and BC 4) relations:

Insert the result of eqn. (2+4) into eqn. (2-4):

$$
\tilde{E}_{o_{\text {ref }}}=\left(\frac{1-\beta}{\not 2}\right)\left(\frac{\not 2}{1+\beta}\right) \tilde{E}_{o_{m c}}=\left(\frac{1-\beta}{1+\beta}\right) \tilde{E}_{o_{m c}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

$$
\tilde{E}_{o_{\text {refl }}}=\left(\frac{1-\beta}{1+\beta}\right) \tilde{E}_{o_{\text {incc }}} \text { and } \tilde{E}_{o_{\text {rans }}}=\left(\frac{2}{1+\beta}\right) \tilde{E}_{o_{\text {incc }}}
$$

Now: $\beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}$ and: $v_{1}=\frac{c}{n_{1}}$, $v_{2}=\frac{c}{n_{2}}$ where: $n_{1}=\sqrt{\frac{\varepsilon_{1} \mu_{1}}{\varepsilon_{0} \mu_{o}}}$ and $n_{2}=\sqrt{\frac{\varepsilon_{2} \mu_{2}}{\varepsilon_{0} \mu_{o}}}$

$$
\beta=\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}=\frac{\mu_{1}\left(c / n_{1}\right)}{\mu_{2}\left(c / n_{2}\right)}=\frac{\mu_{1} n_{2}}{\mu_{2} n_{1}}=\frac{\mu_{1} \sqrt{\varepsilon_{2} \mu_{2} / \varepsilon_{o} \mu_{o}}}{\mu_{2} \sqrt{\varepsilon_{1} \mu_{1} / \varepsilon_{o} \mu_{o}}}=\frac{\mu_{1}}{\mu_{2}} \frac{\sqrt{\varepsilon_{2} \mu_{2}}}{\sqrt{\varepsilon_{1} \mu_{1}}}=\sqrt{\left(\frac{\varepsilon_{2}}{\mu_{2}}\right) /\left(\frac{\varepsilon_{1}}{\mu_{1}}\right)}=\sqrt{\frac{\varepsilon_{2} \mu_{1}}{\varepsilon_{1} \mu_{2}}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Now if the two media are both paramagnetic and/or diamagnetic, such that

$$
\left|\chi_{m_{1,2}}\right| \ll 1
$$

$$
\text { i.e. } \mu_{1}=\mu_{o}\left(1+\chi_{m_{1}}\right) \approx \mu_{o} \text { and: } \mu_{2}=\mu_{o}\left(1+\chi_{m_{2}}\right) \approx \mu_{o}
$$

Very common for many (but not all) non-conducting linear/ homogeneous/isotropic media

Then $\beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}} \simeq\left(\frac{v_{1}}{v_{2}}\right)=\left(\frac{n_{2}}{n_{1}}\right)$ for $\mu_{1} \approx \mu_{2} \approx \mu_{o}$ or $\chi_{m_{1,2}} \mid \ll 1$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Then

$$
\begin{aligned}
& \tilde{E}_{o_{r a t}}=\left(\frac{1-\beta}{1+\beta}\right) \tilde{E}_{o_{\text {orc }}} \simeq\left(\frac{1-\left(v_{1} / v_{2}\right)}{1+\left(v_{1} / v_{2}\right)}\right) \tilde{E}_{o_{n t e}}=\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right) \tilde{E}_{o_{\text {mec }}} \\
& \tilde{E}_{o_{\text {reas }}}=\left(\frac{2}{1+\beta}\right) \tilde{E}_{o_{m e}} \simeq\left(\frac{2}{1+\left(v_{1} / v_{2}\right)}\right) \tilde{E}_{o_{n c}}=\left(\frac{2 v_{2}}{v_{2}+v_{1}}\right) \tilde{E}_{o_{m e}}
\end{aligned}
$$

We can alternatively express these relations in terms of the indices of refraction $n_{1} \mathcal{E} n_{2}$:

$$
\tilde{E}_{o_{r e f}}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right) \tilde{E}_{o_{m e}} \text { and } \tilde{E}_{o_{\text {rams }}}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right) \tilde{E}_{o_{m e}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Now since:
$\delta=$ phase angle (in radians) defined at the zero of time $-t=0$
Then for the purely real amplitudes $\left(E_{o_{\text {inc }}}, E_{o_{\text {reff }}}, E_{o_{\text {rame }}}\right)$
these relations become:

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Monochromatic plane EM wave at normal incidence on a boundary between two linear / homogeneous / isotropic media

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

For a monochromatic plane EM wave at normal incidence on a boundary between two linear / homogeneous / isotropic media, $\mu_{1} \simeq \mu_{2} \simeq \mu_{0}$ note the following points:

$$
\text { If } \left.\left.v_{2}>v_{1}\left(\text { i.e. } n_{2}<n_{1}\right)\{\text { e.g. medium } 1)=\text { glass } \Rightarrow \text { medium } 2\right)=\text { air }\right\}:
$$

$$
E_{o_{\text {off }}}=\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right) E_{o_{m a}}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right) E_{o_{m w}} \Rightarrow
$$

$$
\begin{gathered}
E_{o_{\text {rere }}} \text { is precisely in-phase with } \\
E_{o_{\text {mex }}} \text { because }\left(v_{2}-v_{1}\right)>0 .
\end{gathered}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

If $v_{2}<v_{1}\left(\right.$ i.e. $\left.n_{2}>n_{1}\right)$ \{e.g. medium 1) $=$ air \Rightarrow medium 2$)=$ glass \}

$$
\begin{aligned}
& E_{o_{\mathrm{orat}}}=\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right) E_{o_{\mathrm{trex}}}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right) E_{o_{\mathrm{owc}}} \Rightarrow \\
& E_{o_{\text {ryf }}} \text { is } 180^{\circ} \text { out-of-phase with } \\
& E_{o_{\text {mex }}} \text { because }\left(v_{2}-v_{1}\right)<0 \text {. }
\end{aligned}
$$

i.e. $\quad E_{o_{\text {reft }}}=-\left|\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right| E_{o_{\text {ite }}}=-\left|\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right| E_{o_{\text {iec }}} \Rightarrow$

The minus sign indicates a 180° phase shift occurs upon reflection for $v_{2}<v_{1}\left(\right.$ i.e. $\left.n_{2}>n_{1}\right)!!!$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

$E_{o_{\text {rase }}}$ is always in-phase with $E_{o_{\text {mex }}}$ for all possible $v_{1} \& v_{2}\left(n_{1} \& n_{2}\right)$ because:

$$
E_{o_{\text {trast }}}=\left(\frac{2}{1+\beta}\right) E_{o_{\text {mec }}} \simeq\left(\frac{2 v_{2}}{v_{1}+v_{1}}\right) E_{o_{\text {mec }}}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right) E_{o_{\text {mec }}}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

What fraction of the incident $E M$ wave energy is reflected?
What fraction of the incident $E M$ wave energy is transmitted?
In a given linear/homogeneous/isotropic medium with

$$
v=\sqrt{\frac{\varepsilon_{o} \mu_{o}}{\varepsilon \mu}} c=c / n
$$

The time-averaged energy density in the EM wave is:

$$
\left\langle u_{E M}(\vec{r}, t)\right\rangle=\frac{1}{2} \varepsilon E_{o}^{2}(\vec{r})=\varepsilon E_{o_{m u}}^{2}(\vec{r})\left(\frac{\text { Joules }}{\mathrm{m}^{3}}\right)
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

The time-averaged Poynting's vector is:

$$
\langle\vec{S}(\vec{r}, t)\rangle=\frac{1}{\mu}\langle\vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t)\rangle\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

The intensity of the EM wave is:

$$
I(\vec{r}) \equiv\langle\mid \vec{S}(\vec{r}, t)\rangle\rangle=v\left\langle u_{\mathrm{EM}}(\vec{r}, t)\right\rangle=v\left(\frac{1}{2} \varepsilon E_{o}^{2}(\vec{r})\right)=\frac{1}{2} \varepsilon v E_{o}^{2}(\vec{r})=\varepsilon v E_{o_{m}}^{2}(\vec{r})\left(\frac{\text { Watts }}{\mathrm{m}^{2}}\right)
$$

Note that the three Poynting's vectors associated with this problem are such that

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

$$
\vec{S}_{i n c}\left\|(+\hat{z}), \quad \vec{S}_{\text {ref }}\right\|(-\hat{z}) \text { and } \vec{S}_{\text {trans }} \|(+\hat{z})
$$

For a monochromatic plane EM wave at normal incidence on a boundary between two linear /homogeneous / isotropic media, with $\mu_{1} \simeq \mu_{2} \simeq \mu_{o}$

$$
\beta \equiv\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right)
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Take the ratios $\left(E_{o_{\text {ref }}} / E_{o_{\text {mec }}}\right)$ and $\left(E_{o_{\text {reas }}} / E_{o_{\text {mec }}}\right)$ - then square them:

$$
\begin{aligned}
& \left(\frac{E_{o_{\text {ref }}}}{E_{o_{\text {inc }}}}\right)^{2}=\left(\frac{1-\beta}{1+\beta}\right)^{2} \approx\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \\
& \text { and } \\
& \left(\frac{E_{o_{\text {trase }}}}{E_{o_{\text {inc }}}}\right)^{2}=\left(\frac{2}{1+\beta}\right)^{2} \approx\left(\frac{2 v_{2}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right)^{2}
\end{aligned}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Define the reflection coefficient as:

$$
R(\vec{r}) \equiv\left(\frac{I_{\text {ref }}(\vec{r})}{I_{\text {inc }}(\vec{r})}\right)=\frac{\langle | \vec{S}_{\text {ref }}(\vec{r}, t)| \rangle}{\langle | \vec{S}_{\text {ixc }}(\vec{r}, t)| \rangle}=\frac{v_{1}\left\langle u_{\mathrm{EM}}^{\text {ref }}(\vec{r}, t)\right\rangle}{v_{1}\left\langle u_{\mathrm{EM}}^{\text {inc }}(\vec{r}, t)\right\rangle}=\frac{\left\langle u_{\mathrm{EM}}^{\text {ref }}(\vec{r}, t)\right\rangle}{\left\langle u_{\mathrm{EM}}^{\text {inc }}(\vec{r}, t)\right\rangle}=\frac{\frac{1}{2} \varepsilon_{1} v_{1} E_{o_{\text {oref }}}^{2}(\vec{r})}{\frac{1}{2} \varepsilon_{1} v_{1} E_{o_{\text {ive }}^{2}}^{2}(\vec{r})}=\frac{E_{o_{\text {eref }}}^{2}(\vec{r})}{E_{o_{\text {ime }}}^{2}(\vec{r})}
$$

Define the transmission coefficient as:

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary between two linear / homogeneous / isotropic media, with $\mu_{1} \simeq \mu_{2} \simeq \mu_{0}$

Reflection coefficient:

$$
\begin{aligned}
& R(\vec{r}) \equiv\left(\frac{I_{r e f f}(\vec{r})}{I_{\text {inc }}(\vec{r})}\right)=\left(\frac{E_{o_{\text {reft }}}(\vec{r})}{E_{o_{\text {inc }}}(\vec{r})}\right)^{2} \\
& T(\vec{r}) \equiv\left(\frac{I_{\text {trans }}(\vec{r})}{I_{\text {inc }}(\vec{r})}\right)=\left(\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\right)\left(\frac{E_{o_{\text {onas }}}(\vec{r})}{E_{o_{\text {mec }}}(\vec{r})}\right)^{2}
\end{aligned}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

