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ELECTROMAGNETIC WAVES IN
VACUUM

THE WAVE EQUATION

< In regions of free space (i.e. the vacuum) - where no electric
charges - no electric currents and no matter of any kind are

present - Maxwell’s equations (in differential form) are:

1) [V-E(F.1)=0 2) [V-B(7.1)=0
3) ﬁ'xﬁ(F,i)=—aB(r’I) 4) ﬁ'xﬁ(?,tkpﬂgb &E(r,:‘): Ilz BE(r,r‘)
ot O ac’ o
(¢*=Ve,m,)

Set of coupled first-order partial differential equations
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ELECTROMAGNETIC WAVES IN
VACUUM ...

We can de-couple Maxwell’s equations -by applying the

curl operator to equations 3) and 4):

‘_V"X(WXE)=§’><(—8—B] ﬁ’x(ﬁ’xﬁ)=vx(%a_]
ot ¢ Ot
Y (94F) -viE=-Z(VxB) | =V(94B)-viB=L2(VxE)
ot ¢t ot
=—V2]_7?=—a 12 OE _ ViR 12 a( o
ot\ ¢ ot ¢ ot\ ot
2 2
- [vE=SEE _ |vp=L128
¢ Ot c” Ot
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ELECTROMAGNETIC WAVES IN
VACUUM ...

These are three-dimensional de-coupled wave equations.

Have exactly the same structure — both are linear,

homogeneous, 2nd order differential equations.

Remember that each of the above equations 1s explicitly

dependent on space and time,

re. £=F(F,r) and 5‘=§(F,t)J
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ELECTROMAGNETIC WAVES IN
VACUUM ...

Thus, Maxwell’s equations implies that empty space — the
vacuum {which 1s not empty, at the microscopic scale} —
supports the propagation of {macroscopic} electromagnetic

waves - which propagate at the speed of light {in vacuum}:

‘c zl/\/soyo =3x10° m/s
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MONOCHROMATIC EM PLANE
WAVES

Monochromatic EM plane waves propagating in free space/the
vacuum are sinusoidal EM plane waves consisting of a single
frequency f , wavelength 4/ =c f, angular frequency w = 27 f and
wave-number & = 27 /4 . They propagate with speed c= /4 =w k.

In the visible region of the EM spectrum {~380 nm (violet) <A <~

780 nm (red)}- EM light waves (consisting of real photons) of a
given frequency / wavelength are perceived by the human eye as
having a specific, single colour.

Single- frequency sinusoidal EM waves are called mono-chromatic.
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MONOCHROMATIC EM PLANE
WAVES

EM waves that propagate e.g. in the +z” direction but which
additionally have no explicit x- or y-dependence are known as plane
waves, because for a given time, t the wave front(s) of the EM

wave lie in a plane which 1s L to the Zz -axis,

x4
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MONOCHROMATIC EM PLANE
WAVES

There also exist spherical EM waves — emitted from a point
source — the wave-fronts associated with these EM waves are
spherical - and thus do not lie 1n a plane L to the direction of

propagation of the EM wave

PorN T
SoUcE
ofF EM
RADIATISH

P
= T Portion of a spherical wavefront

"_—7// associated with a spherical wave
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MONOCHROMATIC EM PLANE
WAVES

If the point source is infinitely far away from observer- then a
spherical wave — plane wave in this limit, (the radius of

curvature — o); a spherical surface becomes planar as R-—.

Criterion for a plane wave: |4 < R,

Monochromatic plane waves associated with E and B

Bar)e ot E(at)=E gliem)

1/25/2012 9
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MONOCHROMATIC EM PLANE
WAVES

E(Z, ZL) =#§aei(k2_w‘t) (Z, f) — §0€i(h_mt]

A N

S

A

Propagating in Propagating in
+Z direction +Z direction
n.b. complex vectors: n.b. complex vectors:
= i5 A ~ i5 A
e.g. E =EKe x e.g. B, =Bey

n.b. The real, physical (instantaneous) fields are:

Very important
to keep 1n mind!!
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MONOCHROMATIC EM PLANE
WAVES

Maxwell’s equations for free space impose additional constraints
on E andB
<0

<]L

Since: VeE = and:
—Re

0 B =
(\ff E):o —Re

0
(\':'f

buu

These two relations can only be satisfied

In Cartesian coordinates: V=

Thus: (‘ﬁ-ﬂz):ﬂ and (fr" ﬁ) 0 become:

1/25/2012 11



MONOCHROMATIC EM PLANE
WAVES

Cle, P, O -(E‘ae‘(““)):o ol ey P e O -(ﬁae*(’“““’)):o
o oy oz o

Now suppose we do allow:

Then

1/25/2012

E,=(E,X+E,J+E,t)e’ = E,e"

L

o

N

polarization in x—y—7 (3-D)

.
~

B = ( B, x+B,y+ BDZE’) e’ =B "
polarization in —i~2 (3-D)

0. 0. 0, - - \ o ilke—or
—X+—y+—=Z -(onx+Ea y+Eazz)e"se (=) _
ox oy 0Oz ¢
P, @ )y @ (B, %+B,5+B, 2)e’" ™ =0
ox oy Oz ¢ )
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MONOCHROMATIC EM PLANE
WAVES

Eoe Eo,s Eo, = Amplitudes (constants) of the electric field

components in x, y, z directions respectively.
B, B,,, B,, =Amplitudes (constants) of the magnetic field
components in x, y, z directions respectively.

O 9, A i(kz—a:t)eia -0

~ ~ Hk-ot) is _ A
x-E_xe e’ =0 x-B, xe

x
0 . ~ i(lz-ot) i5

yeB, ye e =0
0y

~ i(kz—ot

X
0 . :
ay-Eo},ye )e? =0

1/25/2012
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MONOCHROMATIC EM PLANE
WAVES . ..

0 . . .~ ilke-at) ; (e—ot) i5 _ :

3 z-EDZze(h mt)e”?=z'l(zEme(kZ e =0 < true iff |[E, =0/
Z

a ~ A Hkz— i - I kz— ]

- 2eB 2e"“ e =ikE_e"“ ™ =0| < truciff B, =011
Z

Maxwell’s equations additionally impose the restriction that an
electromagnetic plane wave cannot have any component of E or
B |l to (or anti- ||to) the propagation direction (in this case here,
the z -direction)

Another way of stating this is that an EM wave cannot have
any longitudinal components of E and B (i.e. components of E
and B lying along the propagation direction).
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MONOCHROMATIC EM PLANE
WAVES . ..

Thus, Maxwell’s equations additionally tell us
that an EM wave is a purely transverse wave (at
least for propagation in free space) - the
components of E and B must be 1 to propagation

direction.

The plane of polarization of an EM wave is

defined (by convention) to be parallel to E.
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MONOCHROMATIC EM PLANE
WAVES . ..

Maxwell’s equations impose another restriction on the
allowed form of E and B for an EM wave:

i’xE’=—a—B and/or: §><3=%6E
ot c” ot
=Re(§'x§)=R {—6—8} =Re(vx§)=Re{%aEJ
ot c- ot
e ./
YT s N =
Can only be satisfied V (7,1) iff:
5’><£’=—8—B and/or: ﬁxg’-:%a—E
ot ¢ ot
1/25/2012
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MONOCHROMATIC EM PLANE

WAVES . ..

[ =0 - Y [ . 32 -
i—;’x}i':— k. —SE"" X+ aEI_ e ¥ "_|_ ;f/ __aix_ ﬂﬁ/
L/3"y oz | kf,»‘z Jx P iy
J
(of (=2
VxB= 63_83!_ e SB;_E;.- =4 8 ﬁ/ _lé‘E IGE 1 3;3/
/c‘*y 0z oz /81' 4 c’ 5‘1‘ cz 53' c Bf
\ ) L
- I r,; :0 iy '(l'cz .r] 5
— > = 5 ~ i({lkz—et) j
Lk _Exx+EJ’y+ £ = Eaxx_l_Eoyy_l_ 0zt |€
~ Z =0
P_P i+ B v+ B = ~ ~ i(ke—ot) 5
B—Bxx+Byy+ 'z —[Boxx+Bﬂyy+ azz]e

1/25/2012
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MONOCHROMATIC EM PLANE
WAVES . ..

- 0 E‘y _EE B aﬁy h 3 | Canonly be satisfied
VXEF=——x+—"2py=—--Tx— b can only be true iff the
af Oz ot ot | \ x and y relations are
v § aBy - oB Lo~ 8Ex - 1 OF - separately / independently
XB=— x+—Ly= X . )
e o Y PRy JENY Y ) satisfied V (r,l‘ ) !
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MONOCHROMATIC EM PLANE
WAVES ...

