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Basic Optics 

 
In a region free from charges and currents, and ferromagnetic materials, Maxwell 

Equations reduce to 
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By using well  known relation:  curl curl E = grad div E - E
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One obtains 

2)  E
2

  -   
2

2

t

 E
   = 0           D’Alembert Equation 

  

Scalar Approximation  

 
A  transverse Cartesian component, v = v(P,t) of  E or B is representative of the 

complete e.m. field.  Scalar approximation is also called optics approximation. 

 S
2

v    v  square is proportional to modulus of Poynting vector, S. It is 

denoted by I, intensity, and is proportional to power flux. 

 Monochromatic radiation, frequency of the order of 0.5 10
+15 

Hertz 
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Linearity, 

Complete systems.  

 

For component v 
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Choice of coordinate system.   

Separation of variables. 

 

Method of complex exponentials 

 

Let us remember that the e.m. field is real quantity. For instance one solution of  Eq.3 

is 

4)    Ptcos)P(A)t,P(v
1

   

 

Use of complex exponentials helps with mathematics and allows one to find two 

simultaneous solutions.  Let us write: 
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where u(P) is called complex amplitude. 

It is immediately verified that real part of v(P,t) gives above solution v1(P,t) and the 

coefficient of imaginary part gives another solution  v2 (P,t) 

 

6)      Ptsin)P(A)t,P(v
2

   

Conclusion: one can use complex exponentials method by taking into account that the 

real part and the coefficient of the imaginary part only have physical meaning. 

Introduction of Eq.s 5) in D’Alembert Equation gives 

 

7)   0)P(u
2

k)P(u
2

  

 

Quantity  u(P) is called complex amplitude 

 

Some notations :  

k  =  / V     Wavenumber 

 = 2/       frequency 

T =1/ν T period 

 

Helmholtz  Equation  or 
 

Wave Equation 
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In  Eq. 5)  

 8)                Φ(P,t) =  φ(P) - ω(t)  

 

is the total phase phase, and  φ(P) simply phase. 

A surfaces where, at a given time, the total phase is constant or, what is the same: 

  

    is  “equiphase surface” called  

 

two wavefronts  differing by an entire number of 2  are said to be “in phase”,  

 

 φ(P1) – φ(P2) =  m 2         m entire number 

 

If  difference  is  (2m+1), that is an odd number of , one has opposite phase. 

Intensity I(P)  

 

9)                         I(P) =  v(P,t). v*(P,t)  = u(P).u*(P) = A2(P) 

 

Values in  Optics: 

      0.75   0.37  1015       Hertz 

k      1.6     0.8   107   m-1 

         4    8       10-7 m    =  400  8oo  nm 

T       1.3   2.7   10-15 s 

 

 

NOTE: Laser has reached large part of the spectrum outside optics and now speaking 

of  Optics one often includes infrared and also ultraviolet. 

 

PLANE WAVES 

 

Solution of wave Equation 

 

10)          
)zyx(ikeA)P(u     ,           where       1

222
   

 

and A constant (real or complex), is called “plane wave” and can also be written as: 

 

11)           
rk  ieA)P(u                 where    k = k n =k ( i +  j +  k) 

                                n = i +  j +  k 

                                r = x i +y j + z k    vector from origin to a   

         wave  point P 

      

 

φ(P) = Constant WAVEFRONT 
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Wavefronts are the  planes: 

12) k  r  =  k (x +  y+  z) = Const      

 

here , ,   are real quantities and represent the “cosine directors” of the normal to 

the wavefront from the origin;  p = n  r  is distance of wavefront from origin.  