But:

$$
\begin{aligned}
& \left(\frac{E_{o_{\text {rat }}}(\vec{r})}{E_{o_{\text {me }}}(\vec{r})}\right)^{2}=\left(\frac{1-\beta}{1+\beta}\right)^{2} \simeq\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \text { \& } \\
& \left(\frac{E_{\text {omax }}(\vec{r})}{E_{o_{\text {ont }}}(\vec{r})}\right)^{2}=\left(\frac{2}{1+\beta}\right)^{2} \simeq\left(\frac{2 v_{2}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right)^{2}
\end{aligned}
$$

Thus Reflection and Transmission coefficient:

$$
\begin{array}{|l}
\hline R(\vec{r}) \equiv\left(\frac{1-\beta}{1+\beta}\right)^{2} \simeq\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \quad \beta \equiv\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right) \\
T(\vec{r}) \equiv\left(\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\right)\left(\frac{2}{1+\beta}\right)^{2} \simeq \frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\left(\frac{2 v_{2}}{v_{2}+v_{1}}\right)^{2}=\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right)^{2} \\
\hline
\end{array}
$$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

Thus:

$$
R(\vec{r})+T(\vec{r})=\frac{(1-\beta)^{2}}{(1+\beta)^{2}}+\frac{4 \beta}{(1+\beta)^{2}}=\frac{(1-\beta)^{2}+4 \beta}{(1+\beta)^{2}}=\frac{1-2 \beta+\beta^{2}+4 \beta}{(1+\beta)^{2}}=\frac{1+2 \beta+\beta^{2}}{(1+\beta)^{2}}=\frac{(1+\beta)^{2}}{(1+\beta)^{2}}=1
$$

$\begin{array}{ll}R(\vec{r})+T(\vec{r})-1 & \begin{array}{l}\text { anergy is conserved at the } \\ \text { interface/boundary between two } \mathrm{L} / \mathrm{H} / \mathrm{I} \text { media }\end{array}\end{array}$

Reflection \& Transmission of Linear Polarized Plane EM Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary between two linear / homogeneous / isotropic media, with $\mu_{1} \simeq \mu_{2} \simeq \mu_{\text {o }}$
Reflection coefficient:
$R(\vec{r}) \equiv\left(\frac{I_{r e f l}(\vec{r})}{I_{i n c}(\vec{r})}\right)=\left(\frac{E_{o_{r e f f}}(\vec{r})}{E_{o_{\text {mec }}}(\vec{r})}\right)^{2}=\frac{(1-\beta)^{2}}{(1+\beta)^{2}} \simeq\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right)^{2}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2}$

Transmission coefficient:

$$
\begin{array}{|c}
T(\vec{r}) \equiv\left(\frac{I_{\text {trans }}(\vec{r})}{I_{\text {ins }}(\vec{r})}\right)=\beta\left(\frac{E_{\text {orast }}(\vec{r})}{E_{o_{\text {mas }}}(\vec{r})}\right)^{2}=\frac{4 \beta}{(1+\beta)^{2}} \approx \frac{4 v_{2} v_{1}}{\uparrow\left(v_{2}+v_{1}\right)^{2}}=\frac{4 n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}} \\
\mu_{1} \simeq \mu_{2} \simeq \mu_{0}
\end{array}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

A monochromatic plane EM wave incident at an oblique angle $\theta_{\text {inc }}$ on a boundary between two linear/ homogeneous/isotropic media, defined with respect to the normal to the interface- as shown in the figure below:

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The incident EM wave is:

$$
\overrightarrow{\tilde{E}}_{\text {inc }}(\vec{r}, t)=\overrightarrow{\tilde{E}}_{o_{\text {inc }}} e^{i\left(\vec{k}_{i n c} \cdot \vec{r}-o t\right)} \text { and } \quad \overrightarrow{\tilde{B}}_{i n c}(\vec{r}, t)=\frac{1}{v_{1}} \hat{k}_{\text {inc }} \times \overrightarrow{\tilde{E}}_{\text {inc }}(\vec{r}, t)
$$

The reflected EM wave is:

$$
\overrightarrow{\tilde{E}}_{r e f l}(\vec{r}, t)=\overrightarrow{\tilde{E}}_{o_{r e f}} e^{i\left(\vec{k}_{r e f} \cdot \vec{r}-\omega t\right)} \text { and } \overrightarrow{\tilde{B}}_{r e f l}(\vec{r}, t)=\frac{1}{v_{1}} \hat{k}_{r e f l} \times \overrightarrow{\tilde{E}}_{r e f l}(\vec{r}, t)
$$

The transmitted EM wave is:

$$
\overrightarrow{\tilde{E}}_{\text {trans }}(\vec{r}, t)=\overrightarrow{\tilde{E}}_{o_{\text {trans }}} e^{i\left(\vec{k}_{\text {trans }}-\vec{r}-a t\right)} \text { and } \overrightarrow{\tilde{\tilde{B}}}_{\text {trans }}(\vec{r}, t)=\frac{1}{v_{2}} \hat{k}_{\text {trans }} \times \overrightarrow{\tilde{E}}_{\text {trans }}(\vec{r}, t)
$$

Reflection \＆Transmission of Monochromatic Plane EM Waves at Oblique Incidence

All three EM waves have the same frequency－$f=\omega / 2 \pi$

$$
\omega=k_{\text {inc }} v_{1}=k_{\text {ref }} v_{1}=k_{\text {trans }} v_{2}
$$

$$
k_{\text {inc }}=k_{\text {ref }}=k_{1}=\left(\frac{v_{2}}{v_{1}}\right) k_{\text {trans }}=\left(\frac{v_{2}}{v_{1}}\right) k_{2}=\left(\frac{n_{1}}{n_{2}}\right) k_{\text {trans }}=\left(\frac{n_{1}}{n_{2}}\right) k_{2}
$$

$$
v_{i}=c / n_{i} \quad i=1,2
$$

The total EM fields in medium 1

$$
\frac{\overrightarrow{\tilde{E}}_{\text {Tot⿱十口 }}(\vec{r}, t)=\overrightarrow{\tilde{E}}_{\text {inc }}(\vec{r}, t)+\overrightarrow{\tilde{E}}_{r e f}(\vec{r}, t) \text { and } \overrightarrow{\tilde{\tilde{B}}}_{\text {Tot }}(\vec{r}, t)=\overrightarrow{\tilde{B}}_{\text {inc }}(\vec{r}, t)+\overrightarrow{\tilde{B}}_{r e f}(\vec{r}, t)}{86}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Must match to the total EM fields in medium 2:

$$
\overrightarrow{\tilde{E}}_{\text {Tot }_{2}}(\vec{r}, t)=\overrightarrow{\tilde{E}}_{\text {trans }}(\vec{r}, t) \text { and } \overrightarrow{\tilde{\tilde{B}}}_{\text {Tot }}^{2}(\vec{r}, t)=\overrightarrow{\tilde{\tilde{B}}}_{\text {trans }}(\vec{r}, t)
$$

Using the boundary conditions $B C 1) \rightarrow B C 4$) at $z=0$.
At $z=0$ - four boundary conditions are of the form:

$$
(\sim) e^{i\left(\vec{k}_{\text {rec }} \cdot \vec{r}-\omega t\right)}+(\sim) e^{i\left(\vec{k}_{\text {ref }} \cdot \vec{r}-\omega t\right)}=(\sim) e^{i\left(\vec{k}_{\text {rons }} \cdot \vec{r}-\omega t\right)}
$$

They must hold for all (x, y) on the interface at $z=0-$ and also must hold for all times, t. The above relation is already satisfied for arbitrary time, t - the factor $\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}$ is common to all terms.

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The following relation must hold for all (x, y) on interface at at $\mathrm{z}=0$:

$$
(\sim) e^{i\left(\overrightarrow{k_{w a}} \cdot \vec{r}\right)}+(\sim) e^{i\left(\overrightarrow{k_{a=a}} \cdot \vec{r}\right)}=(\sim) e^{i\left(\overrightarrow{k_{\text {rase }}} \cdot \vec{r}\right)}
$$

When $z=0$ - at interface we must have:

$$
\vec{k}_{\text {inc }} \cdot \vec{r}=\vec{k}_{\text {ref }} \bullet \vec{r}=\vec{k}_{\text {trans }} \bullet \vec{r}
$$

$k_{\text {inc }_{x}} x+k_{\text {inc }_{y}} y=k_{\text {ref }}^{x}$ $x+k_{\text {ref }}^{y} y=k_{\text {trans }} x+k_{\text {rims }_{y}} y \quad @ z=0$
The above relation can only hold for arbitrary $(x, y, z=0)$ iff (= if and only if):

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The above relation can only hold for arbitrary (x , $y, z=0$) iff (= if and only if):

$$
\begin{aligned}
& k_{\text {inc }_{x}} x=k_{\text {refl }_{x}} x=k_{\text {trans }_{x}} x \quad \Rightarrow \quad k_{\text {inc }_{x}}=k_{\text {refl }_{x}}=k_{\text {trans }_{x}} \\
& k_{\text {inc }_{y}} y=k_{\text {refl }_{y}} y=k_{\text {trans }_{y}} y \Rightarrow k_{\text {inc }_{y}}=k_{\text {refl }_{y}}=k_{\text {trans }_{y}}
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The problem has rotational symmetry about the z -axis- then without any loss of generality we can choose k to lie entirely within the $\mathrm{x}-\mathrm{z}$ plane, as shown in the figure

$$
k_{i n c_{y}}=k_{\text {refl }_{y}}=k_{\text {trans }_{y}}=0 \text { and thus: } k_{i n c_{x}}=k_{\text {ref }_{x}}=k_{\text {trans }_{x}}
$$

The transverse components of $\vec{k}_{\text {inc }}, \vec{k}_{\text {ref }}, \vec{k}_{\text {rans }}$ are all equal and point in the $+x^{\wedge}$ direction.

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The First Law of Geometrical Optics:

The incident, reflected, and transmitted wave vectors form a plane (called the plane of incidence), which also includes the normal to the surface (here, the z axis).

The Second Law of Geometrical Optics (Law of Reflection):

From the figure, we see that:

$$
k_{i n c_{x}}=k_{i n c} \sin \theta_{i n c}=k_{\text {ref } f_{x}}=k_{\text {reff }} \sin \theta_{\text {reff }}=k_{\text {trans }}=k_{\text {trans }} \sin \theta_{\text {trans }}
$$

$$
k_{i n c}=k_{r e f l}=k_{1} \Rightarrow \sin \theta_{i n c}=\sin \theta_{r e f l}
$$

Angle of Incidence $=$ Angle of Reflection

$$
\theta_{i n c}=\theta_{r e f l}
$$

Law of Reflection!

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The Third Law of Geometrical Optics (Law of Refraction - Snell's Law):

For the transmitted angle, $\theta_{\text {trans }}$ we see that:

$$
k_{i n c} \sin \theta_{\text {inc }}=k_{\text {trans }} \sin \theta_{\text {trans }}
$$

In medium 1): $k_{i n c}=k_{1}=\omega / v_{1}=n_{1} \omega / c=n_{1} k_{o}$
where $k_{o}=$ vacuum wave number $=2 \pi / \lambda_{a}$

$$
\text { and } \quad \lambda_{o}=\text { vacuum wave length }
$$

In medium 2): $k_{\text {trans }}=k_{2}=\omega / v_{2}=n_{2} \omega / c=n_{2} k_{o}$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

$$
\begin{aligned}
& k_{\text {inc }} \sin \theta_{\text {inc }}=k_{\text {trans }} \sin \theta_{\text {trans }} \Rightarrow k_{1} \sin \theta_{\text {inc }}=k_{2} \sin \theta_{\text {trans }} \\
& k_{\text {inc }}=k_{1}=n_{1} k_{o} \text { and } k_{\text {trans }}=k_{2}=n_{2} k_{o}
\end{aligned}
$$

$$
k_{1} \sin \theta_{\text {inc }}=k_{2} \sin \theta_{\text {trans }} \Rightarrow n_{1} \sin \theta_{i n c}=n_{2} \sin \theta_{\text {trans }}
$$

Law of Refraction (Snell's Law)

$$
\frac{\sin \theta_{\text {trans }}}{\sin \theta_{\text {inc }}}=\frac{n_{1}}{n_{2}}
$$

Since $\theta_{\text {trans }}$ refers to medium 2) and $\theta_{\text {inc }}$ refers to medium 1)

$$
\begin{gathered}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
\text { (incident) (transmitted) }
\end{gathered}
$$

or: $\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{n_{1}}{n_{2}}$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Because of the three laws of geometrical optics, we see that:

$$
\left|\vec{k}_{\text {ince }} \cdot \vec{r}\right|_{z=0}=\left.\vec{k}_{\text {ref }} \cdot \vec{r}\right|_{z=0}=\left.\vec{k}_{\text {rrans }} \cdot \vec{r}\right|_{z=0}
$$

everywhere on the interface at $z=0\{$ in the $x-y$ plane $\}$

everywhere on the interface at $z=0$ \{in the x - y plane\}, valid also for arbitrary/any/all time(s) t, since ω is the same in either medium (1 or 2).