_ = | 8E 3 E. 2B
VxE: |- 'r£=—anf = [ =an = [ikE, =—ioB, (1)
oz ot oz ot :
3 . @B, . oE @B,
+—Ly=——-=y| = | —L=—— = |ikE_=+iwB 2
A T - o @
_ . | @B 3 OB, 3
i |- Prs iz aE";E N s 12 OF, - —ikB,,.-:—iIf@Em 3)
oz ¢ of cz ¢ of i c
0B . 1@¢E, pB. 1 OF, 1
FEpe— 2l o | T o kB =——igE,| (4)
0z ¢ of oz ¢ ot ¢
From (1): ikE = —-ioB, = )‘_Z'ﬁ,‘=—rrﬂ]lfii’ﬂI or: Bm=—(£]Em_
' ' Lk @
1/25/2012




MONOCHROMATIC EM PLANE

WAVES . ..
2 & : @ k
From (2): ikE, =+ioB, = |E_= +(I]Bm or: |B = +[—] E_
' w
: 1 . 1l (@
From (3): —ikB,, =——iwE, | = |B, =+ —2(—] E
c c\ k
_ " 1 . 1 (@
From (4): kB, =—?m)an = |B, = e b E,

- ra=an( £ )+(2) -0 (=)
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MONOCHROMATIC EM PLANE

WAVES . ..

VxE: () B.=—0F,
I .
(2) B, =+—F_ Maxwell’s Equations also
< have some redundancy
VB (3) B = +l E encrypted into them!
oy ox
c
1
4 |5, = —;an
Actually we have only n "
two independent B,=——£, | and LB@ =+—F
relations: ‘x c~x

1/25/2012
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MONOCHROMATIC EM PLANE
WAVES . ..

Very Useful Table: A A A A A ~
XXy=2 YXX=-2Z
Pxz=3% Px=—%
ZXX=Y XXZ=—y

Two relations can be written compactly into one relation:

cmu

17

C

Physically this relation states that E and B are:

» in phase with each other.
» mutually perpendicular to each other - (ELB)l z”

1/25/2012
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MONOCHROMATIC EM PLANE
WAVES . ..

The E and B fields associated with this monochromatic plane
EM wave are purely transverse { n.b. this is as also required by
relativity at the microscopic level - for the extreme relativistic
particles - the (massless) real photons travelling at the speed of
light c that make up the macroscopic monochromatic plane EM
wave.}

The real amplitudes of E and B are related to each other by:

with |BG = JB.+B, \ and ‘E = JEL+E I

1/25/2012 23




Instantaneous Poynting’s Vector for
a hinearly polarized EM wave

§(z,1) =ﬂLGE(z,t)x,§(z,t)=iRe{E(z,I)}xRe{é(Z,t)}

§(z, t)= LEOBG cos’ (kz—at+ ) (2% p)

M, =
I§(Z:f=’f)=LEﬁBﬂ cos> (kz—a)r+ 5)2 [Wazts]
H, m

=EM Power flows in the direction of propagation of the EM
wave (here, the +z" direction)
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Instantaneous Poynting’s Vector for

a linearly polarized EM wave

This is the paradigm for a monochromatic plane wave.
The wave as a whole is said to be polarized in the x
direction (by convention, we use the direction of E to
specify the polarization of an electromagnetic wave).

1/25/2012
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Instantaneous Energy & Linear
Momentum & Angular Momentum in EM
Waves

Instantaneous Energy Density Associated with an
EM Wave:

e (71) %[3052 (7,1)+—B* (F,r)J =ty (7o) 1 (77)

Mo

. 1 .
Where U et (?‘,T)=E£DE2 (i"}t)
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Instantaneous Energy & Linear
Momentum & Angular Momentum in EM
Waves

2 2 5
But |B° = C—zE - EM waves in vacuum, and |5 =¢£,4,
C

5 B (7,1)+ “’;ff % (;,;)] _ %(gggﬁ (7, )+2,E° (7,1))

Up, (F,1)=¢,E* (F,t)=¢,E, cos’ (E-F — ot + 5)

. 1
Upas (r,t) =5

( Joules

m3 )

Ugteot (751) = Upgg (1 )I - EM waves propagating in the vacuum !!!!
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Instantaneous Poynting’s Vector
Associated with an EM Wave

1

1 E’(F,t)xg(f",t)=—Re{g(zat)},{Re{ﬁ(z?t)} [Wal:ts)

Ho Ho

For a linearly polarized monochromatic plane EM
wave propagating in the vacuum,

. £
S(F,r)=c{ UMJEGZOOSZ(;CZGL)I—|-5)§=C£GEC?DOSZ(’CZ&)I+5)§

P4

But u,,, (7,t)=¢,E*(7,t)= ¢ E’ cos’ (Fcz—a)t+c5)l

1/25/2012 28



Instantaneous Poynting’s Vector
Associated with an EM Wave

The propagation velocity of energy |v | o cz"l

Poynting’s Vector = Energy Density * Propagation Velocity

S(r z‘) Uprs (r z‘) V rop

Instantaneous Linear Momentum Density Associated
with an EM Wave:

. _ — 1 - _ k

1/25/2012 29



Instantaneous Linear Momentum Density
Associated with an EM Wave

For linearly polarized monochromatic plane EM waves
propagating in the vacuum:

Oy = %/EOEE cos’ (kz—awt+9)z= lgﬂEj cos’ (kz— ot +0)z
c C . /

=lUpys

But: U, (F,1) =2, E* (F,1)= g E. cos’ (kz — wt + 5)

. . ~ 1 -, . 1 . oo k
pEM(r’t)=£aﬂoS(r’t)=C_2S(r’r)=;uEM(r’t)Z ( 2g )
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Instantaneous Angular Momentum
Density Associated with an EM wave

- _ S 1 K
But: Pw(r,f)=£aﬂoS(r,t)=c—S(r t)= - s (7, r)z[ -5 J

Depends on the choice of origin
1/25/2012 31



Instantaneous Power Associated with an
EM wave

The instantaneous EM power flowing into/out of volume v
with bounding surface S enclosing volume v (containing
EM fields in the volume V) is:

BUEIL{[(t) auw (F,l‘) > =
P, (t) = Py = L Py dr = —g()s S (r,z‘)-da

The instantaneous EM power crossing (imaginary) surface is:

‘Pm(t)=—_[s§(?“,t)-d&l|

The instantaneous total EM energy contained in volume v

IUEM (6)= [ty (7.1) di7

(Joules)
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Instantaneous Angular Momentum
Density Associated with an EM wave

The instantaneous total EM linear momentum contained in the

volume v is: »
‘ﬁEM (I)ZJ'V@EM (pr)df\ ( g-m]
SCC

The instantaneous total EM angular momentum contained in the
volume v is:

‘EEM (1)= I s (7,1) dr‘ (kg-mz]

SCC
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Time-Averaged Quantities
Associated with EM Waves

Usually we are not interested in knowing the instantaneous
power P(t), energy / energy density, Poynting’s vector, linear
and angular momentum, efc.- because experimental
measurements of these quantities are very often averages
over many extremely fast cycles of oscillation. For example
period of oscillation of light wave

1
10" cps

Tright = 1/ Sighe = =107" sec/cycle = 1femto-sec )

We need time averaged expressions for each of these
quantities - in order to compare directly with experimental
data- for monochromatic plane EM light waves:

1/25/2012 34



Time-Averaged Quantities
Associated with EM Waves

If we have a “generic” instantaneous physical quantity of

the form:

O(t) = 0, cos® (er)|

The time-average of Q(t) is defined as:

(o(n))

(0)=1 [ 0(0)dt == [ cos* (ar)ar

O(1) = Opcos’(axX)
o

(0)=(e()-50.”

1/25/2012
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Time-Averaged Quantities
Associated with EM Waves

The time average of the cos? (wt) function:

1Ircosz(ﬂ)df=l £+sm2{m‘ =L (r—'ﬂ)+ st&Jr_O) _ 1 1__|r5111.?.r::-'1'
T+0 ' r 2 de [, 2t| 2@ 2r 20

ot =2xft | f=1/7| ‘mf=2ﬂ(’£’/’£’)=2ﬂ'| si?(an')=sin(2fr)=0

1

L I cos* (ar) di = — 7 L[4 1=5 [ew)=(a)=-2.

Thus, the time-averaged quantities associated with an EM

wave propagating in free space are:
1/25/2012 36



Time-Averaged Quantities
Associated with EM Waves

EM Energy Density: |ug, (7.,t)= (”EM (Ez‘))

Total EM Energy: Uy (1) = (UEM (2 )>
Poynting’s Vector: S(7,1)= <§EM (F,f)>
EM Power: Poy (1) = (PEM (r)>‘

1/25/2012 37



Time-Averaged Quantities
Associated with EM Waves

Linear Momentum Density:

Linear Momentum:

Angular Momentum Density: Ly (Fr1) = <EEM (7.1 )>

Angular Momentum:

1/25/2012

o (7:1) = (Prae (F.1))

Pise (1) = (Pt (1))

£, (1) = (£, (1))
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Time-Averaged Quantities
Associated with EM Waves

For a monochromatic EM plane wave propagating in free
space / vacuum in "z direction:

1/25/2012 39



Time-Averaged Quantities
Associated with EM Waves

Intensity of an EM wave:

1

(|5 (7.0)) = ¢ (2t (7.1)) = ~6,E;

I(7)=(S(7,1))

Watts
m2

The intensity of an EM wave is also known as the
irradiance of the EM wave - it is the radiant power
incident per unit area upon a surface.