 

13) u(P) = 
rnikeA = 

pkieA  

 

 

 

 
Fig. 1 

 

At time t1  the wavefront Φ1 is at distance p1 from origin: 

 

 Φ1 =   k p1  -  t1  

after a time dt  position of  Φ1 is 

 

 Φ1 = k (p1 + dp) –   (t1 + dt) 

from which 

  k dp –   dt =0;                 dp =( /k)  dt 

 

p increases. Linear  motion.  Velocity 

14)   
k

Vf


  

   

Wavefront moves with velocity   Vf    “phase velocity” 

 

Wavelength: distance between two subsequent equiphase planes.  At time t1 : 

ψ2 

ψ 1 

ψ 3 

 

x 

n 
y 

  z 

.P 
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    2)tkp(t)p(k 1111   

Therefore 

15) f
ff VT

VV
2

k

2
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



        useful relations 

 

Important consequence:  Frequency    is from source and does not change in linear 

media, the effect of a medium is to change propagation velocity  and wavelength. 

 

Amplitude, A, can be  complex   0i
0eAA


   and constant   0   represents initial 

phase.  A real plane wave solution, e.g. the real part of the complex solution,  of  the 

wave equation, written in complete explicit, form is 

 

16)                           t)zyx(kcosA)t,P(v 001    

Quantity 0  represents the initial phase in the origin (t=0, p=0). Generally one has to 

deal with phase differences where it does not play a role, often one assumes 0 =0. 

2
0A   is  Intensity (proportional to the power density flux) on a surface normal to 

propagation direction n. 

 

IMPORTANCE OF PLANE WAVES: 

- plane wave is an approximation to describe a wave in limited regions,  

 - e.g. the beam from a lens due to a point source in the focus  

        - the field from a distant source; distance much larger than wavelength and 

 limited region 

- basically plane waves are the elements for representing any e.m. field in terms 

 of Fourier Series or Fourier Integrals. 

 

 

EVANESCENT WAVES 

 

Evanescent waves are also called surface waves and inhomogeneous or dissociated 

waves, see later. 

Solution of wave equation for plane waves requires condition 

17)                             1
222
   

for the three cosine directors of the normal to the wavefront with respect to the three 

axes. For plane waves they are real quantities. 

However Eq. 10) is still solution of the wave equation even if one or more  of this 

quantities are not real, provided that condition 17) is satisfied. To understand the 
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meaning of this solution let us assume that  is a purely imaginary and β vanishes, so 

that  

18)     = i  i     ;    β = 0 

and consequently 

    γ2  real  and >1 

19)  2
i

2
r 11  

 

Let us choose the positive value of the root. Solution of Eq.13 becomes   
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kzixk ri eeA)P(u
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let A be complex with initial phase φ0 ,  one can write 
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It appears that: Amplitude is not constant and decays in x direction. Phase 

contains z only, that is the wave propagates in the z direction (remember time 

dependence exp(iωt)). If the negative sign of the root of Eq. 19 is taken, the wave 

propagates in the negative z direction.  

Wavelength λe of the evanescent wave, that is the distance between two wavefronts, 

is given by  

22)   

rr

eer

1
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2
;2k








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Result: Wavelength e  of an evanescent wave  is smaller than that   of a plane 

wave.   Analogously   velocity eV  is lower than that of a plane wave 

22)      

r

e

V
V


  

evanescent waves are also called “slow waves”. 

 

Note that the planes of equal amplitude are normal to x and are different from the 

equiphase planes, normal to z, and for this reason these waves are also called 

dissociated waves or inhomogeneous waves. 

Note that evanescent waves cannot exist in the complete space, for instance, if in 

Eq.19 the positive sign is chosen for the square root, the amplitude diverges when x 
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tends to negative infinite. Evanescent waves can only exist if there is a surface 

preventing them to divergence. From here the name of surface waves. 

Evanescent waves are found in Total Reflection,  for example when radiation goes 

from a transparent medium to another medium with lower refractive index, e.g. glass-

air or water-air. They are also present in diffraction, see later. 