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The BC 1$) \rightarrow \mathrm{BC} 4$) for a monochromatic plane $E M$ wave incident on an interface at an oblique angle between two linear/homogeneous/isotropic media become:

BC 1): Normal ($z-$) component of \boldsymbol{D} continuous at $z=0$ (no free surface charges):

$$
\varepsilon_{1}\left(\tilde{E}_{o_{\text {maxe }_{2}}}+\tilde{E}_{o_{\text {ref }}^{2}}\right)=\varepsilon_{2} \tilde{E}_{o_{\text {roun }}} \quad\{\text { using } \vec{D}=\varepsilon \vec{E}\}
$$

BC 2): Tangential ($x-, y-$) components of E continuous at $z=0$:

$$
\left(\tilde{E}_{o_{m_{x \times x}, y}}+\tilde{E}_{o_{\text {reft }}, y}\right)=\tilde{E}_{o_{\text {manx } x, y}}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

BC 3): Normal (z-) component of \boldsymbol{B} continuous at $z=0$:

$$
\left(\tilde{B}_{o_{m_{c_{2}}}}+\tilde{B}_{o_{r_{0} f_{2}}}\right)=\tilde{B}_{o_{\text {ramas }}}
$$

BC 4): Tangential ($\mathrm{x}-\mathrm{y}, \mathrm{y}$-) components of \boldsymbol{H} continuous at $z=0$ (no free surface currents):

$$
\frac{1}{\mu_{1}}\left(\tilde{B}_{o_{m_{x, y}, y}}+\tilde{B}_{o_{r_{m_{1}, y}}}\right)=\frac{1}{\mu_{2}} \tilde{B}_{o_{\operatorname{manax}_{x, y}}}
$$

Note that in each of the above, we also have the relation

$$
\overrightarrow{\tilde{B}}_{o}=\frac{1}{v} \hat{k} \times \overrightarrow{\tilde{E}}_{o}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

For a monochromatic plane EM wave incident on a boundary between two L / H/ I media at an oblique angle of incidence, there are three possible polarization cases to consider:

$$
\begin{aligned}
\text { Case I): } & \vec{E}_{\text {inc }} \perp \text { plane of incidence } \\
& \left.\begin{array}{c}
\text { Transverse Electric (TE) } \\
\text { inc }
\end{array} \| \text { plane of incidence }\right\}
\end{aligned}
$$

Case III): The most general case: $\vec{E}_{\text {inc }}$ is neither \perp nor $\|$ to the plane of incidence.

$$
{ }_{1 / 25 / 2012}\left\{\Rightarrow \vec{B}_{\text {inc }} \text { is neither } \| \text { nor } \perp \text { to the plane of incidence }\right\}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Case I): Electric Field Vectors Perpendicular to the Plane of Incidence: Transverse Electric (TE) Polarization

-A monochromatic plane EM wave is incident on a boundary at $z=0$-in the $x-y$ plane between two L/H/I media - at an oblique angle of incidence.
-The polarization of the incident EM wave is transverse (\perp) to the plane of incidence \{containing the three wave-vectors and the unit normal to the boundary $\left.\mathrm{n}^{\wedge}=+\mathrm{z}^{\wedge}\right\}$).
-The three B-field vectors are related to their respective Efield vectors by the right hand rule - all three B-field vectors lie in the $x-z$ plane $\{$ the plane of incidence $\}$,

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The four boundary conditions on the $\{$ complex\} E and B fields on the boundary at $\mathrm{z}=0$ are:
BC 1) Normal (z-) component of D continuous at $z=0$ (no free surface charges)

BC 2) Tangential $(x-y-)$ components of E continuous at $z=0$:

$$
\left(\tilde{E}_{o_{m e_{y}}}+\tilde{E}_{o_{r a f f_{y}}}\right)=\tilde{E}_{o_{\text {manasy }}} \Rightarrow \tilde{E}_{o_{m e}}+\tilde{E}_{o_{r a p}}=\tilde{E}_{o_{\text {mams }}}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

BC 3) Normal ($z-$) component of B continuous at $z=0$:

$$
\left(\tilde{B}_{o_{\text {inco }}}+\tilde{B}_{o_{r e f l_{2}}}\right)=\tilde{B}_{o_{\text {reans }}}
$$

$$
\begin{array}{|ll}
\hline \hat{k}_{\text {inc }}=\hat{k}_{\text {inc }}+\hat{k}_{\text {inc }} & =\sin \theta_{\text {inc }} \hat{x}+\cos \theta_{\text {inc }} \hat{z} \\
\hline \hat{k}_{\text {refl }}=\hat{k}_{\text {ref }_{x}}+\hat{k}_{\text {reff }} & =\sin \theta_{\text {refl }} \hat{x}-\cos \theta_{\text {refl }} \hat{z} \\
\hline \hat{k}_{\text {trans }}=\hat{k}_{\text {trans }}+\hat{k}_{\text {trans }}=\sin \theta_{\text {trans }} \hat{x}+\cos \theta_{\text {trans }} \hat{z} \\
\hline
\end{array}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

BC 4) Tangential ($x-, y-$) components of H continuous at $z=0$ (no free surface currents):

$$
\begin{gathered}
\frac{1}{\mu_{1}}\left(\tilde{B}_{o_{\text {intr }}} \hat{x}+\tilde{B}_{o_{\text {ref }}} \hat{x}\right)=\frac{1}{\mu_{2}} \tilde{B}_{o_{\text {ramax }}} \hat{x} \\
=\frac{1}{\mu_{1} v_{1}}\left(\tilde{E}_{o_{\text {inc }}}\left(-\cos \theta_{\text {imc }}\right)+\tilde{E}_{o_{\text {raf }}} \cos \theta_{\text {refl }}\right) \hat{x}=\frac{1}{\mu_{2} v_{2}} \tilde{E}_{o_{\text {mans }}}\left(-\cos \theta_{\text {trans }}\right) \hat{x} \\
\left.\tilde{E}_{o_{\text {mex }}}+\tilde{E}_{o_{\text {reft }}}=\tilde{E}_{o_{\text {maxs }}}(\text { from BC } 2)\right)
\end{gathered}
$$

Using the Law of Reflection on the BC 3) result:

$$
\tilde{E}_{o_{\text {inc }}}+\tilde{E}_{o_{\text {refl }}}=\left(\frac{v_{1}}{v_{2}} \cdot \frac{\sin \theta_{\text {trans }}}{\sin \theta_{\text {inc }}}\right) \tilde{E}_{o_{\text {trans }}}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Using Snell's Law / Law of Refraction:

$$
\begin{aligned}
& n_{1} \sin \theta_{\text {inc }}=n_{2} \sin \theta_{\text {trass }} \Rightarrow \frac{n_{1}}{c} \sin \theta_{\text {inc }}=\frac{n_{2}}{c} \sin \theta_{\text {rass }} \Rightarrow \frac{1}{v_{1}} \sin \theta_{\text {inc }}=\frac{1}{v_{2}} \sin \theta_{\text {rams }} \\
& \text { or: } \quad v_{2} \sin \theta_{\text {inc }}=v_{1} \sin \theta_{\text {rans }} \frac{\text { or: }}{} \quad\left(\frac{v_{1}}{v_{2}} \cdot \frac{\sin \theta_{\text {mans }}}{\sin \theta_{\text {ime }}}\right)=1
\end{aligned}
$$

From BC 1) \rightarrow BC 4) actually have only two independent relations for the case of transverse electric (TE) polarization:

$$
\begin{aligned}
& \text { 1) } \tilde{E}_{o_{\text {inc }}}+\tilde{E}_{o_{\text {repl }}}=\tilde{E}_{o_{\text {tras }}} \\
& \text { 2) }\left(\tilde{E}_{o_{\text {inc }}}-\tilde{E}_{o_{\text {reft }}}\right)=\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}} \cdot \frac{\cos \theta_{\text {trans }}}{\cos \theta_{\text {inc }}}\right) \tilde{E}_{o_{\text {trase }}}
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Now we define:

$$
\beta \equiv\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right)
$$

$$
\alpha \equiv\left(\frac{\cos \theta_{\text {trans }}}{\cos \theta_{\text {inc }}}\right)
$$

Then eqn. 2) becomes: $\quad \tilde{E}_{o_{\text {inc }}}-\tilde{E}_{o_{\text {refl }}}=\alpha \beta \tilde{E}_{o_{\text {trans }}}$

Adding and subtracting Eqn's $1 \& 2$ to get:

$$
\tilde{E}_{o_{\text {trans }}}=\left(\frac{2}{1+\alpha \beta}\right) \tilde{E}_{o_{\text {ince }}} \text { eqn. }(1+2) \quad \tilde{E}_{o_{\text {ref }}}=\left(\frac{1-\alpha \beta}{2}\right) \tilde{E}_{o_{\text {runs }}} \text { eqn. }(2-1)
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Plug eqn. (2+1) into eqn. (2-1) to obtain:

$$
\tilde{E}_{e_{r e f}}=\left(\frac{1-\alpha \beta}{2}\right)\left(\frac{2}{1+\alpha \beta}\right) \tilde{E}_{o_{m e c}}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right) \tilde{E}_{O_{m e c}}
$$

$$
\frac{\tilde{E}_{o_{\text {real }}}}{\tilde{E}_{o_{\text {mec }}}}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right) \text { and } \frac{\tilde{E}_{o_{\text {trass }}}}{\tilde{E}_{o_{\text {once }}}}=\left(\frac{2}{1+\alpha \beta}\right)
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The Fresnel Equations for $\vec{E} \|$ to Interface
$=\vec{E} \perp$ Plane of Incidence $=$ Transverse Electric (TE) Polarization

$$
E_{o_{\text {refl }}}^{T E}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right) E_{o_{\text {inc }}}^{T E} \text { and } E_{o_{t_{\text {raus }}}^{T E}=\left(\frac{2}{1+\alpha \beta}\right) E_{o_{\text {inc }}}^{T E}, ~}^{\text {IE }}
$$

with $\alpha \equiv\left(\frac{\cos \theta_{\text {trans }}}{\cos \theta_{\text {inc }}}\right)$ and $\beta \equiv\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right)$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

For TE polarization:

Incident Intensity

$$
I_{i n c}^{I E}=\left|\left\langle\vec{S}_{\text {inc }}^{I E}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{1} \varepsilon_{1}\left(E_{o_{\text {ive }}}^{I E}\right)^{2}\right)\left|\hat{k}_{i m e} \cdot \hat{z}\right|=\left(\frac{1}{2} v_{1} \varepsilon_{1}\left(E_{o_{\text {ive }}}^{T E}\right)^{2}\right) \cos \theta_{i n c}=\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{i v e}}^{I E}\right)^{2} \cos \theta_{i n c}
$$