1/25/2012 40
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Electromagnetic Wave Propagation

in Linear Media

Consider EM wave propagation inside matter - in regions
where there are NO free charges and/or free currents ( the
medium is an insulator/non-conductor).

For this situation, Maxwell’s equations become:

1) |VeD(7,t)=0

OB(7,1)

3) |VxE(F,t)=- ~

1/25/2012

4)

2) |V-B(7,t)

=0

?xﬁ(f_",t)=

oD (F,1)

ot
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Electromagnetic Wave Propagation
in Linear Media

The medium is assumed to be linear, homogeneous and
isotropic- thus the following relations are valid in this
medium:

i1 (7,) =~ B(7.1)

D(7,t)=¢gE(¥,1)
7,

and

» & = electric permittivity of the medium.
»e=¢,(1+y,) x, = electric susceptibility of the medium.

» u = magnetic permeability of the medium.

> u=u,(1+yx,) x, = magnetic susceptibility of the medium.
> £, = electric permittivity of free space = 8.85 x 10"12Farads/m.

>y, = magnetic permeability of free space = 4n x 10~ Henrys/m.
1/25/2012 43



Electromagnetic Wave Propagation
in Linear Media

Maxwell’s equations inside the linear, homogeneous and
isotropic non-conducting medium become:

1) |V-E(7,1)=0 2) |V-B(#,t)=0

OB (7 . OE (7
(71) 4) |VxB(r,t)= e (71)

3) |VXE(F,t)=—
) x(r) ot ot

In a linear /homogeneous/isotropic medium, the speed of
propagation of EM waves is:

1/25/2012
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Electromagnetic Wave Propagation
in Linear Media

The E and B fields in the medium obey the following wave

equation:

_ OE(F,t) 1 OE(F.1)
VZE — _ 2 _ »
(?",f) S 8{2 r2 atz

febry

_ OB (¥ O*B(7
VB(F,t)=¢cu (7.) = '1 (j’r)
Ot Vo OF

1/25/2012



Electromagnetic Wave Propagation
in Linear Media

For linear / homogeneous / isotropic media:

e=Ke =(1+y,)e, K = = (1+ g, ) =relative electric permittivity
£ﬂ‘
pu=K u =(1+y, )1 K = £ (1+ y,,) = relative magnetic permeability
Hy
S = 1 1 1 1 1 ,
o @ JKQ goKm ﬂ o \/KQK)‘H Jgﬂ ﬂ 0 U KI?KH'I
I <1 = 1 <
If KeKm =1 thus KeKm — ~ v-pmp B KgKm €=c

1/25/2012 46




Electromagnetic Wave Propagation
in Linear Media

K =2

e

£

o

H ] :
and |K, =-— are dimensionless

H,

Note also that since

1
quantities, then so is \/ﬁ

Define the index of refraction { a dimensionless quantity} of the
linear / homogeneous / isotropic medium as:

n= ,,/KeKm =

e
gﬂ ﬂﬂ

1/25/2012 47



Electromagnetic Wave Propagation
in Linear Media

Thus, for linear / homogeneous / isotropic media:

\%

f

el

=¢/n (< ¢)

because

nz=1

Now for many (but not all) linear/homogeneous/isotropic
materials:

p=p, (14 7, )= 4,

( True for many paramagnetic and diamagnetic-type materials)

Thus

1/25/2012

|Zm|~9(10—8)~0

K

m

= —(1+g,) =1

(7]

= [n=yK,

and (v, =—= :
P " /_Ke




Electromagnetic Wave Propagation
in Linear Media

The instantaneous EM energy density associated with a
linear /homogeneous/isotropic material

1

U rg (F,I) =—

2

| )

[EE (r I)+;B (1 r)] ( (z f D(z f +B(r r}-H(r I))

with

1/25/2012

D(#,t)=€gE(7,t)

H(7#,t)=—B(#,t)

(

Joules

m

49
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous Poynting’s vector associated with a
linear/homogeneous/isotropic material

E(F,f)zi(E(F,t)xg(F,t))=(E(F,t)xﬁ(?,t)) (Wa‘;ts]

m

The intensity of an EM wave propagating in a
linear/homogeneous /isotropic medium is:

n n

E, =——E
Where s 5 °
1/25/2012

I(F)E<[§(F=‘)l)=";w (e (F,r))=%v;m£Ej(F)=%(£J£Ej(?]=(£)£Ei_t () (Wa? S_.
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous linear momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

P (7,1) = E;JS[H S(H EX}(( xB rr) (E(r t)x B(Fﬂr))[ kg )

2
m =-ScC

The instantaneous angular momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

EEM(F,J‘)=F><5_0'EM(FJ)=£Fx(E(;J)xg(F)t))( ke ]

m-scc
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Electromagnetic Wave Propagation
in Linear Media

Total instantaneous EM energy: Uy, ()= _L gy, (7,t)dr | (Joules)

;Fno(;ci ;E;tlﬁjcaneous linear P - .L B (1) d7 ( kg—m]
: sec

Instantaneous EM oU (t) L B

Power: P (t) - Eg; - _Cj)s \) (f",t)-da (Watts)

Total instantaneous angular EEM (1) = .[ 7 (7.1)dr kg-m®
momentum: v MR - sec
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Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal
Incidence

Suppose the x-y plane forms the boundary between two linear media. A
plane wave of frequency o- travelling in the z- direction and polarized in the
x- direction- approaches the interface from the left

r Y

Interface

1/25/2012 53



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Incident EM plane wave (in medium 1):

Propagates n the +z -direction (i.e. IE = +A% = +z), with polarization |1, = +x

:. (z.1)=E, ei(klz_“)if with: k = )k ) 27/ A = wfv,
B ( t) = —fc‘ X E,mC (z., t) = lE_'D ei(klz_ﬁ]j} since: f;m X0, _=+IXX=+y
v "

Reflected EM plane wave (in medium 1):

Pmpagates in the —z -direction (i.e. k= —}2, =—2 ), with polarization |1,, = +x

,Hﬂ( 2)=E, N5 with: |k, =k, =k =

= mfv,

(z. l‘)——k E_:'@q(z,t):—lﬂm' ei(_k‘z_ﬁ)j} since: kwxﬁ,g?:—ﬁxi:—j}

!
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Transmitted EM plane wave (in medium 2):

Propagates 1n the +z -direction (i.e. Em — +|E3 =+z), with polanzation
5 lzkzzﬁzzﬂfﬁz:mfvz

E_(z.0)=E, " ™3| with: |k

Lol
-

- 1 = = g ]. — Nk - = . L -
B .. (z,t] = v—km xE (z,.r} = p— Eomeuz“ﬂly since: lkm XN, . —FtZXX= +Jr’_

=

Note that {/iere, in this situation} the E -field / polarization
vectors are all oriented in the same direction, i.e.

-~

nim:: = nmﬂ = ntmns

=+Xx| or equivalently:

Em‘nc (F’t) Il Ereﬂ (F’t) Il Ermm (F’t)
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At the interface between the two linear / homogeneous /
isotropic media -at z = 0 {in the x-y plane} the boundary
conditions 1) - 4) must be satisfied for the total E and B -fields
immediately present on either side of the interface:

BC 1) Normal D continuous: gE- =g E;

1 IT ot 2 21' ot

(n.b. L refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous: E' =F!

1 Tot 21" ot

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)
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BC 3) Normal B continuous: B- =B

le‘ 2Tar

( L to x-y boundary, i.e. in the +z" direction)

- — - 1 1
BC 4) Tangential / continuous: —Blli” =_BQT,
y28 ’ H, ’

(|| to x-y boundary, i.e. in x-y plane)
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For plane EM waves at normal incidence on the boundary at z =
0 lying in the x-y plane- no components of E or B (incident,
reflected or transmitted waves) - allowed to be along the *z~
propagation direction(s) - the E and B-field are transverse fields
{constraints imposed by Maxwell’s equations).