 

 

SPERICAL WAVES 

By taking the Laplacian in polar coordinates (r, θ, φ) one can write the wave equation 

in these coordinates. In general solution u = u(r, θ, φ).  First consider a solution 

depending on r, u = u(r). In this case the wave Equation gives  

  0)ur(k
r

)ur( 2

2

2
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


 

whose solution is    

   
ikreAur        ;           

where A is, generally, complex constant. One obtains two solutions: 
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ikr

1



  

Equiphase surfaces  

 

 ttanonsCkr 0                     0  initial phase 

 are spherical surfaces 

At a given instant the total phase  

   0krt    

that is 

24) 

02

01

tkr

tkr


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


 

 

which represent the phase of a diverging, u1,  and converging, u2, spherical wave, 

respectively. 

 

Wavelength and velocity are equal to those of  plane waves. 

 

Dependence of Amplitude on 1/r  represents conservation of energy. An element of 

spherical surface is:  

    ddsinrd 2  

Power across the element is 
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   ddsinr
r

AA
duud 2

2

*
* P  

Power across an entire sphere is constant, independently of the sphere radius: 
 

          *AA4d
sphere

  PP  

 

Note: spherical waves have singularity for  r = 0.   

Physical significance: diverging wave u1 represents  radiation emitted by a point 

source, valid apart from a small volume around r = 0, where the source is. 

Converging wave u2 represent focussing of a wave, for instance by a lens, and is valid 

everywhere apart from a small region near the focus.  The effect of a converging lens 

can be described by a converging spherical  wave before the focus and a diverging 

one after the focus. 

 
 

Figure 2.  Spherical diverging wave from a source, focussed by a lens at point image 

I, then diverging again. 

 

Spherical dipole waves 

 

Another solution of the wave Equation in polar coordinate is a dipolar spherical wave 

where the amplitude also depends on θ.  This solution, largely used for radio waves, 

represents the field irradiated by a dipole antenna, where the maximum radiation is in 

the direction orthogonal to the dipole axis and vanishes in the axis direction. The two 

diverging and converging solutions are:   
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At optical frequencies  the imaginary part in parenthesis can be neglected when r is 

larger than 0.1mm  where  1/(k r)  ~  10-3, obtaining 

 

26)   





cos
r

e
Au

cos
r

e
Au

ikr

2

ikr

1







  

 

Wavelength and propagation velocity are the same as plane wave.  

Eq.s  26 are useful in diffraction theory, e.g. the diverging one when using Huygens-

Fresnel principle to investigate resonant cavities with low Fresnel number, and, apart 

from a phase constant (in addition to the arbitrary initial one here) correctly 

represents diffraction by a small aperture as given by Rayleigh-Sommerfeld  

theory. 

 

Cylindrical waves 

 

Wave Equation, written in cylindrical coordinates, has solutions, called cylindrical 

wave, of the kind 

27)  )(g)(f
e

Au
ik






  

 

where f(ρ) and g(θ) denote  a separate dependence on  ρ and θ. 

Solution with g(θ) = 1 is an allowed solution where u only depends on ρ. 

Taking  f(ρ) = 1 is an approximation valid, as before, when  kρ  is negligible with 

respect to unity. In this case the two solutions are: 

 

 

28)                  


 ik

2

ik

1

e
Auand

e
Au



  

 

u1 represents a diverging cylindrical wave and u2 a converging one. These expressions 

are useful when using cylindrical lenses, apart from point ρ=0,  source or  focus, as 

spherical waves. The denominator root guarantees conservation of energy.  

 

Cylindrical dipolar waves 

 

When dependence on angle is needed one uses solutions 
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29)       







cos
e

Auandcos
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ik

2

ik

1


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The first of Eq. 29), as well of Eq. 28, is useful in diffraction and was largely used in 

the theory of open resonators. 

 

 

 

WAVES AND RAYS 

 IN HOMOGENEOUS  AND  INHOMOGENEOUS  LINEAR  MEDIA 

 

Refractive index completely describes a homogeneous medium, however a non 

homogeneous medium can also be described by a refractive index as function of 

point, provided that the function is a slowly varying function. Slowly varying 

function means negligible changes of refractive index over distances of the order of 

wavelength. One has     

30)     n = n(P)  

Wave equation can be written as:  

    0uknu 2
0

22   

where  2
0

22 knk  is explicitly written in terms of  empty space  0k  and refractive 

index n of the material. 