Reflection Intensity

$$
I_{r e f}^{T E}=\left|\left\langle\vec{S}_{r e f}^{T E}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{1} \varepsilon_{1}\left(E_{o_{r e f}}^{T E}\right)^{2}\right) \cos \theta_{r e f}=\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{r e f}}^{T E}\right)^{2} \cos \theta_{i n c}
$$

Transmission Intensity

$$
I_{\text {trans }}^{T E}=\left|\left\langle\vec{S}_{\text {trans }}^{T E}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{2} \varepsilon_{2}\left(E_{o_{\text {trans }}}^{T E}\right)^{2}\right) \cos \theta_{\text {trans }}=\frac{1}{2} \varepsilon_{2} v_{2}\left(E_{o_{\text {trans }}}^{T E}\right)^{2} \cos \theta_{\text {trans }}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients for transverse electric (TE) polarization

$$
R_{T E} \equiv \frac{I_{r e f}^{T E}}{I_{i n c}^{T E}}=\frac{\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{\text {ref }}}^{T E}\right)^{2} \cos \overbrace{\overbrace{i n c}}^{\theta_{\text {inef }}}}{\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{\text {inc }}}^{T E}\right)^{2} \cos \theta_{i n c}}=\left(\frac{E_{o_{\text {ref }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right)^{2}
$$

$$
T_{T E} \equiv \frac{I_{\text {trans }}^{T E}}{I_{\text {inc }}^{T E}}=\frac{\frac{1}{2} \varepsilon_{2} v_{2}\left(E_{o_{\text {trans }}}^{T E}\right)^{2} \cos \theta_{\text {trans }}}{\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{\text {imc }}}^{T E}\right)^{2} \cos \theta_{\text {inc }}}=\left(\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\right)\left(\frac{\cos \theta_{\text {trans }}}{\cos \theta_{\text {inc }}}\right)\left(\frac{E_{o_{\text {trans }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right)^{2}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The reflection and transmission coefficients for transverse electric (TE) polarization

$$
R_{T E}=\left(\frac{E_{o_{r \text { rel }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right)^{2}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right)^{2}
$$

$$
T_{T E}=\alpha \beta\left(\frac{E_{o_{\text {rars }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right)^{2}=\frac{4 \alpha \beta}{(1+\alpha \beta)^{2}}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Case II): Electric Field Vectors Parallel to the Plane of Incidence:
Transverse Magnetic (TM) Polarization
-A monochromatic plane EM wave is incident on a boundary at $\mathrm{z}=0$ in the x -y plane between two $\mathrm{L} / \mathrm{H} / \mathrm{I}$ media at an oblique angle of incidence.
-The polarization of the incident EM wave is now parallel to the plane of incidence \{containing the three wavevectors and the unit normal to the boundary $\left.\mathrm{n}^{\wedge}=+\mathrm{z}^{\wedge}\right\}$).

- The three B-field vectors are related to E-field vectors by the right hand rule -then all three B-field vectors are \perp to the plane of incidence \{hence the origin of the name transverse magnetic polarization\}.

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The four boundary conditions on the \{complex\}E and B-fields on the boundary at $\mathrm{z}=0$ are:

BC 1) Normal (z-) component of D continuous at $z=0$ (no free surface charges)

BC 2) Tangential ($x-, y-$) components of E continuous at $z=0$:

$$
\begin{aligned}
& \left(\tilde{E}_{o_{\max _{x}}}+\tilde{E}_{o_{r e_{x_{x}}}}\right)=\tilde{E}_{o_{\text {raxax }_{x}}} \\
& \left(\tilde{E}_{o_{\text {inc }}} \cos \theta_{\text {inc }}+\tilde{E}_{o_{\text {rep }}} \cos \theta_{\text {reff }}\right)=\tilde{E}_{o_{\text {rome }}} \cos \theta_{\text {trans }}
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

BC 3) Normal (z-) component of B continuous at $z=0$:

BC 4) Tangential ($x-, y$-) components of H continuous at $z=0$ (no free surface currents):

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

From BC 1) at $z=0$:

$$
\tilde{E}_{o_{\text {me }}}-\tilde{E}_{o_{r v a t}}=\left(\frac{\varepsilon_{2}}{\varepsilon_{1}} \frac{n_{1}}{n_{2}}\right) \tilde{E}_{o_{\text {raxs }}}=\left(\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\right) \tilde{E}_{o_{\text {rass }}}=\beta \tilde{E}_{o_{\text {rass }}}
$$

From BC 4) at $z=0$:

$$
\tilde{E}_{o_{\text {tre }}}-\tilde{E}_{o_{\text {ref }}}=\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right) \tilde{E}_{o_{\text {treas }}}=\beta \tilde{E}_{o_{\text {treas }}}
$$

where:

$$
\beta \equiv\left(\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}\right)=\left(\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}\right)
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

From BC 2) at $z=0$:
 where: $\quad \alpha \equiv \frac{\cos \theta_{\text {trans }}}{\cos \theta_{i \text { inc }}}$

Thus for the case of transverse magnetic (TM) polarization:

$$
\tilde{E}_{o_{\text {mex }}}-\tilde{E}_{o_{\text {ref }}}=\beta \tilde{E}_{o_{\text {ramas }}} \text { and } \tilde{E}_{o_{\text {mec }}}+\tilde{E}_{o_{\text {ref }}}=\alpha \tilde{E}_{o_{\text {rama }}}
$$

Solving these two above equations simultaneously, we obtain:

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

$$
\tilde{E}_{o_{\text {rata }}}=\left(\frac{2}{\alpha+\beta}\right) \tilde{E}_{o_{\text {noc }}}
$$

$$
\tilde{E}_{o_{r e f}}=\left(\frac{\alpha-\beta}{2}\right) \tilde{E}_{o_{\text {raxas }}}
$$

$$
\tilde{E}_{o_{r e p}}=\left(\frac{\alpha-\beta}{\alpha+\beta}\right) \tilde{E}_{o_{m e}}
$$

The Fresnel Equations for $\vec{B} \|$ to Interface
$=\vec{B} \perp$ Plane of Incidence $=$ Transverse Magnetic $(T M)$ Polarization

$$
\left(\frac{E_{o_{r \text { rel }}}^{T M}}{E_{o_{\text {inc }}}^{T M}}\right)=\left(\frac{\alpha-\beta}{\alpha+\beta}\right) \text { and }\left(\frac{E_{o_{\text {rans }}}^{T M}}{E_{o_{\text {ince }}}^{T M}}\right)=\left(\frac{2}{\alpha+\beta}\right)
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflected \& transmitted intensities at oblique incidence for the TM case

$$
\begin{array}{|l}
I_{\text {inc }}^{T M}=v_{1}\left|\left\langle\vec{S}_{\text {inc }}^{T M}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{1} \varepsilon_{1}\left(E_{o_{\text {me }}}^{T M}\right)^{2}\right) \cos \theta_{\text {inc }}=\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{\text {inc }}}^{T M}\right)^{2} \cos \theta_{\text {inc }} \\
\hline I_{\text {refl }}^{T M}=v_{1}\left|\left\langle\vec{S}_{\text {ref }}^{T M}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{1} \varepsilon_{1}\left(E_{o_{\text {ref }}}^{T M}\right)^{2}\right) \cos \theta_{\text {ref }}=\frac{1}{2} \varepsilon_{1} v_{1}\left(E_{o_{\text {ref }}}^{T M}\right)^{2} \cos \theta_{\text {inc }} \\
I_{\text {trans }}^{T M}=v_{2}\left|\left\langle\vec{S}_{\text {trans }}^{T M}(t)\right\rangle \cdot \hat{z}\right|=\left(\frac{1}{2} v_{2} \varepsilon_{2}\left(E_{o_{\text {rum }}}^{T M}\right)^{2}\right) \cos \theta_{\text {trans }}=\frac{1}{2} \varepsilon_{2} v_{2}\left(E_{o_{\text {rean }}}^{T M}\right)^{2} \cos \theta_{\text {trans }} \\
\hline
\end{array}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients

$$
R_{T M}=\left(\frac{E_{o_{\text {ref }}}^{T M}}{E_{o_{\text {inc }}}^{T M}}\right)^{2}=\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2}
$$

$$
T_{T M}=\alpha \beta\left(\frac{E_{o_{\text {trans }}}^{T M}}{E_{o_{\text {inc }}}^{T M}}\right)^{2}=\frac{4 \alpha \beta}{(\alpha+\beta)^{2}}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

The Fresnel Equations

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Reflection and Transmission Coefficients R \& T

$$
R+T=1
$$

TE Polarization

$$
\begin{aligned}
& R_{T E}=\frac{I_{\text {rep }}^{T E}}{I_{\text {inc }}^{T E}}=\left(\frac{E_{o_{\text {of }}}^{T E}}{E_{o_{\text {ine }}}^{T E}}\right)^{2}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right)^{2} \\
& T_{T E} \equiv\left(\frac{I_{\text {trans }}^{I E}}{I_{\text {inc }}^{T E}}\right)=\alpha \beta\left(\frac{E_{o_{\text {opes }}}^{T E}}{E_{o_{\text {mic }}}^{T E}}\right)^{2}=\frac{4 \alpha \beta}{(1+\alpha \beta)^{2}} \\
& \alpha \equiv \frac{\cos \theta_{\text {trans }}}{\cos \theta_{\text {mc }}} \\
& \beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}=\frac{\varepsilon_{2} v_{2}}{\varepsilon_{1} v_{1}}=\frac{\mu_{1} n_{2}}{\mu_{2} n_{1}}=\frac{\varepsilon_{2} n_{1}}{\varepsilon_{1} n_{2}}
\end{aligned}
$$

TM Polarization

$$
\begin{aligned}
& R_{T M} \equiv \frac{I_{\text {ref }}^{T M}}{I_{\text {trc }}^{T M}}=\left(\frac{E_{o_{\text {rein }}}^{I M}}{E_{o_{\text {iuc }}}^{T M}}\right)^{2}=\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} \\
& T_{T M} \equiv\left(\frac{I_{\text {trans }}^{T M}}{I_{i n c}^{M M}}\right)=\alpha \beta\left(\frac{E_{o_{\text {rous }}}^{T M}}{E_{o_{\text {inc }}}^{M M}}\right)^{2}=\frac{4 \alpha \beta}{(\alpha+\beta)^{2}} \\
& v_{1}=c / n_{1}=1 / \sqrt{\varepsilon_{1} \mu_{1}} \\
& v_{2}=c / n_{2}=1 / \sqrt{\varepsilon_{2} \mu_{2}}
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Alternate versions of the Fresnel Relations

Fresnel Equations

TE Polarization

$\left(\frac{E_{o_{\text {man }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right)=\frac{\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {inc }}-\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{\text {trans }}}{\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{m c}+\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{\text {trans }}}$
$\left(\frac{E_{o_{\text {max }}}^{T E}}{E_{o_{\text {me }}}^{T E}}\right)=\frac{2\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {mc }}}{\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {inc }}+\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{\text {trans }}}$

TM Polarization

$$
\begin{array}{|l|}
\hline\left(\frac{E_{o_{m a n}}^{T M}}{E_{o_{m a}}^{T M}}\right)=\frac{\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{m c}-\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {trans }}}{\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{m c}+\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {trans }}} \\
\left(\frac{E_{o_{\text {mam }}}^{T M}}{E_{o_{\text {mic }}}^{T M}}\right)=\frac{2\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{m c}}{\left(\frac{n_{2}}{\mu_{2}}\right) \cos \theta_{m c}+\left(\frac{n_{1}}{\mu_{1}}\right) \cos \theta_{\text {trans }}} \\
\hline
\end{array}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Ignoring the magnetic properties of the two media $\left|\chi_{m}\right| \ll 1$ then $\mu_{1} \simeq \mu_{2} \simeq \mu_{o}$ the Fresnel Relations become:

TE Polarization

$$
\begin{array}{|l|}
\hline\left(\frac{E_{o_{\text {rt }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right) \simeq \frac{n_{1} \cos \theta_{\text {inc }}-n_{2} \cos \theta_{\text {trans }}}{n_{1} \cos \theta_{\text {inc }}+n_{2} \cos \theta_{\text {trans }}} \\
\left(\frac{E_{o_{\text {orm }}}^{T E}}{E_{o_{\text {inc }}}^{T T}}\right) \simeq \frac{2 n_{1} \cos \theta_{\text {inc }}}{n_{1} \cos \theta_{\text {inc }}+n_{2} \cos \theta_{\text {trans }}} \\
\hline
\end{array}
$$

TM Polarization

$$
\begin{array}{|l|}
\hline\left(\frac{E_{o_{\text {rn }}}^{T M}}{E_{o_{\text {me }}}^{T M}}\right) \simeq \frac{-n_{2} \cos \theta_{\text {inc }}+n_{1} \cos \theta_{\text {trans }}}{n_{2} \cos \theta_{\text {inc }}+n_{1} \cos \theta_{\text {trans }}} \\
\left(\frac{E_{o_{\text {omu }}}^{T M}}{E_{o_{\text {occ }}}^{T M}}\right) \simeq \frac{2 n_{1} \cos \theta_{\text {inc }}}{n_{2} \cos \theta_{\text {inc }}+n_{1} \cos \theta_{\text {trans }}} \\
\hline
\end{array}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Using Snell's Law and various trigonometric identities

$$
\begin{aligned}
& \text { TE Polarization } \\
& \begin{array}{|l|}
\left(\frac{E_{o_{\text {ma }}}^{T E}}{E_{o_{\text {ma }}}^{T E}}\right) \simeq-\frac{\sin \left(\theta_{\text {inc }}-\theta_{\text {trans }}\right)}{\sin \left(\theta_{\text {inc }}+\theta_{\text {trans }}\right)} \\
\left(\frac{E_{o_{\text {oms }}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right) \simeq \frac{2 \cos \theta_{\text {inc }} \cdot \sin \theta_{\text {trans }}}{\sin \left(\theta_{\text {inc }}+\theta_{\text {trans }}\right)} \\
\hline
\end{array}
\end{aligned}
$$

TM Polarization

$$
\begin{aligned}
& \left(\frac{E_{o_{\text {min }}}^{T M}}{E_{\theta_{\text {me }}}^{I M}}\right) \simeq-\frac{\tan \left(\theta_{\text {inc }}-\theta_{\text {trams }}\right)}{\tan \left(\theta_{\text {inc }}+\theta_{\text {trans }}\right)} \\
& \left(\frac{E_{o_{\text {mas }}}^{T M}}{E_{o_{\text {mam }}}^{T M}}\right) \simeq \frac{2 \cos \theta_{\text {imc }} \cdot \sin \theta_{\text {trams }}}{\sin \left(\theta_{\text {imc }}+\theta_{\text {trans }}\right) \cos \left(\theta_{i m c}-\theta_{\text {trans }}\right)} \\
& \hline
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Use Snell's Law $n_{\text {inc }} \sin \theta_{\text {inc }}=n_{\text {trans }} \sin \theta_{\text {trans }}$ to eliminate $\theta_{\text {trans }}$:

TE Polarization
$\left(\frac{E_{o_{n+f}}^{T E}}{E_{o_{\text {inc }}}^{T E}}\right) \simeq \frac{\cos \theta_{i m c}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{m c}}}{\cos \theta_{i n c}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i n c}}}$
$\left(\frac{E_{o_{\text {voms }}}^{T E}}{E_{o_{i n c}}^{I E}}\right) \simeq \frac{2 \cos \theta_{i n c}}{\cos \theta_{i n c}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i n c}}}$

TM Polarization

$$
\left\lvert\, \begin{aligned}
& \left(\frac{E_{o_{\text {nef }}}^{T M}}{E_{o_{i n c}}^{T M}}\right) \simeq \frac{-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i n c}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i n c}}}{\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i n c}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i n c}}} \\
& \left(\frac{2\left(\frac{n_{2}}{n_{1}}\right) \cos \theta_{i n c}}{\left(\frac{E_{o_{\text {invs }}}^{T M}}{E_{o_{i n c}}^{T M}}\right) \simeq \frac{n^{2}}{\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i n c}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i n c}}}} .\right.
\end{aligned}\right.
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

- Now explore the physics associated with the Fresnel Equations -the reflection and transmission coefficients.
- Comparing results for TE vs. TM polarization for the cases of external reflection ($\mathrm{n} 1<\mathrm{n} 2$) and internal reflection $\mathrm{n} 1>\mathrm{n} 2$)
Comment 1):
- When $\left(E_{\text {refl }} / E_{\text {ind }}\right)<0-E_{\text {oref }}$ is 180° out-of-phase with $E_{\text {oinc }}$ since the numerators of the original Fresnel Equations for $\mathrm{TE} \& \mathrm{TM}$ polarization are $(1-\alpha \beta)$ and $(\alpha-\beta)$ respectively.

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Comment 2):

-For TM Polarization (only)- there exists an angle of incidence where $\left(E_{\text {refl }} / E_{\text {inc }}\right)=0$ - no reflected wave occurs at this angle for TM polarization!
-This angle is known as Brewster's angle θ_{B} (also known as the polarizing angle θ_{P} - because an incident wave which is a linear combination of TE and TM polarizations will have a reflected wave which is 100% pure-TE polarized for an incidence angle $\theta_{\text {inc }}=\theta_{B}=\theta_{P}!!$).
-Brewster's angle θ_{B} exists for both external ($\mathrm{n}_{1}<\mathrm{n}_{2}$) \& internal reflection ($\mathrm{n}_{1}>\mathrm{n}_{2}$) for TM polarization (only).

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Brewster's Angle θ_{B} /the Polarizing Angle θ_{P} for

Transverse Magnetic (TM) Polarization
From the numerator of $\left(E_{o_{* \alpha}}^{M \alpha} / E_{o_{m u}}^{I N}\right)=\left(\frac{\alpha-\beta}{\alpha+\beta}\right)$-the originally-derived expression for TM polarization- when this ratio $=0$ at Brewster's angle $\theta_{B}=$ polarizing angle θ_{P} - this occurs when (α $-\beta)=0$, i.e. when $\alpha=\beta$.

$$
\cos \theta_{\text {rams }}=\sqrt{1-\sin ^{2} \theta_{\text {raxs }}} \text { and Snell's Law: } \sin \theta_{\text {rams }}=\left(\frac{n_{1}}{n_{2}}\right) \sin \theta_{m e}
$$

$$
\alpha=\frac{\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{m c}}}{\cos \theta_{\text {inc }}}=\left(\frac{n_{2}}{n_{1}}\right)=\beta
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Brewster's Angle θ_{B} /the Polarizing Angle θ_{P} for Transverse Magnetic (TM) Polarization

$$
\begin{aligned}
& 1-\frac{1}{\beta^{2}} \sin ^{2} \theta_{i n c}=\beta^{2} \cos ^{2} \theta_{i n c}=\beta^{2}\left(1-\sin ^{2} \theta_{i n c}\right) \leftarrow \text { Solve for } \sin ^{2} \theta_{i n c} \\
& 1-\beta^{2}=\left(\frac{1}{\beta^{2}}-\beta^{2}\right) \sin ^{2} \theta_{i n c} \Rightarrow \sin ^{2} \theta_{i n c}=\frac{1-\beta^{2}}{1 / \beta^{2}-\beta^{2}}=\frac{\left(1-\beta^{2}\right) \beta^{2}}{\left(1-\beta^{4}\right)} \\
& 1-\beta^{4}=\left(1-\beta^{2}\right)\left(1+\beta^{2}\right) \\
& \sin ^{2} \theta_{i n c}=\frac{\left(1-\beta^{2}\right) \beta^{2}}{\left(1-\beta^{2}\right)\left(1+\beta^{2}\right)}=\frac{\beta^{2}}{1+\beta^{2}} \Rightarrow \sin \theta_{i n c}=\frac{\beta}{\sqrt{1+\beta^{2}}}
\end{aligned}
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Geometrically: | $\sin \theta_{i n c}=\frac{\beta}{\sqrt{1+\beta^{2}}}$ |
| :---: |
| |
| $\cos \theta_{m c}=\frac{1}{\sqrt{1+\beta^{2}}}$ |$=\frac{\text { opp. side }}{\text { hypotenuse }}$

$$
\tan \theta_{\text {inc }}=\beta=\frac{\text { opp. side }}{\text { adjacent }} \simeq\left(\frac{n_{2}}{n_{1}}\right)
$$

1

Thus, at an angle of incidence $\theta_{m c}=\theta_{B}^{i n c} \equiv \theta_{P}^{i c}=$ Brewster's angle / the polarizing angle for a $T M$ polarized incident wave, where no reflected wave exists, we have:

$$
\tan \theta_{B}^{\text {inc }} \equiv \tan \theta_{P}^{\text {inc }} \simeq\left(\frac{n_{2}}{n_{1}}\right) \text { for } \mu_{1} \simeq \mu_{2} \simeq \mu_{o}
$$

From Snell's Law: $n_{1} \sin \theta_{m c}=n_{2} \sin \theta_{\text {trans }}$ we also see that: $\tan \theta_{B}^{i n c}=\frac{\sin \theta_{B}^{i n c}}{\cos \theta_{B}^{i n c}} \simeq \frac{n_{2}}{n_{1}}$ or: $n_{1} \sin \theta_{B}^{i n c} \simeq n_{2} \cos \theta_{B}^{i n c}$ for $\mu_{1} \simeq \mu_{2} \simeq \mu_{o}$.

Thus, from Snell's Law we see that: $\cos \theta_{B}^{i n c}=\sin \theta_{\text {trans }}$ when $\theta_{\text {inc }}=\theta_{B}^{i n c} \equiv \theta_{P}^{i n c}$.

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

So what's so interesting about this???
Well: $\cos \theta_{B}^{\text {inc }}=\sin \left(\frac{\pi}{2}-\theta_{B}^{m i c}\right)=\sin \left(\frac{\pi}{2}\right) \cos \theta_{B}^{\text {mic }}-\cos \left(\frac{\pi}{2}\right) \sin \theta_{B}^{m c}=\sin \theta_{\text {trans }}$ i.e. $\sin \left(\frac{\pi}{2}-\theta_{B}^{m c}\right)-\sin \theta_{\text {trass }}$
\therefore When $\theta_{\text {inc }}=\theta_{B}^{i n c} \equiv \theta_{P}^{i n c}$ for an incident $T M$-polarized $E M$ wave, we see that $\theta_{\text {trans }}=\pi / 2-\theta_{B}^{i n c}$ Thus: $\theta_{B}^{\text {inc }}+\theta_{\text {trans }}=\pi / 2$, i.e. $\theta_{B}^{\text {inc }} \equiv \theta_{\mathrm{P}}^{\text {inc }}$ and $\theta_{\text {trans }}$ are complimentary angles !!!