BC 1) and BC 3) impose no restrictions on such EM waves since:

{.lf; =E;

th

=0; E, =E; =0}and {B_ =B =0; B,

IT b 2Tar

= B’

2Jl"' at

=0}

= The only restrictions on plane EM waves propagating with

normal incidence on the boundary at z = 0 are imposed by BC 2)
and BC 4).
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At z = 0 in medium 1) (i.e. z < 0) we must have:

(z 0r)+E (z=0,7) and

1 = ]
iy z=0,t)=—B_(z=0,¢ +—B z=0,t
" ln,,( ) " A ) " a )

While at z = 0 in medium 2) (i.e. z 2 0) we must have:

E! (z=0,1)
1 =

—B“ z=0,1
H, (2=0:1) H,

E’ (Z 01‘) and
1

(z Oz‘)

!?'CIHS
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BC 2) (Tangential E is continuous @ z = 0) requires that:

—
o

El |o=E || or:|En (z=0,0)+E,, (2=0,0)= £, (z=0,7)|

BC 4) (Tangential H is continuous @ z = 0) requires that:

= | =
_Bll.lTor ‘ -0 _Bélror | =0
F H
or: Lémc (z = 0,t)+i§qﬂ (z = 0,1‘) =i§w (z = () t)
H Fh H
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Using explicit expressions for the complex E and B fields

= - 2 1 e l ~ T,
E (z1)=E, "3 t)=—k, xE, (z,t)=—E, ™
e (Z:1) o€ X (z ; l21)= ; ) € ¥y
g (20) =By @55 B (21) =g xEog (1) == E, &5
| 1

1T

s Z1) = E %ef{tl""_“}i B__ (2,1) =$ Hm, X E (z,1)= iE‘ ¢ty

into the above boundary condition relations- equations become
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BC 2) (Tangential E continuous @ z = 0): .Fj'ﬂtﬂ+ﬁ'o#fﬁ( =Eﬂmﬁj{

. I =~ ¢ 1 -~ 1 =~
BC 4) (Tangential H continuous (@ z = 0): —Eﬂﬂf?m/‘_E%fyu{=_E%ﬂ
Y Sl Y,

Cancelling the common e™®t factors on the LHS & RHS of
above equations - we have at z = 0 { everywhere in the x-y
plane- must be independent of any time t}:
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BC 2) (Tangential E continuous @ z=0): E o E' E%
e T . 1 - | |
BC 4) (Tangential H continuous @ z = 0): E, —E, = E,_
.I‘Ilvl ltjlvl ﬂlvl

Assuming that {4 and i} and {v, and v,} are known / given for the two media, we have two
equations {from BC 2) and BC 4)} and three unknowns { Z E }

Um:ﬁmﬂm

— Solve above equations simultaneously for

{E’% and anm } 1 terms of / scaled to Eoinc !

g= 4%

First (for convenience) let us define:
Ju 21)2

1/25/2012
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BC 4) (Tangential H continuous @ z = 0) relation becomes:

EM—E%=}5’E

o; Chans

BC 2) (Tangential E continuous @ z = 0):

Eol'm: + Eomﬂ

- Eafmm

BC 4) (Tangential H continuous @ z = 0):

~ ~ ~ v,
EDI-" - — Eam_ﬂ = ﬂ Eﬂmm Wi.th ﬁ = ﬂl .
' ' HyV,
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Add and Subtract BC 2) and BC 4) relations:

25% =(1+p) Eom

2E, = (1-B)E,

—

—

B 2
o [1+ﬂ

]E (2+4)

E

Ore

|

2

ﬂ] E, | 2-4)

Insert the result of eqn. (2+4) into eqn. (2—4):

E =|—£
et [ Z

I

Z

1+

=

i

1+

] E"mc
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E{, 1= ﬁ and E‘o = L E‘G_

o 1+ﬁ trans 1+ 3 ) o
Now: —latil and: v]=£ vl=£ where: |n, = ila and |n, = | 524
nu‘.!v "1 F HI Enﬂa q gﬂﬂﬂ'
S Yo AR
HV, auz (C/ ") Hm J“‘JJELJHU'/ EH, M &1 A\ H & H
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Now if the two media are both paramagnetic and/or

diamagnetic, such that

1.e.

my 5

<1

th =ty (14 20, ) =

and:

1 =ty (14 2, ) = 1,

Very common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then

ﬁE ‘L[IVI :(vl]z(n_z
HY, Vs =

1/25/2012
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X
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r- 1 ﬂ ~ (JV) _'%_W\”
Eo"'ﬂ [l+ﬁ] e (1+( l/v )J ’"c_(V2+V1)EO'“

Then \
B o=|—=_|p =|—2 |& =[2=|&
e\ 1+ ) O™ 1+(v,/v,) ) ™ v+ )

We can alternatively express these relations in terms of
the indices of refraction n; & n,:

~ n—n, |~ ~ 2n ~
E =|2—2|E |and E = L_|E
refl nl + nz inc trans nl + n2 ine
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Now since: o i5
Eoim: - Eoins e
- . i5
E%ﬂ = E%ﬂ e
I . id
Eormr:.:: - Eﬂm:n.s

0 = phase angle (in radians) defined at the zero of time - t = 0

'~1

Then for the purely real amplitudes (£, , E, , E,

these relations become:
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[ for

= Hy, = H,

'4
E = ﬂ T = 2%
ﬂ'rgﬂ 1 + ﬂ Oz'nc Vz + vl

E, =| 2" |E
Oi'rlt,‘ nl + nz ofm.'.'

z£

Y

)V,

|

E = 2n, E
NG nl +n2 nc

H = H, = 4,

Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic

media
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For a monochromatic plane EM wave at normal incidence
on a boundary between two linear / homogeneous /

isotropic media, 4, = 4, = 4, note the following points:

Ifv,>v (i.e. n,<m) {e.g. medium 1) = glass = medium 2) = air}:

v—v | n —n, E, 1s precisely in-phase with
E,=|- B, =|—>|E,_|= -
v, + n+n, | ™ E, because (v,-v,)>0.
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Ifv,<v, (le. n,>n ) {e.g medium l)=air = medium 2) = glass}

E  1s 180° out-of-phase with
1Yy _( Oref '

Ore v P
v, +V, n, +n, ecause (v,—v,)<0.

The minus sign indicates a 180°
E, |=| phase shift occurs upon reflection
for v, <v, (1e. m, >mn ) !

| v, —V n—n
ie. E =-]-1 Lol

vt o =

Vy +'F'l n, +iﬂ"-_l
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E, 1salways in-phase with E, for all possible v, & v, (m, &n,) because:

Eﬂ' = L Eﬂ- = 2v2 Eﬂ'- = 2 nl Eﬂ.
frans 1+ f v, +V, n, +n,
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What fraction of the incident EM wave energy is reflected?

What fraction of the incident EM wave energy is
transmitted?

In a given linear/homogeneous/isotropic medium with

V= F"’ﬂ" c=c/n
EH

The time-averaged energy density in the EM wave is:

2 m
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The time-averaged Poynting’s vector is:

- 1 /-, - Watts
(50 = (E(.)xB(0) ( 2 ]

The intensity of the EM wave is:

1

1(7)=([S o)) =tz (7o) =L{E §E; (;-')) - %mj (F)=svE_(F) ( 2

Note that the three Poynting’s vectors associated with this

problem are such that
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S;z'nc ||(+‘£’)’ S;reﬂ || (_5) and §Imm ” (+§)

For a monochromatic plane EM wave at normal incidence on a
boundary between two linear /homogeneous / isotropic media,

Wlth /’Lj = 1”2 = Ju”o

Eo _ 1_:8 Eo. ~ V™% Eo. | W Ea- ﬂE %
o \1+p) ™ \v,+v. )] ™ \n+n, ) ™ LV,

1/25/2012 76



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Take the ratios (E%q / E, )an ) ( oo [ o ) - then square them:

2 2 2
E"_’%ﬂ 1- 18 [T T I B =
E, 1+ f v, +V, n, +n,

and
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Define the reflection coefficient as:

R(F)—[Ifqﬂ(.f)]—( .-q?(ff}‘) _ "1(",_:_:{F=f])_(",_=_u[faf]) ;gllei"'% )
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For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with /4 = i, = 4,

2
. E (5
Reflection coefficient: R(¥)= ([ o (7 )) _ ( Oren (‘i ;J
i N Ia

2
Transmission coefficient: |1 (7) E( [w( F) )z [ £V, ]{ Ec: (7) J
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But:

|

E, ()
E, (7)

T

_(1-8) _
(=2 -

(

vV, =V,

v, +V,

;

|

n +n,

n—n,

&

;

|

E,, (7)
E,. (7)

T

—

{77

2v,

v

, TV

)

2n,

|

n +n,

;

Thus Reflection and Transmission coefficient:

v

, —V

(

&V,

I

2
Vz-l-Vl ?‘Z1+?‘Z

2v,

;

Vi

|

v, +V;

;

2
]
2

— &,V

241

;