Comment 3):

For internal reflection $\left(\mathrm{n}_{1}>\mathrm{n}_{2}\right)$ there exists a critical angle of incidence past which no transmitted beam exists for either TE or TM polarization. The critical angle does not depend on polarization - it is actually dictated / defined by Snell's Law:

$$
n_{1} \sin \theta_{\text {critical }}^{\text {inc }}=n_{2} \sin \theta_{\text {trans }}^{\max }=n_{2} \sin \left(\frac{\pi}{2}\right)=n_{2} \text { or: }\left|\sin \theta_{\text {critical }}^{\text {inc }}=\left(\frac{n_{2}}{n_{1}}\right)\right| \text { or: } \theta_{\text {critical }}^{\text {inc }}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)
$$

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

For $\theta_{\text {inc }} \geq \theta_{\text {critical }}^{\text {inc }}$, no transmitted beam exists \rightarrow incident
beam is totally internally reflected.
For $\theta_{\text {inc }}>\theta_{\text {critical }}^{\text {inc }}$, the transmitted wave is actually exponentially damped - becomes a so-called:

Evanescent Wave:

$$
\alpha=k_{2} \sqrt{\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{\text {mc }}-1}
$$

Exp. damping in $z \quad$ Oscillatory along interface in x-direction

Reflection \& Transmission of Monochromatic Plane EM Waves at Oblique Incidence

Brewster's angle for TE polarization:

$$
\theta_{\substack{i n c \\ T E}}^{B} \sqrt[\left.{\sin ^{-1} \sqrt{\frac{\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)}{\left(\frac{\mu_{1}}{\mu_{2}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)}}=\sin ^{-1} \sqrt{A}} \right\rvert\,]{x}
$$

$$
\sin \theta_{i n c}^{B}=\sqrt{\frac{\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)}{\left(\frac{\mu_{1}}{\mu_{2}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)}} \equiv \sqrt{A} \text { i.e. } A \equiv\left[\frac{\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)}{\left.\left(\frac{\mu_{1}}{\mu_{2}}\right)-\left(\frac{\mu_{2}}{\mu_{1}}\right)\right]}\right]
$$

ELECTROMAGNETIC WAVES IN CONDUCTORS

Imrana Ashraf Zahid
Quaid-i-Azam University Islamabad Pakistan

Preparatory School to Winter College on Optics: Advances in Nano-optics and Plasmonics $30^{\text {th }}$ January-3 ${ }^{\text {rd }}$ February 2012

ELECTROMAGNETIC WAVES IN CONDUCTORS

$>$ Free charge and free currents are zero for propagation through a vacuum or insulating materials such as glass or pure water.
$>$ Inside a conductor, free charges can move around in response to $E M$ fields contained therein- free current is not zero.
$>$ Assume that the conductor is linear/homogeneous/ isotropic media.
$>$ From Ohm's Law

$$
\vec{J}_{\text {free }}(\vec{r}, t)=\sigma_{C} \vec{E}(\vec{r}, t)
$$

where $\sigma_{C}=$ conductivity of the metal conductor $\left(\mathrm{Ohm}^{-1} / \mathrm{m}\right)$ and σ_{C} $=1 / \rho_{C}$ where $\rho_{C}=$ resistivity of the metal conduct or (Ohm-m).

ELECTROMAGNETIC WAVES IN CONDUCTORS

For such a conductor, we can assume that the linear/ homogeneous/isotropic conducting medium has electric permittivity ε and magnetic permeability μ. Maxwell's equations inside such a conductor are thus:

1) $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=\rho_{\text {free }}(\vec{r}, t) / \varepsilon$
2) $\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0$
3) $\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}$

> Using Ohm's Law:
> $\vec{J}_{\text {free }}(\vec{r}, t)=\sigma_{c} \vec{E}(\vec{r}, t)$
4) $\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu \vec{J}_{\text {free }}(\vec{r}, t)+\mu \varepsilon \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}=\mu \sigma_{c} \vec{E}(\vec{r}, t)+\mu \varepsilon \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}$

ELECTROMAGNETIC WAVES IN CONDUCTORS

Electric charge is (always) conserved- thus the continuity equation inside the conductor is:

$$
\begin{array}{|ll|}
\hline \vec{\nabla} \cdot \vec{J}_{\text {free }}(\vec{r}, t)=-\frac{\partial \rho_{\text {free }}(\vec{r}, t)}{\partial t} \quad \text { but: } \vec{J}_{\text {free }}(\vec{r}, t)=\sigma_{C} \vec{E}(\vec{r}, t) \\
\sigma_{C}(\vec{\nabla} \cdot \vec{E}(\vec{r}, t))=-\frac{\partial \rho_{\text {free }}(\vec{r}, t)}{\partial t} \text { but: } \vec{\nabla} \cdot \vec{E}(\vec{r}, t)=\rho_{\text {friee }}(\vec{r}, t) / \varepsilon \\
\hline
\end{array}
$$

thus:

$$
\frac{\sigma_{C} \rho_{\text {free }}(\vec{r}, t)}{\varepsilon}=-\frac{\partial \rho_{\text {free }}(\vec{r}, t)}{\partial t} \text { or: } \frac{\partial \rho_{\text {free }}(\vec{r}, t)}{\partial t}+\left(\frac{\sigma_{C}}{\varepsilon}\right) \rho_{\text {free }}(\vec{r}, t)=0
$$

1st order linear, homogeneous differential equation

ELECTROMAGNETIC WAVES IN CONDUCTORS

The \{physical\} general solution of this differential equation for the free charge density is of the form:

$$
\rho_{\text {friee }}(\vec{r}, t)=\rho_{\text {friee }}(\vec{r}, t=0) e^{-\sigma_{c} t / \varepsilon}=\rho_{\text {free }}(\vec{r}, t=0) e^{-t / /_{\text {reax }}}
$$

A damped exponential!!!

The continuity equation inside a conductor tells us that any free charge density initially present at time $t=0$ is exponentially damped in a characteristic time $\tau_{\text {relax }} \equiv \varepsilon / \sigma_{C}=$ charge relaxation time.

ELECTROMAGNETIC WAVES IN CONDUCTORS

Maxwell's equations for a charge-equilibrated conductor

1) $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=0$
2) $\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0$

$$
\text { 3) } \vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}
$$

4) $\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu \sigma_{C} \vec{E}(\vec{r}, t)+\mu \varepsilon \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}=\mu\left(\sigma_{c} \vec{E}(\vec{r}, t)+\varepsilon \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}\right)$

ELECTROMAGNETIC WAVES IN CONDUCTORS

These equations are different from the previous derivation(s) of monochromatic plane EM waves propagating in free space/vacuum and/or in linear/homogeneous/ isotropic non-conducting materials Re-derive the wave equations for $\boldsymbol{E} \mathcal{E} \boldsymbol{B}$ from scratch. As before, we apply $\nabla \times()$ to equations 3) and 4):

We get

$$
\nabla^{2} \vec{E}(\vec{r}, t)=\mu \varepsilon \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}+\mu \sigma_{C} \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}
$$

and

$$
\nabla^{2} \vec{B}(\vec{r}, t)=\mu \varepsilon \frac{\partial^{2} \vec{B}(\vec{r}, t)}{\partial t^{2}}+\mu \sigma_{c} \frac{\partial \vec{B}(\vec{r}, t)}{\partial t}
$$

ELECTROMAGNETIC WAVES IN CONDUCTORS

General solution(s) - are usually in the form of an oscillatory function times a damping term (a decaying exponential) - in the direction of the propagation of the EM wave. A complex planewave type solutions for E and B associated with the above wave equation(s) are of the general form:

$$
\tilde{\vec{E}}(z, t)=\tilde{\vec{E}}_{o} e^{i(\tilde{k}-\omega t)}
$$

$$
\tilde{\tilde{B}}(z, t)=\tilde{\vec{B}}_{o} e^{i(\bar{k}-\omega t)}=\left(\frac{\tilde{k}}{\omega}\right) \hat{k} \times \tilde{\tilde{E}}(z, t)=\frac{1}{\omega} \tilde{\vec{k}} \times \tilde{\tilde{E}}(z, t)
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

With $\{$ frequency-dependent $\}$ complex wave number:

$$
\begin{gathered}
\tilde{k}(\omega)=k(\omega)+i \kappa(\omega) \\
k(\omega)=\Re e(\tilde{k}(\omega))=\omega \sqrt{\frac{\varepsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma_{C}}{\varepsilon \omega}\right)^{2}}+1\right]^{1 / 2} \\
\kappa(\omega)=\Im \operatorname{I} m(\tilde{k}(\omega))=\omega \sqrt{\frac{\varepsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma_{C}}{\varepsilon \omega}\right)^{2}}-1\right]^{1 / 2} \\
\end{gathered}
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

The imaginary part of $k, \kappa=\mathfrak{m}(k)$ results in an exponential attenuation/damping of the monochromatic plane $E M$ wave with increasing z:

$$
\tilde{\vec{E}}(z, t)=\tilde{\vec{E}} e^{-\kappa z} e^{i(k z-\omega t)}
$$

$$
\tilde{\vec{B}}(z, t)=\tilde{\vec{B}}_{o} e^{-\kappa z} e^{i(k z-\omega t)}=\frac{1}{\omega} \tilde{\vec{k}} \times \tilde{\vec{E}}(z, t)=\frac{1}{\omega} \tilde{\tilde{k}} \times \tilde{\tilde{E}}_{o} e^{-\kappa z} e^{i(k z-\omega t)}
$$

These solutions satisfy the above wave equations for any choice $\tilde{\vec{E}}_{0}$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

The characteristic distance over which E and B are attenuated/reduced to $1 / e=0.3679$ - of their initial values (at $z=0$) is known as the skin depth

$$
\delta_{s c}(\omega) \equiv 1 / \kappa(\omega)
$$

$$
\delta_{s c}(\omega)=\frac{1}{\kappa(\omega)}=\frac{1}{\omega \sqrt{\frac{\varepsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma_{c}}{\varepsilon \omega}\right)^{2}}-1\right]} \Rightarrow \begin{aligned}
& \tilde{\tilde{E}}\left(z=\delta_{s c}, t\right)=\tilde{\tilde{E}}^{1 / 2} e^{-1} e^{((k-\alpha x)} \\
& \tilde{\vec{B}}\left(z=\delta_{s c}, t\right)=\tilde{\vec{B}}_{0} e^{-1} e^{(k-\alpha x)}
\end{aligned}
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

The real part of k - determines the spatial wavelength λ (ω)-the propagation speed $v(\omega)$ and also the index of refraction

$$
\begin{aligned}
& \lambda(\omega)=\frac{2 \pi}{k(\omega)}=\frac{2 \pi}{\mathfrak{R e}(\tilde{k}(\omega))} \\
& v(\omega)=\frac{\omega}{k(\omega)}=\frac{\omega}{\mathfrak{R e}(\tilde{k}(\omega))} \\
& n(\omega)=\frac{c}{v(\omega)}=\frac{c k(\omega)}{\omega}=\frac{c \Re e(\tilde{k}(\omega))}{\omega}
\end{aligned}
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

The above plane wave solutions satisfy the above wave equations(s). Maxwell's equations rue out the presence of any longitudinal i.e, z- component of E and B.
E and B are purely transverse waves (as before), even in a conductor!
If we consider - a linearly polarized monochromatic plane EM wave propagating in the $+\mathrm{z}^{\wedge}$-direction in a conducting medium, e.g.

$$
\tilde{\vec{E}}(z, t)=\tilde{E}_{o} e^{-\kappa z} e^{i(k z-\alpha t)} \hat{x}
$$

then

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

$$
\tilde{\tilde{B}}(z, t)=\frac{1}{\omega} \tilde{\tilde{k}} \times \tilde{\tilde{E}}(z, t)=\left(\frac{\tilde{k}}{\omega}\right) \tilde{E}_{o} e^{-\kappa z} e^{i(k z-\omega t)} \hat{y}=\left(\frac{k+i \kappa}{\omega}\right) \tilde{E}_{o} e^{-\kappa z} e^{i(k z-\omega t)} \hat{y}
$$

$$
\Rightarrow \quad \tilde{\vec{E}}(z, t) \perp \tilde{\vec{B}}(z, t) \perp \hat{z} \quad(+\hat{z}=\text { propagation direction })
$$