(

n +n,
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'E__.l 1 2 l 1
b Tar 1] ¥, = 4 —= &M, =—
£V : ¥
Now: |—== Ef:]’ but: '21 : 12
£ ’
11 i T b § — ' -
1?1 = p— Elyl ==
Hy 53111 Y
iy 1 N
—a V2 | [ Hs j}#f
&V, _ Yz J _ Vs — AV — " je ﬁ: AW _ &Y
S = M je = _
gv, |1 }/ LV Hy, &V
1*1 . 22 2 11
IR
k‘i y.
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—for | i~ ph, 2 4,
{5 e
&V 1+ﬂ 1+)6 (1+ﬂ)2 (‘lf‘2+‘vl);l (H1+n2)2

Thus:

R(F)+T(F)(1_ﬂ]2+ 473 :(l_ﬁ)2+4’3:1_25+ﬁ2+4ﬁ:1+2ﬂ+ﬁ2 :(l+ﬁ)2
A R e A A )

|R (F)+T(7)=1 | >EM energy is conserved at the

interface/boundary between two L/H/I media
1/25/2012 82




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with 4 = u, = u,

Reflection coefficient: — | == 4,

O e ]

<

Transmission coefficient:

T(F)E(MJzﬂ{Eom (F)] . 4).'3 _ 4v,v,  4nn,

Iim' (F) Eamc (F)
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A monochromatic plane EM wave incident at an oblique
angle 0,,., on a boundary between two linear/
homogeneous/isotropic media, defined with respect to the

normal to the interface- as shown in the figure below:

Plane of Incidence

@

LTSN A
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The incident EM wave is:

E‘,mc (F,I) _ E,Dm ei(%-?-—at)

The reflected EM wave is:

refl

E_(Ft)=E ¢

and

and

The transmitted EM wave is:

F,t)=£;fa

irans

E

rans (

and
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All three EM waves have the same frequency- f =o/27

The total EM fields in medium 1

—_ —_
~ ~

E (F0)=E, (7. 0)+E

Tatl

(7.0)| and |B,, (7,t)= B, (#.1)+B,, (7.t

1/25/2012




Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Must match to the total EM fields in medium 2:

—

E‘Totz (Fi’ ZL) = E‘frans (F’r)

Using the boundary conditions BC1) — BC4) at z = 0.

and

—
e

—

BTotz (F’ t) = Etram (F? i‘L)

At z = 0- four boundary conditions are of the form:

(w)e:‘(i};m-r-—mr) +(—) e:‘(Eﬁﬁ-F—m) — (—) e:‘(

—

k

rans

—

i

—at)

They must hold for all (x,y) on the interface at z = 0 - and also must
hold for all times, t. The above relation is already satisfied for
arbitrary time, t - the factor e™®tis common to all terms.
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The following relation must hold for all (x,y) on interface at
atz = 0:

-

(w)e:‘(ﬁm-r‘-) +(—) ezt(Emﬂ-r) — (—) ez‘(i}'mm-?—)

When z = 0 - at interface we must have:

= kr‘eﬂ °r= ktrans *r

The above relation can only hold for arbitrary (x, y, z = 0) iff
(= if and only if):
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The above relation can only hold for arbitrary (x,
y, z = 0) iff ( = if and only if):

Kine X =K, gp X =k X =k, =k

Kine YV =Ky ¥V = Kipans ¥ = e =k

IHC
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The problem has rotational symmetry about the z —-axis- then
without any loss of generality we can choose k to lie entirely
within the x-z plane, as shown in the figure

Kie =kron =Kpans, =0 and thus: k, . =k, , =k

Inc refl y trans,, efl trans,

The transverse components of l;:;”cjmﬂ ,k__ areall equal and
point in the +x" direction.
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;\.
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The First Law of Geometrical Optics:

The incident, reflected, and transmitted wave vectors form a plane
(called the plane of incidence), which also includes the normal to
the surface (here, the z axis).

The Second Law of Geometrical Optics (Law of Reflection):

From the figure, we see that:

kfm:'x = kfnc Sin gim: = k,.g}]: — quﬂ SIn greﬂ — kﬁ”"‘: — kfmm SN gm
]Cim: — kr%ﬂ — kl —> [S1n ginc = S1n Qreﬂ
Angle of Incidence = Angle of Reflection |{@ =@ Law of

inc refl] Reflection!
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The Third Law of Geometrical Optics (Law of Refraction
- Snell’s Law):

For the transmitted angle, 0,,,,.. we see that:

trans

k. sinf

inc inc

=k sin0

trans

In medium 1): k =k =ofv,=nofc=nk

where &, = vacuum wave number = 2:?:/ A

and A, = vacuum wave length

In medium 2): |k, =k, =ofv, =no/c=nk
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k-im: S11) ginc = kirrans 511 gn‘ans = kl 5m Qinc' = k2 S11] 9

frans

k =k =nk|and|k_ =k =nk

inc

Fsinf =k sinf In il = i I| Law of Refraction |
lSln inc 2 S trans = 1 inc 2 trans (Snell’s Law)

simfl,_~ n

Which can also be written as:

Sin Q’nc n 2
Since 0, refers to medium 2) and 0, refers to medium 1)
: : sinf, n
Irzl sin @, = 1, sin (92| or: —= =
X X sinf, n,

(1incident) (transmitted)
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Because of the three laws of geometrical optics, we see that:

—_—

k‘inc °F 2=0 kreﬂ *r |£=O = kn'ans °F

z=0

everywhere on the interface at z = 0 {in the x-y plane|

| z-(x—,-,..:-f—mr)|

e e

Thus we see that:

i(f}.mﬁ -F—cm‘) |

z=(}=€'l

z=0 =

z=0

everywhere on the interface at z = 0 {in the x-y plane}, valid
also for arbitrary/any/all time(s) t, since w is the same in
either medium (1 or 2).
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The BC 1) — BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two
linear/homogeneous/isotropic media become:

BC 1): Normal ( z-) component of D continuous at z = 0 (no
free surface charges):

& (Eg +k ) =&, E {using D=¢gE
inc, refl., trans, )

BC 2): Tangential (x-, y-) components of E continuous at z = 0:

(f_:; L E )=1§f
I refly y

Gﬁumxd,
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BC 3): Normal (z-) component of B continuous at z = 0:

(f?omz + ﬁﬂ% ) - B

Otrcmsz

BC 4): Tangential (x-, y-) components of H continuous at
z = 0 (no free surface currents):
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For a monochromatic plane EM wave incident on a
boundary between two L / H/ I media at an oblique angle
of incidence, there are three possible polarization cases to
consider:

Case I): Emc L plane of incidence Transverse Electric (TE)
{B._ || plane of incidence} Polarization
Case II): Emc | plane of incidence ~ Transverse Magnetic

{Emc 1 plane of incidence} (TM) Polarization

—

Case II[): The most general case: . 1s neither | nor || to the plane of incidence.

—

{= B._1sneither{| nor 1 to the plane of mecidence}
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Case I): Electric Field Vectors Perpendicular to the Plane of
Incidence: Transverse Electric (TE) Polarization

*A monochromatic plane EM wave is incident on a boundary
at z = 0 -in the x-y plane between two L/H/I media - at an
oblique angle of incidence.

*The polarization of the incident EM wave is transverse (L )
to the plane of incidence {containing the three wave-vectors
and the unit normal to the boundary n" = +z" }).

*The three B-field vectors are related to their respective E -
field vectors by the right hand rule - all three B-field vectors
lie in the x-z plane {the plane of incidence},
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The four boundary conditions on the {complex} E and B
fields on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

(R R )rosl |-

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

(E +F ):E’ ~[E +F =%
refly ine refl

oﬂlﬂ Gﬂﬂ HE ¥ Dfl'ﬂ"lﬁ
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BC 3) Normal (z-) component of B continuous at z = 0:

E Bﬂmﬂz ) = Otrans.
kmc — + kmc = sin ch'x + COS gmc'z
kmﬂ = kr@q = sin Qr%ﬂx —cost e
k., .= + km,m:z =sin@)_ x+cos@_ =
D 5.0 3\_p lE sind +E sinf 2=iE sinf}. z
B O, z+ B Ot Zl= Bom - Oine inc Oret refl v, Oppans trans

1/25/2012
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BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):

= L(an (—cos @m)+£~'% cosﬂrq,)i: =

Y

1

HyV,

E, (€080, )%

E,

e

+ E% = Eam (from BC 2))

Using the Law of Reflection on the BC 3) result:

FoaR =("’1'5m‘9’m3]5‘

refl . Ctrans
VZ SIn ginc
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Using Snell’s Law / Law of Refraction:

. R m _n, | 1.
nsinf _=n,sinf_ | = csmﬁ Esmf? = :smﬂm_—:smﬂm

v,sin_=wsiné

S

v, .smﬁwm _1
v, s,

From BC 1) — BC 4) actually have only two independent
relations for the case of transverse electric (TE) polarization:

= - - ~ ~ O ~
1) E 4+ F = F 2) (E _anﬂ)=[ﬂ1v COS mms]Eam

Oinc quﬂ Ofrans Dine #2 vz COS 9

Hc
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

- (ccs . J
cos
inc

Now we define: [ = { " ]
ﬂ2v2

Then egn. 2) becomes:

Adding and subtracting Eqn’s 1 &2 to get:

~ ].-CX[? ~
Eﬂm_( > JEOM eqn. (2-1)

~ 2 ~
E = E | eqn. (112
Ctrans [1 + o ﬁ] Oinc q ( )
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Plug eqn. (2+1) into eqn. (2—1) to obtain:

LR
Oref 2 l+aff ) 1+aff ]

\ 1— E, y
— = ap and | =" =
o 1+af E o 1+af

!
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Fresnel Equations for £ || to Interface

= £ | Plane of Incidence = Transverse Electric (TE) Polarization

2% | ana |7 =( 2 ]E
c trans l+aﬂ inc

nd |22 [ i, ]
(Y,

1/25/2012 106

| . cost
with e




Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

For TE polarization:

Incident Intensity

I = (gi‘f (_r))-z"' = (%"’131 (E: }E Jlém-§l= (%vlsl (Ef: )jcnsf{m :12 [EE) cos .
Reflection Intensity
Ifj, K el (t)>.z (:IZ V€ ( ET; )2 ) cost) , = %SIVI ( Equ )2 cosd

Transmission Intensity

I =|(S75 ()2
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients for transverse
electric (TE) polarization

IE & 2
A o o R [ ][ 005 Oy ] B
TE = - -
Iizrf l (c;lvl (E::E )2 COS (911':&' glvl COs gzl'nc Ej:.

1/25/2012
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The reflection and transmission coefficients for transverse
electric (TE) polarization

1/25/2012

]

ETE

Oreft

]

1—af
1+ aff

:
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Case II): Electric Field Vectors Parallel to the Plane of Incidence:
Transverse Magnetic (TM) Polarization

*A monochromatic plane EM wave is incident on a boundary
at z = 0 in the x-y plane between two L / H/ I media at an
oblique angle of incidence.
*The polarization of the incident EM wave is now parallel to
the plane of incidence {containing the three wavevectors and
the unit normal to the boundary n” = +z" }).
* The three B -field vectors are related to E -field vectors by the
right hand rule -then all three B-field vectors are L to the
plane of incidence {hence the origin of the name transverse
magnetic polarization}.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

=

SIS
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The four boundary conditions on the {complex}E and B-fields
on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

(i +F,)

0‘-"""3' 0"@13

2 )
2 atmnsg

& (_Eo,-m sinf, + EN'UW sin 9@?) =g, (—Eom sind, )

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

E cosO +IL 0059@)=E cos 0
c reft

nc Opams frans
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 3) Normal (z-) component of B continuous at z = 0:

~=0 ~=0 - =0
 + Iy = B, = (0+0=0
inc, refl, trans,

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

From BC 1) atz = 0:

E -FE =|2n|F =|5%|E -pk
Oine orqﬂ - Otvans - Otrans - Otrans
£ N £V

2 171

From BC4) at z = 0:

HY, | | &Y,
where: s [—ﬂ o | —gv
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

From BC 2) at z = 0:

(E, +F )=(°°S6’m£]£’“ _af 059
, +E,,

frans

o =

where:
cos @

me

C' 0 S 9 Dfrmls Oi‘rans

nc

Thus for the case of transverse magnetic (I'M) polarization:

E, —E, =PE, |and |[E, +E, =aqk

Ofrans oi refl otr:nm

Solving these two above equations simultaneously, we obtain:
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

i~ —~ s~ — — — a — —
E =[ 2 ]Ea. E =(a_ﬁ]E E =[ 'BJE
frans a + ﬁ ine Fi refl

a+pf) ™
The Fresnel Equations for B|| to Interface
=R | Plane of Incidence = Transverse Magnetic (7M) Polarization
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflected & transmitted intensities at oblique incidence for
the TM case

V& (Em )2 \ cos = 1 gV, (ETM )2 cos &,

1
2 Oinc ) Inc ) Oinc
1

VISI(Em)ﬂcosé' lev(E ) cos 6

refl 2 171 O, inc

2
_ (%Vzgz (EH-I )2]005 etram = %Szvz (EjM )2 COS gﬂ.am

trans
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Fresnel Equations

TE Polarization TM Polarization
{ —IE { =IM

Eog |_(1-ap Eog |_(a—8
| 5 1+af KE{fi‘f atf
(EE J 2 (EM J 2

E |~ ™ |
| £, ) (1+ap) | £, ) (a+p)
cos@

frans

X =
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission Coefficients R & T

R+T=1
TE Polarization TM Polarization
TE IE 2 2 ™ M \2 2
R 1+ap R Vs a+p
T ETE . ™ FT™ 2
p (Jows | gl Fome | 4aP 7 [ |_ o o | __ 4P
= EX | (1+ap) B 5 EY | (a+p)
cost,
o= ns v.= ¢/ — 1
cosf, : A1 / Ve
ﬁEMW:ﬁﬁ:M%:%m %_?/_}/
0By, &V ILhh &1, iy N Eld
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Alternate versions of the Fresnel Relations

Fresnel Equations

TE Polarization TM Polarization
£ R ( (
i M leos 8, — ™ |cos 6, s ™ ﬂw cost, — "_1J cosd, .
{ %Jxﬂl) \ L ) o |\ \ A4
EIE A N ETM ' s .
e % lcos 6.+ % |cos 6, . finc ﬂw cos@ + % lcos 6,
(A oy \/h ) £
n n
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Ignoring the magnetic properties of the two media

Xn| <1 then g4 = 1y = 1 the Fresnel Relations become:

I'E Polarization I'M Polarization
( pIM
E* _ E _
o | _TCOSO, —nyco86, o | _ T COS, +1 080,
TE | ™ |
E," | mcosO, +n,co80,,, \ E, n,cosd, +ncost, .
TE ™
Bt | 2n, cos 6, o | 2n, cos 6,
TE | ™ |
E, | mcos@, +1,c080,,, B, | meosO, tmcost
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Using Snell’s Law and various trigonometric identities

TE Polarization TM Polarization
E‘gﬂ ,__Sjn(ainc_ﬁtrm) E;:: H_tan(ﬁinc_ﬂtrans)
EX | sin(6,+0,,,) EX 1 tan(6,,+0,,,)
E, | 2cos6, sin6,, EX 2cos 6. ssinf,
E2 | sin(6, 6, ) B2 | Sin (8, + 6y ) 0SB — Oy )
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Use Snell’s Law  #,,.sin6, =n, . sin6, toeliminate 6, s -

frans rans

TE Polarization TM Polarization

/ n '\12 n 2
N cosd —,ll-2| —sin’@, v —[—2] cos8. +
{E"m]H \7h ) {E"MJH &
IE | 2 - 2 2
an ( n, . . 9 ; n, n, - 2
cos@ +,.| — | —sm &, — | cos@, +,.| — | —smm” @,
\ 7 ) L6 L]
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Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

= Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.

m Comparing results for TE vs. TM polarization for the
cases of external reflection (n1 < n2) and internal
reflection nl1 > n2)

Comment 1):
= When (E,;/E;,J)< 0 - E,.q is 180° out-of-phase with E; .
since the numerators of the original Fresnel Equations

for TE & TM polarization are (1-ap ) and (a — [ )
respectively.

1/25/2012 125



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Comment 2):

*For TM Polarization (only)- there exists an angle of incidence
where (E,.q /E;..)= 0 - no reflected wave occurs at this angle for
TM polarization!

*This angle is known as Brewster’s angle 05 (also known as the
polarizing angle 0; - because an incident wave which is a linear
combination of TE and TM polarizations will have a reflected
wave which is 100% pure-TE polarized for an incidence angle
einc =6B =6P ”)

‘Brewster’s angle 05 exists for both external (n; < n,) & internal
reflection (n; > n,) for TM polarization (only).
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Brewster’s Angle 0,/ the Polarizing Angle 0y, for
Transverse Magnetic (TM) Polarization

From the numerator of |Zis/Ex ]—[ZJr'g] -the originally-derived
expression for TM polarization- when this ratio = 0 at

Brewster’s angle 05 = polarizing angle 0, - this occurs when (a

—B)=0, i.e. whena=f3.

. - 2 - | n -
€080, =1 510" 6, and Snell’s Law: sin6,,, = (’;Jsm One
2
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Brewster’s Angle 0/ the Polarizing Angle 0 for
Transverse Magnetic (TM) Polarization

1 .
1——2511129

inc

= f*cos’ 0 = p* (l —sin’ Q.M) «— Solve for sin” 6

inc inc

2 1 2 | -2 - 2 1_/82 (1_[?2)'82
1-f =[—2—/6’Jsm O, = |sin’ 6, = - 4
B %Hz—ﬂ (1- 8%)
4 =(-7)1 )
(1-4)(1+5*) 1+ 1+ [
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

: : “sid
Geometrically: |smné, — p _|_OPp- s51d€
J 1+ 5’ hypotenuse
1 adjacent
- 1+ B* hypotenuse
tan 6, = f B iovaont] Y :
adjacent 1,

Thus, at an angle of incidence 8, =6;° = #,° = Brewster’s angle / the polarizing angle for a
T'M polarized incident wave, where no reflected wave exists, we have:

Ine inc n
ta]]_@; Etan@}, "[H—QJ for =y = L
1

: nc
sin E?B . n,
inc
CcOoSs 6'3 m

From Snell’s Law: » sin@. =n,sin&.__ we also see that: tan 87 =
1 mc 2 rans B
. - inc __ ific — —
or: msinéy =n,cosfy for =y =pu .

Thus, from Snell’s Law we see that: cos#;° =siné,, when 8, =6, =65" .
1/25/2012 129



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

So what's so interesting about this???

=0
Well: |cos 87° = sm( 6"""') sin (%)cos g — 9}56 sinf;° =sind,_| i.e. S]]l( 5 6“"‘) =sinf,__

.. When 6, =02 =67 for an incident TM-polarized EM wave, we see that 8, =z/2— ;¢
Thus: 65 +6,,  =n/2, ie G5 =6 and 8, are complimentary angles !!!

Comment 3):

For internal reflection (n; > n,) there exists a critical angle of
incidence past which no transmitted beam exists for either TE
or TM polarization. The critical angle does not depend on
polarization - it is actually dictated / defined by Snell’s Law:

H n
me 3 e -1 2
Sl]] lgcrmcaf [ ] 5c.rn‘u:ai Sll] ( J
m m
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

inc . . o 5
For 6, 26, ..- no transmitted beam exists — incident

beam is totally internally reflected.

For Une > Uuiica> the transmitted wave is actually exponentially

damped - becomes a so-called:

Evanescent Wave:
= — = —az i[kzxsm%ﬂc[:_:l_mq ﬂ] 2 - 2
E,s (Fot) = E, e e ’ a=k,||—| sin" 8 -1
A ‘:\\\ﬂ_ &

Exp. damping inz  QOscillatory along interface in x-direction
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Brewster’s angle for TE polarization:

'\‘
(& _”ﬂz]
0> =sin" >£1< ;t#l =sin'\/4
TE 1\ jffL_ _ jéfg_j]
) \ M
(52\_[#2\ ‘Ki\_(&\‘
sin@? = |25 #"'E\/E ie. |A= \ 1) >ﬂ1<
inc 4 N N il
H _[& VARPA
\ ) \Hh ) \#) A
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

» Free charge and free currents are zero for propagation
through a vacuum or insulating materials such as glass or pure
water.

» Inside a conductor, free charges can move around in response
to EM fields contained therein- free current is not zero.

» Assume that the conductor is linear/homogeneous/ isotropic

media. 5 B
> From Ohm’s Law  J_  (¥,t) =0 E(7F,t)

where 0. = conductivity of the metal conductor (Ohm/m) and o
=1/ p. where p- = resistivity of the metal conduct or (Ohm-m).
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

For such a conductor, we can assume that the linear/
homogeneous/isotropic conducting medium has electric
permittivity € and magnetic permeability p . Maxwell’s
equations inside such a conductor are thus:

D

3)

VeE (F,1)= P (7.1) /2 2) \V-B(7,t)=0
ﬁxE(F,t) _ 3Bg:,t) jUsing Ohm’s Law:

—=

4) \VxB(F,t)= ) 4, (F,1)+ pe

—= —

ot ot

1/25/2012

oo (Fo1) = OE(F,1) )
OF (¥ ; oF (¥
(r’t)=y0'CE(F,r)+y£ (1)
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ELECTROMAGNETIC WAVES IN

CONDUCTORS

Electric charge is (always) conserved- thus the continuity
equation inside the conductor is:

Bpﬁge (F,1)
r,f
ﬁ'et?:( ) at

o (‘7-5(?,?)) == apﬁe;ffpr)

thus:

O free (7,1) _ OP e (7,1)

£ ot —

Or.

but: jﬁ (F.t)= o E(F,t)

but: |VeE (7,1) = Free (UZ

6pﬁw (r t)

ot

[ ]pﬁee(r t)=0

1st order linear, homogeneous differential equation

1/25/2012
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

The {physical} general solution of this differential equation for
the free charge density is of the form:

‘pﬁ'ee (F;t) = pﬁee (?_;,f = O)e—ﬁcff&‘ — pﬁee (F,t _ O)E—I/rmm

A damped exponential!!!

The continuity equation inside a conductor tells us that any free
charge density initially present at time t = 0 is exponentially
damped in a characteristic time 7, =&/06, = charge relaxation
time.
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Maxwell’s equations for a charge-equilibrated conductor

1) [V-E(7,£)=0 2) \VeB(7,t)=0

—_—

OB(7,1)

3) [VxE(F,t)=- -

L . OE (7 B, OE (F
4) \VxB(F,t)= uo E(7,t)+ e tg:’t)=ﬂ{0'CE(F,t)+g g:t)]
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

These equations are different from the previous
derivation(s) of monochromatic plane EM waves
propagating in free space/vacuum and/or in
linear/homogeneous/ isotropic non-conducting materials
Re-derive the wave equations for E&B from scratch. As
before, we apply V x () to equations 3) and 4):

L O*E (¥, ¢ OE (7.t
We get V2E(F,1) = pe 352 )+,UO'C gt )
. O*B(7,t) OB(7,t)

and VEB(7,t) = pe 52 MO
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

General solution(s) - are usually in the form of an oscillatory
function times a damping term ( a decaying exponential) - in the
direction of the propagation of the EM wave. A complex plane-
wave type solutions for E and B associated with the above wave
equation(s) are of the general form:
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

With {frequency-dependent} complex wave number:

l?(ca) =k(w)+ix(w)

k(o) =9e(k(@)) = m\/% \/1+[:_w] +1
F T
K(a))=3m(f(a)))=m\/% \/1{3—@] 1

1/25/2012
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The imaginary part of k , k = Jm(k) results in an
exponential  attenuation/damping  of the
monochromatic plane EM wave with increasing z:

E’ (z,t)= Eie‘“e“hﬂ)

These solutions satisfy the above wave equations for any
choice E
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The characteristic distance over which E and B are
attenuated /reduced to 1/e=0.3679- of their initial
values (at z = 0) is known as the skin depth

5, (@) =1/x(w)

1/25/2012
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real part of k- determines the spatial wavelength A
(o )-the propagation speed v(® ) and also the index of
refraction
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The above plane wave solutions satisfy the above wave
equations(s). Maxwell’s equations rue out the presence
of any longitudinal i.e, z- component of E and B.

E and B are purely transverse waves (as before), even in
a conductor!

If we consider - a linearly polarized monochromatic
plane EM wave propagating in the +z" -direction in a
conducting medium, e.g.

E (z,1) = E ez

then
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

a0

B(z,t) =

= = - ile—wt) ~ k+ ] - — ilkz—owt) ~
kxE(z)f):[_]Eoerze (k= I)y=( IK.]EQE? K2, (k= r}y
a (£

= E (z,0) L B (z,t) LZ (+z =propagation direction)

The complex wave-number [ = i+ jk = Ke*

where: K E‘E‘ =Vk*+x* and ¢, =tan” (%)
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

In the complex k -plane:
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

Then we see that:

~

o

E (z,t)=E e F g

— 10g
e E =Fe

B (z,t)= E’U gl 5 gﬁ’ae”zej(b_m) y
- —
/) k = KE V
= Ke™

has |B,=Be" =

1/25/2012
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MONOCHROMATIC PLANE WAVES

IN CONDUCTING MEDIA

3 K™
@

i35
B e

iy
Eoe =

K 1 1 kz —I_ 2
_Eae'(ﬂﬂ? &) _ v K Eoe
[0 a

1(6p+44)

inside a conductor, E and B are no longer in phase with each other!!!

éis = d?E + ?ﬁk

155993—42 = éis""SE :::9ék

Phases of E and B

With phase difference:
B

We also see that: EG

g,u\/H(

O¢

EW

:

1/25/2012
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real/physical E and B fields associated with linearly
polarized monochromatic plane EM waves propagating in a
conducting medium are exponentially damped:

E(z,r)=me(Ez(z,r):=Eﬂe"tcns(kz—&ﬁ+5ﬁji' > |0=0.+¢ Y

o

B(z,t)= 'Elie(ﬁ (z,r): =Be™ cos(kz—awi+6,)y=Be™ cns(kz -t +{6, + ;ét})j'f

b | =
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

o)

where K (0)=[f(0)| =¥ (0)+x* (0) =0 _gﬂ \/1 ) (_C]z

EW

_ _ . [ x(@)
5,= 6, +8.| |4, (v)=tan [k(w)J

and  F(0)=[F(0) = k(@) +ix(0)
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

Detfinition of the skin depth in a conductor:

6, (@)

1 1

(-

1/25/2012

Distance over which

the £ and B fields fall to
l/e= e’ =0.3679 of
their 1nitial values.
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In the presence of free surface charges ¢ and free surface
currents- the Bc’s for reflection and refraction ate.g. a
dielectric-conductor interface become:

BC1): (normal D at interface): s B -k, =0,,

BC 2): (tangential E at interface): |E'-E}=0 = E! =E)

BC 3): (normal B at interface): By —B, =0 = |B; =B;

1 1 = -
BC 4): (tangential H at interface): ; B - H_Blg =K ;0 % 7.
1 2
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

| =normal to plane of interface
|| = parallel to plane of interface

Where n,,— is a unit vector 1 to the interface, pointing
from medium (2) into medium (1).