The complex wave-number $\quad \tilde{k}=k+i k=K e^{i \phi}$

$$
\text { where: } K \equiv|\tilde{k}|=\sqrt{k^{2}+\kappa^{2}} \text { and } \phi_{k} \equiv \tan ^{-1}(\kappa / k)
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

In the complex \tilde{k}-plane:

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

Then we see that:

$$
\tilde{\vec{E}}(z, t)=\tilde{E}_{o} e^{-\kappa z} e^{i(k z-\omega t)} \hat{x}
$$

$$
\text { has } \tilde{E}_{o}=E_{o} e^{i \delta_{E}}
$$

$$
\tilde{\vec{B}}(z, t)=\tilde{B}_{0} e^{-\kappa z} e^{i(k z-\omega t)} \hat{y}=\frac{\tilde{k}}{\omega} \tilde{E}_{o} e^{-\kappa z} e^{i(k z-\omega t)} \hat{y}
$$

has $\quad \tilde{B}_{o}=B_{o} e^{i \delta_{B}}=\frac{\tilde{k}}{\omega} \tilde{E}_{o}=\frac{K e^{i \phi_{k}}}{\omega} E_{o} e^{i \delta_{\phi_{k}}}$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

$$
B_{o} e^{i \delta_{B}}=\frac{K e^{i \phi_{k}}}{\omega} E_{o} e^{i \delta_{B}}=\frac{K}{\omega} E_{o} e^{i\left(\delta_{E}+\phi_{k}\right)}=\frac{\sqrt{k^{2}+\kappa^{2}}}{\omega} E_{o} e^{i\left(\delta_{E}+\phi_{k}\right)}
$$

inside a conductor, \mathbf{E} and \mathbf{B} are no longer in phase with each other!!!
Phases of \boldsymbol{E} and \boldsymbol{B}

$$
\delta_{B}=\delta_{E}+\phi_{k}
$$

With phase difference:

$$
\Delta \varphi_{B-E} \equiv \delta_{B}-\delta_{E}=\phi_{k}
$$

We also see that:

$$
\frac{B_{o}}{E_{o}}=\frac{K}{\omega}=\left[\varepsilon \mu \sqrt{1+\left(\frac{\sigma_{C}}{\varepsilon \omega}\right)^{2}}\right]^{1 / 2} \neq \frac{1}{c}
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

The real/physical \boldsymbol{E} and \boldsymbol{B} fields associated with linearly polarized monochromatic plane $E M$ waves propagating in a conducting medium are exponentially damped:

$$
\begin{array}{|l|}
\hline \vec{E}(z, t)=\Re e(\tilde{E}(z, t))=E_{0} e^{-k z} \cos \left(k z-\omega t+\delta_{E}\right) \hat{x} \rightarrow \delta_{B}=\delta_{E}+\phi_{k} \\
\hline \vec{B}(z, t)=\Re e(\vec{B}(z, t))=B_{0} e^{-k z} \cos \left(k z-\omega t+\delta_{B}\right) \hat{y}=B_{0} e^{-k z} \cos \left(k z-\omega t+\left\{\delta_{E}+\phi_{k}\right\}\right) \hat{y} \\
\hline
\end{array}
$$

$$
\frac{B_{o}}{E_{o}}=\frac{K(\omega)}{\omega}=\left[\varepsilon \mu \sqrt{1+\left(\frac{\sigma_{c}}{\varepsilon \omega}\right)^{2}}\right]^{\frac{1}{2}}
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

where $K(\omega) \equiv|\tilde{k}(\omega)|=\sqrt{\kappa^{2}(\omega)+\kappa^{2}(\omega)}=\omega\left[\varepsilon \mu \sqrt{1+\left(\frac{\sigma_{c}}{\varepsilon \omega}\right)^{2}}\right]^{1 / 2}$

$$
\delta_{B}=\delta_{E}+\phi_{k}, \phi_{k}(\omega) \equiv \tan ^{-1}\left(\frac{\kappa(\omega)}{k(\omega)}\right)
$$

and

$$
\tilde{k}(\omega)=|\tilde{\tilde{k}}(\omega)|=k(\omega)+i \kappa(\omega)
$$

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

Definition of the skin depth in a conductor:

$$
\delta_{s c}(\omega) \equiv \frac{1}{\kappa(\omega)}=\frac{1}{\omega \sqrt{\frac{\varepsilon \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma_{c}}{\varepsilon \omega}\right)^{2}}-1\right]^{1 / 2}}
$$

$=\begin{gathered}\text { Distance over which } \\ \text { the } \vec{E} \text { and } \vec{B} \text { fields fall to }\end{gathered}$
$1 / e=e^{-1}=0.3679$ of their initial values.

MONOCHROMATIC PLANE WAVES IN CONDUCTING MEDIA

Reflection of EM Waves at Normal Incidence from a Conducting Surface

In the presence of free surface charges σ and free surface currents- the Bc's for reflection and refraction at e.g. a dielectric-conductor interface become:
BC 1): (normal D at interface): $\quad \varepsilon_{1} E_{1}^{\perp}-\varepsilon_{2} E_{2}^{\perp}=\sigma_{\text {free }}$
BC 2): (tangential E at interface): $E_{1}^{\|}-E_{2}^{\|}=0 \Rightarrow E_{1}^{\|}=E_{2}^{\|}$
BC 3): (normal B at interface): $\quad B_{1}^{\perp}-B_{2}^{\perp}=0 \Rightarrow B_{1}^{\perp}=B_{2}^{\perp}$
BC 4): (tangential H at interface): $\quad \frac{1}{\mu_{1}} B_{1}^{\|}-\frac{1}{\mu_{2}} B_{2}^{\|}=\vec{K}_{\text {free }} \times \hat{n}_{\overrightarrow{21}}$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

$\perp=$ normal to plane of interface || = parallel to plane of interface

Where $\mathrm{n}_{21} \rightarrow$ is a unit vector \perp to the interface, pointing from medium (2) into medium (1).

Incident $E M$ wave $\{$ medium (1) $\}$:

$$
\tilde{\vec{E}}_{\text {inc }}(z, t)=\tilde{E}_{o_{\text {inc }}} e^{i\left(k_{1} z-\omega t\right)} \hat{x} \quad \text { and } \quad \tilde{\vec{B}}_{\text {inc }}(z, t)=\frac{1}{v_{1}} \tilde{E}_{o_{\text {inc }}} e^{i\left(k_{1} z-\omega t\right)} \hat{y}
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

Reflected EM wave \{medium (1)\}:

$$
\tilde{\tilde{E}}_{\text {ref }}(z, t)=\tilde{E}_{o_{r e f}} e^{i\left(-k_{1} z=\omega t\right)} \hat{x} \quad \text { and } \quad \tilde{\bar{B}}_{r e f}(z, t)=-\frac{1}{v_{1}} \tilde{E}_{o_{r e f}} e^{i\left(-k_{1} z-\alpha t\right)} \hat{y}
$$

Transmitted EM wave \{medium (2)\}:
$\tilde{\vec{E}}_{\text {trans }}(z, t)=\tilde{E}_{o_{\text {tras }}} e^{i\left(\tilde{\vec{k}}_{2} z-\omega t\right)} \hat{\boldsymbol{x}}$

$$
\text { and } \tilde{\vec{B}}_{\text {trans }}(z, t)=\frac{\tilde{k}_{2}}{\omega} \tilde{E}_{o_{\text {tras }}} e^{i\left(\tilde{k}_{2} z-\omega t\right)} \hat{y}
$$

complex wave-number in \{conducting\} medium (2):

$$
\tilde{k}_{2}=k_{2}+i \kappa_{2}
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

In medium (1) EM fields are:
$\tilde{\vec{E}}_{\text {Tot }}(z, t)=\tilde{\tilde{E}}_{\text {inc }}(z, t)+\tilde{\tilde{E}}_{\text {ref }}(z, t) \quad \tilde{\vec{B}}_{\text {Tot }}(z, t)=\tilde{\vec{B}}_{\text {inc }}(z, t)+\tilde{\vec{B}}_{r e f}(z, t)$
In medium (2) EM fields are:

$$
\tilde{\tilde{E}}_{\text {Tot }_{2}}(z, t)=\tilde{\tilde{E}}_{\text {trans }}(z, t) \text { and: } \tilde{\vec{B}}_{\text {Tot }}^{2}(z, t)=\tilde{\tilde{B}}_{\text {trans }}(z, t)
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

Apply BC's at the $z=0$ interface in the $x-y$ plane:

$$
\text { BC 1): } \varepsilon_{1} E_{1}^{\perp}-\varepsilon_{2} E_{2}^{\perp}=\sigma_{\text {free }} \text { but } E_{1}^{\perp}=\tilde{E}_{1_{z}}=0 \text { and: } E_{2}^{\perp}=\tilde{E}_{2_{z}}=0
$$

$$
0-0=\sigma_{\text {free }} \Rightarrow \sigma_{\text {free }}=0
$$

$$
\mathrm{BC} 2): E_{1}^{\|}=E_{2}^{\|} . \therefore \tilde{E}_{o_{\text {inc }}}+\tilde{E}_{o_{\text {ref }}}=\tilde{E}_{o_{\text {rensu }}}
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

$$
\text { BC 3): } B_{1}^{\perp}=B_{2}^{\perp} \text { but: } B_{1}^{\perp}=B_{1_{2}}=0 \text { and: } B_{2}^{\perp}=B_{2_{2}}=0 \Rightarrow 0=0
$$

$$
\begin{aligned}
& \text { or: } \tilde{E}_{o_{\text {max }}}-\tilde{E}_{o_{\text {ort }}}=\tilde{\beta} \tilde{E}_{o_{\text {oma }}} \text { with: } \tilde{\beta} \equiv\left(\frac{\mu_{1} v_{1} \tilde{k}_{2}}{\mu_{2} \omega}\right)=\left(\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\right) \tilde{k}_{2}
\end{aligned}
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

Thus we obtain:

$$
\left(\frac{\tilde{E}_{o_{\text {req }}}}{\tilde{E}_{o_{\text {tre }}}}\right)=\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right) \text { and: }\left(\frac{\tilde{E}_{o_{\text {rans }}}}{\tilde{E}_{o_{\text {rec }}}}\right)=\frac{2}{(1+\tilde{\beta})}
$$

$$
\text { with } \quad \tilde{\beta} \equiv\left(\frac{\mu_{1} v_{1} \tilde{k}_{2}}{\mu_{2} \omega}\right)=\left(\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\right) \tilde{k}_{2}
$$

The relations for reflection/transmission of EMW at normal incidence on a non-conductor/conductor boundary are identical to those obtained for reflection / transmission of EMW at normal incidence on a boundary/interface between two non-conductors- except for the replacement of β with a complex β.

Reflection of EM Waves at Normal Incidence from a Conducting Surface

For the case of a perfect conductor, the conductivity

$$
\sigma_{C}=\infty\left\{\text { thus resistivity, } \rho_{C}=1 / \sigma_{C}=0\right\}
$$

$\Rightarrow \underline{\text { oth }} \begin{aligned} & k_{2} \simeq \kappa_{2} \simeq \sqrt{\frac{\omega \mu_{2} \sigma_{c}}{2}}=\infty \\ & \text { and since: } \\ & \tilde{\beta} \equiv\left(\frac{\mu_{1} v_{1} \tilde{k}_{2}}{\mu_{2} \omega}\right)=\left(\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\right) \tilde{k}_{2}\end{aligned}$ and since: $\overline{k_{2}=k_{2}+i K_{2}}$ then: $\tilde{k_{2}=\infty+i \infty=\infty(1+i)}$

Thus, for a perfect conductor, we see that:

$$
\tilde{E}_{o_{r e s}}=-\tilde{E}_{O_{\text {mec }}} \text { and } \tilde{E}_{\text {taus }}=0
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

For a perfect conductor the reflection and transmission coefficients are:

$$
R \equiv\left(\frac{E_{o_{\text {rete }}}}{E_{o_{\text {ire }}}}\right)^{2}=\left|\frac{\tilde{E}_{\text {oret }}}{\tilde{E}_{o_{\text {orec }}}}\right|^{2}=\left(\frac{\tilde{E}_{\text {orept }}}{\tilde{E}_{o_{\text {rec }}}}\right)\left(\frac{\tilde{E}_{o_{\text {ere }}}}{\tilde{E}_{o_{\text {rec }}}}\right)^{*}=1 \text { and: } T=1-R=0
$$

We also see that for a perfect conductor, for normal incidence, the reflected wave undergoes a 180 degree phase shift with respect to the incident wave at the interface at $z=0$ in the x-y plane. A perfect conductor screens out all $E M$ waves from propagating in its interior.

Reflection of EM Waves at Normal Incidence from a Conducting Surface

For a good conductor- the conductivity is large- but finite. The reflection coefficient R for monochromatic plane EM waves at normal incidence on a good conductor is not unity- but close to it. \{This is why good conductors make good mirrors!\}.

$$
R \equiv\left(\frac{E_{o_{r e f}}}{E_{o_{m e}}}\right)^{2}=\left|\frac{\tilde{E}_{o_{r e f}}}{\tilde{E}_{o_{m e}}}\right|^{2}=\left(\frac{\tilde{E}_{o_{r f l}}}{\tilde{E}_{o_{m e}}}\right)\left(\frac{\tilde{E}_{o_{r v \rho}}}{\tilde{E}_{o_{m e}}}\right)^{*}=\left|\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right|^{2}=\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)^{*}
$$

Where

$$
\tilde{\beta}=\left(\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\right) \tilde{k}_{2}=\left(\frac{\mu_{1} v_{1}}{\mu_{2} \omega}\right) \sqrt{\frac{\omega \mu_{2} \sigma_{C}}{2}}(1+i)=\mu_{1} v_{1} \sqrt{\frac{\sigma_{C}}{2 \mu_{2} \omega}}(1+i)
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

Define

$$
\gamma \equiv \mu_{1} v_{1} \sqrt{\frac{\sigma_{C}}{2 \mu_{2} \omega}} \text { Then: } \tilde{\beta}=\gamma(1+i)
$$

Thus, the reflection coefficient R for monochromatic plane EM waves at normal incidence on a good conductor is:

$$
R=\left|\frac{\tilde{E}_{o_{\text {ou }}}}{\tilde{E}_{o_{\text {oum }}}}\right|^{2}=\left|\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right|^{2}=\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)\left(\frac{1-\tilde{\beta}}{1+\tilde{\beta}}\right)^{*}=\left(\frac{1-\gamma-i \gamma}{1+\gamma+i \gamma}\right)\left(\frac{1-\gamma+i \gamma}{1+\gamma-i \gamma}\right)=\left[\frac{(1-\gamma)^{2}+\gamma^{2}}{(1+\gamma)^{2}+\gamma^{2}}\right]
$$

$$
\text { with } \quad \gamma \equiv \mu_{1} v_{1} \sqrt{\frac{\sigma_{C}}{2 \mu_{2} \omega}}
$$

Reflection of EM Waves at Normal Incidence from a Conducting Surface

Obviously, only a small fraction of the normally-incident monochromatic plane EM wave is transmitted into the good conductor- since $R<1$ and $T=1-R$, i.e.:

$$
T=1-R=1-\left[\frac{(1-\gamma)^{2}+\gamma^{2}}{(1+\gamma)^{2}+\gamma^{2}}\right] \quad(\ll 1)
$$

Note that the transmitted wave is exponentially attenuated in the z-direction; the E and B fields in the good conductor fall to 1 /e of their initial $\{z=0\}$ values (at/on the interface) after the monochromatic plane EM wave propagates a distance of one skin depth in z into the conductor:

Reflection of EM Waves at Normal Incidence from a Conducting Surface

$$
\delta_{s c}(\omega) \equiv \frac{1}{\kappa_{2}(\omega)} \simeq \sqrt{\frac{2}{\omega \mu_{2} \sigma_{C}}}
$$

Note also that the energy associated with the transmitted monochromatic plane $E M$ wave is ultimately dissipated in the conducting medium as heat.
In \{bulk\} metals-the transmitted wave is \{rapidly\} absorbed/attenuated in the metal- we can only study the reflection coefficient R.
A full description of the physics of reflection from the surface of a metal conductor as a function of angle of incidencerequires the use of a complex dispersion relation

Full Maxwell Equations in Matter

The electromagnetic state of matter at a given observation point r at a given time t is described by four macroscopic quantities:
1.) The volume density of free charge:

$$
\rho_{\text {free }}(\vec{r}, t)
$$

2.) The volume density of electric dipoles:
3.) The volume density of magnetic dipoles:
4.) The free electric current / unit area:

$$
\vec{J}_{\text {free }}(\vec{r}, t) \in\{\text { free current density }
$$

Full Maxwell Equations in Matter

These four quantities are related to the macroscopic \boldsymbol{E} and \boldsymbol{B} fields by the four Maxwell equations for matter

1) Gauss' Law:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{\rho_{\text {Tot }}}{\varepsilon_{0}}=\frac{1}{\varepsilon_{o}}\left(\rho_{\text {free }}+\rho_{\text {bound }}\right) \text { where: } \rho_{\text {boomd }}=-\vec{\nabla} \cdot \overrightarrow{\mathrm{P}} \\
& \vec{D}=\varepsilon_{0} \vec{E}+\overrightarrow{\mathrm{P}} \text { \& constitutive relation: } \vec{D}=\varepsilon \vec{E}
\end{aligned}
$$

Electric polarization $\overrightarrow{\mathrm{P}}=\left(\varepsilon-\varepsilon_{0}\right) \vec{E}=\varepsilon_{0} \chi_{e} \vec{E}$, electric susceptibility $\chi_{e}=\left(\frac{\varepsilon}{\varepsilon_{0}}-1\right)$

$$
\vec{\nabla} \cdot \vec{D}=\varepsilon_{o} \vec{\nabla} \cdot \vec{E}+\vec{\nabla} \cdot \overrightarrow{\mathrm{P}}=\rho_{\text {free }}
$$

2) No magnetic charges/monopoles: $\vec{\nabla} \cdot \vec{B}=0$
$\begin{gathered}\text { Auxiliary relation: } \\ 1 / 25 / 2012\end{gathered} \vec{H}=\frac{1}{\mu_{o}} \vec{B}-\overrightarrow{\mathrm{M}} \Rightarrow \vec{\nabla} \cdot \vec{H}=-\vec{\nabla} \cdot \overrightarrow{\mathrm{M}}$ \& constitutive relation: ${\underset{1}{ } \overrightarrow{\vec{B}}=\mu \vec{H}}_{168}$

Full Maxwell Equations in Matter

3) Faraday's Law:

$$
\begin{array}{|l}
\left\lvert\, \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}-\mu_{0} \frac{\partial \overrightarrow{\mathrm{M}}}{\partial t}\right. \\
\hline \overrightarrow{\mathrm{M}}-\left(\frac{\mu}{\mu_{o}-1}\right) \vec{H}=\chi_{m} \vec{H}, \text { magnetic susceptibility } \chi_{m}=\left(\frac{\mu}{\mu_{o}}-1\right) \\
\hline
\end{array}
$$

Magnetization:

$$
\vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}_{\text {ToT }}+\mu_{o} \vec{J}_{D} \text { with } \vec{J}_{D}=\varepsilon_{o} \frac{\partial \vec{E}}{\partial t}
$$

Total current density: $\vec{J}_{\text {ToT }}=\vec{J}_{\text {free }}+\vec{J}_{\text {bound }}^{\text {mag }}+\vec{J}_{\text {boond }}^{P}$ $\vec{J}_{\text {bound }}^{P}=\frac{\partial \overrightarrow{\mathrm{P}}}{\partial t}$
$\vec{\nabla} \times \vec{B}=\mu_{o} J_{\text {flee }}+\mu_{o} \vec{\nabla} \times \overrightarrow{\mathrm{M}}+\mu_{o} \frac{\partial \overrightarrow{\mathrm{P}}}{\partial t}+\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}$
$\vec{\nabla} \times \vec{H}=\mu_{o} \vec{J}_{\text {free }}+\mu_{o} \frac{\partial \vec{D}}{\partial t}$

Full Maxwell Equations in Matter

Then Maxwell's equations in matter, for $\rho_{\text {free }}=0$ and $\overrightarrow{\mathrm{M}}=0$

1) Gauss' Law:

$$
\vec{\nabla} \cdot \vec{D}=0 \text { or: } \vec{\nabla} \cdot \vec{E}=-\frac{1}{\varepsilon_{o}} \vec{\nabla} \cdot \overrightarrow{\mathrm{P}}=\rho_{\text {free }} / \varepsilon_{o}
$$

2) No magnetic charges: $\vec{\nabla} \cdot \vec{B}=0$

3) Faraday's Law:	$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
4) Ampere's Law:	$\vec{\nabla} \times \vec{B}=\mu_{o} \varepsilon_{o} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \frac{\partial \overrightarrow{\mathrm{P}}}{\partial t}+\mu_{o} \vec{J}_{f r e e}$

Full Maxwell Equations in Matter

We also have Ohm's Law $\vec{J}_{\text {friee }}=\sigma_{c} \vec{E}$ and the Continuity eqn. $\quad \vec{\nabla} \cdot \vec{J}_{\text {free }}=0$

Then applying the curl operator to Faraday's Law:
We thus obtain the inhomogeneous wave equation:

$$
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\underbrace{\frac{1}{\varepsilon_{o}} \nabla \rho_{\text {bound }}+\mu_{o} \frac{\partial^{2} \overrightarrow{\mathrm{P}}}{\partial t^{2}}+\mu_{o} \frac{\partial \vec{J}_{\text {free }}}{\partial t}}_{\text {source tems }}
$$

\{and a similar one for \boldsymbol{B} \}

Full Maxwell Equations in Matter

For non-oronducting/poorly-conducting media, i.e. insulators/ dielectrics- the first two terms on the RHS are important - they explain many optical effects such as dispersion (wavelength/frequency-dependence of the index of refraction), absorption, double - refraction/bi-refringence, optical activity,
Note that the $\vec{\nabla} \rho_{\text {bound }}=-\vec{\nabla}(\vec{\nabla} \cdot \overrightarrow{\mathrm{P}})$ term is often zero- P uniform

$$
\vec{\nabla} \cdot \overrightarrow{\mathrm{P}}=\frac{\partial \mathrm{P}_{x}}{\partial x}+\frac{\partial \mathrm{P}_{y}}{\partial y}+\frac{\partial \mathrm{P}_{z}}{\partial z} \text { and } \vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}
$$

e.g. for $\overrightarrow{\mathrm{P}} \propto \vec{E}$ (i.e. $\overrightarrow{\mathrm{P}}$ proportional to \vec{E}) where: $\vec{E}(z, t)=E_{o} \cos (k z-\omega t+\delta) \hat{x}$

Full Maxwell Equations in Matter

For good conductors (e.g. metals), the conduction term

$$
\mu_{o} \frac{\partial \vec{J}_{\text {free }}}{\partial t}=\mu_{o} \sigma_{C} \frac{\partial \vec{E}}{\partial t}
$$

is the most important, because it explains the opacity of metals (e.g. in the visible light region) and also explains the high reflectance of metals.