Incident EM wave {medium (1)}:

B (z0)=F e®3| and |B, (z1)=—F, %5

Oim: inc
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Reflected EM wave {medium (1)}:

~ -l 1 -~ :

i~ I i(—kz=at) » - i(—kgz—ot) ~
Eréﬂ (Z,l‘) — Ea:qre x| and B"‘%ﬂ (Z’t) vV, Eareﬁe '’
Transmitted EM wave {medium (2)}:

~ ~ i(szz—mf) . = i(;z ~ r(kmzz—mt) -
E (z,t) =E, e X and |B... (Z, f) = ;E% e

complex wave-number in {conducting} medium (2):

(e d

k, =k, +ix,
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In medium (1) EM fields are:

v (z,t)=E,, (z t) +Emﬂ (z, t) §ror, (z,t)= B, (z,t)+ Bmﬂ (z.t)

In medium (2) EM fields are:

‘E_f"j"c::t2 (Z,f) = _.b‘ans (Z’ ZL) ﬁd: BT(M‘2 (Z’t) - Etmrw (Z’ t)
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Apply BC’s at the z = 0 interface in the x-y plane:

.~

but E1l=Elz=0 and: |E; =E, =0

22

BC1): | E —&,Ey =0

ee

BC?2): E'=E!|-|E, +E =
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

BC3): |\B'* =B} but:|B- =B, =0| and: |B; =B

| Ny > ljs =) kb =
BC4): [~ B ——B! =K, xi.| but[K,. =0] - —(E,_-£, )-—=E,_=0

—— — ) i Y
or: \E,_ —E =pE @;ﬂ;[&]{&} :

1/25/2012 159



Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Thus we obtain;

with 35[%Hh]=[M“]%

o | \ o
The relations for reflection/transmission of EMW at normal incidence on a
non-conductor/conductor boundary are identical to those obtained for
reflection / transmission of EMW at normal incidence on a
boundary/interface between two non-conductors- except for the replacement

of B with a complex {.
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For the case of a perfect conductor, the conductivity

o, =0 {thus resistivity, p. =1/c. =0}

= both klzx'?_“—' %=Dﬂ and since: £1=k1+f-'fl then: £3='113+1'C#3==':IJ(1+1')

- (uvk, P .
and since: ﬁE[Flv' “]=['HIHJICE = f=w

Thus, for a perfect conductor, we see that:

, =—FE |and|E =0
refl e trans
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a perfect conductor the reflection and transmission

coefficients are:

!

4

We also see that for a perfect conductor, for normal
incidence, the reflected wave undergoes a 180 degree phase
shift with respect to the incident wave at the interface at z = 0
in the x-y plane. A perfect conductor screens out all EM
waves from propagating in its interior.
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a good conductor- the conductivity is large- but finite. The
reflection coefficient R for monochromatic plane EM waves at
normal incidence on a good conductor is not unity- but close
to it. {This is why good conductors make good mirrors!}.

?

i

|

*

Where

|

Y,
o0

|

b

2

=(

- - . _ .
oo || Foa| =Bl _(1-2)(1=2
E, || E, 1+ f 1+ N1+ /5
)ulvl a)#ZO.C' - G.C -
1+i)= 1+
ﬂzm] Vo U= 2/-:2@( L
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Diiiine ¥ =1y, Oc Then: 5’ = }/(1+i)
21,0

Thus, the reflection coefficient R for monochromatic plane
EM waves at normal incidence on a good conductor is:

2 o

) 1—5':[1—&][1-3} _(1—y—fy](1-y+fy]= (1-7) +°
B B B) \epiy N14y-ir) | (14p) +7

vl.f 1

R=

with V=MV

21,0
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Obviously, only a small fraction of the normally-incident
monochromatic plane EM wave is transmitted into the good

conductor-since R<1and |T=1-R| ie.
1—7) +7°
T'=1-R=1- ( y)2+y2 («1)
(1+7) +y

Note that the transmitted wave is exponentially attenuated
in the z-direction; the E and B fields in the good conductor
fall to 1/e of their initial {z = 0} values (at/on the interface)
after the monochromatic plane EM wave propagates a
distance of one skin depth in z into the conductor:

1/25/2012
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

1 2

k(o) \ouo,

Note also that the energy associated with the transmitted
monochromatic plane EM wave is ultimately dissipated in the
conducting medium as heat.

In {bulk} metals-the transmitted wave is {rapidly}
absorbed/attenuated in the metal- we can only study the
reflection coetficient R.

A full description of the physics of reflection from the surface
of a metal conductor as a function of angle of incidence-

requires the use of a complex dispersion relation
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Full Maxwell Equations in Matter

The electromagnetic state of matter at a given observation point
r at a given time t is described by four macroscopic quantities:

1.) The volume density
of free charge:

2.) The volume density
of electric dipoles:

3.) The volume density
of magnetic dipoles:

4.) The free electric current
/unit area:

1/25/2012

pfree (F’ f)

& electric polarization

< magnetization

& {free} current density
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Full Maxwell Equations in Matter

These four quantities are related to the macroscopic E and B fields by the
four Maxwell equations for matter

1) Gauss’ Law:

Auxihary relation:

Electric polarization

1} No magnetic charges/monopoles:

V-D=gV-E+V=p,,

VeB=0

Auxihiary relation:

1/25/2012

gL
H,

—

B-M

-

.. 1 —

Vel =p£_]jr=;a(ﬂﬁm +Pm] | where: | fypg =—V°P

D= soE' +P| & constitutive relation: [D = £E

P= (5‘ —SG]E =&, fj  electric susceptiblity | ¥, = [i— 1
gﬂ

& constitutive relation:
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Full Maxwell Equations in Matter

. a* oH oM
3) Faraday’s Law: VxE=—— "J”a__a“n Py
" L y = . o | H
agnetization: — H | magnetic susceptibility (7, =(-—-
p :ua
D = = = oE
4) Ampere’s Law: VXB =ty + HJp| with|Jp, = &, ° ar
. > == F TP T YaR Y Fia &P
Total current density: Jrﬂ.r=Jﬁm+Jm+Jm Soowa =V XM T g =E
&P 8E
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VxB= HS g +,uanM+,u E_+'u"""

cf

p—

WV x

—_—

H

=ﬁa'}ﬁu +FaT

- oD

cf
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Full Maxwell Equations in Matter

—+

Then Maxwell’s equations in matter, for 24, =0 and M =0

1) Gauss’ Law: VeD=0| or: |[VeE=- ;O VP = pﬁee/e;'o
2) No magnetic charges: VeB =0

3) Faraday’s Law: VXE = —Z—f

4) Ampere’s Law: VxB =ﬂaguaa—€+ﬂu§+ﬂajﬁw
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Full Maxwell Equations in Matter

We also have Ohm’s Law | j_ =o E

and the Continuity eqn.  |V*J 4, =0

Then applying the curl operator to Faraday’'s Law:

We thus obtain the inhomogeneous wave equation:

. 1 &E 1 P A
V’E - =—V + U + g —
cz arz EG pbound J"a atz ata 3I
sourc;rterms

{and a similar one for B }
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Full Maxwell Equations in Matter

For  non-oronducting/poorly-conducting  media, ie.
insulators/ dielectrics- the first two terms on the RHS are
important - they explain many optical effects such as
dispersion (wavelength/frequency-dependence of the index of
refraction), absorption, double - refraction/bi-refringence,
optical activity, . . ..

—_— —

Note that the vpbound ==V (V'P) term is often zero- P uniform

. - 0P, 0P, OP - 9, 0. 0.
P = + +—~and V=—x+—y+—2Z
dx Oy oz x 0z

e.g. for Poc E (i.e. P proportional to E) where: E (z,t)=E, cos(lkz—awt+8)x
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Full Maxwell Equations in Matter

For good conductors (e.g. metals), the conduction term

Ko

—=

A 4

ot

= #.‘JJC'

oF
ot

is the most important, because it explains the opacity of
metals (e.g. in the visible light region) and also explains the
high reflectance of metals.
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