Let us introduce  u(P)= A(P) 
)P(ie 

  shortened as   u =A 
ie    into wave equations  

   0eAkn)eA( i2
0

2i2  
 

 By recalling  some  mathematical formulas:  

ugraduu2                                 Scalar product 

abba2ba)ab()ab( 222   

AeAiegradeAgradgradAei2)eA( 2i2i2iii2   
 

Wave equation becomes: 

 

0AknAAigradAgradgradAi2 2
0

2222
   

 

Separation of real and imaginary part gives 
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34)          











0AgradAgrad2)b

0gradAAknA)a
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22
0

22


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If 

  35)                             AknA 2
0

22   

 

Term  A2   Eq. 34a) can be neglected  and Eq. 34a)  becomes 

 

36)               
2
0

22
kngrad     

 

Let s  be a unit vector in the gradient  direction, one has 

 

37)                      s0kngrad     

 

This result gives the link between  wave optics and geometrical optics and explains 

that rays are the normal to wavefront, or better: rays are the tubes of flux of gradφ. 

They are straight in the case of homogeneous media, in general they are curved and 

the shape depends on the “local value” of the refractive index. It can be shown (see 

e.g. Born and Wolf book) that in a inhomogeneous medium a ray deflects, with 

respect to a straight path towards the region of higher refractive index. 

 

Meaning of the approximation. 

Eq. 35)  requires 

38)                               
2
0

2
2

kn
A

A



 

Let consider a displacement dP  and the corresponding amplitude variation dA. One 

has 

                             
2

2

2

2 4

dPA

Ad




                  

n/0     wavelength in the medium.   Let  the displacement be of the order of 

the wavelength, dP = /(2π),   Eq. 35) becomes 

 

39)                     d 2A / A << 1 

 

This is the condition under which geometrical optics is valid. Shortly: when there are 

abrupt changes of amplitude geometrical optics approximation cannot be used and 

one has to use the complete system of Eq.s 34.  From Eq.s  34) one sees that  abrupt 
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changes in amplitude influence the phase and the wavefront changes, one has 

diffraction. Diffraction is not a special phenomenon it is typical of waves when there 

are abrupt  spatial changes in the amplitude. Important: any border! 

 

From Eq.37, by introducing quantity S  = φ/k   called eikonal  one  obtains the so 

called “eikonal equation” (from Greek   = image) 

 

  40)                                         grad S = n s 

 

Integration of Eq. 37) along the ray path l0 between two points P′ and P″ allows one 

to obtain the phase difference between the two points : 

 

41)                        

0l

ds)P(nk)P()'P( 0  

here the dependence of n on P is explicitly indicated. 

From Eq.37 one can also derive Fermat Principle, Reflection and refraction laws, and 

the so called Ray Equation. 

 

 

INTERFERENCE 

Two coherent waves 

Two coherent waves (of the same frequency) at point P: 

 

                 
)ti(

2
ti

1 eAveAv     

 

 

without loss of generality the amplitudes are assumed equal and real. 

Total field v = v1 + v2 .       Intensity   I: 

 

              cosA2A2)vv()vv(vI 22*
2

*
121

2   

 

Therefore the  intensity value depends on the phase difference, and can be higher or 

lower than the total intensity of the sum of the two waves, as expected. If φ = π/2  

I=0, and if  φ=0   I = 4 A2. Of course total energy is conserved. 

 

 

Two waves  of different frequency (time incoherent) 

 

                                        1   
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)ti(

2
ti

1
1eAveAv

                                   

    



t)(cos1A2eReA2A2I 1

2titi22 1  

 

The intensity is an oscillating function, called “beating”, with frequency |ω1 – ω|,  a 

high frequency in optics. Our eyes (or conventional instruments) cannot follow it, and 

one  sees an average value I  of  I, averaged over a characteristic time τ  of the eye (or 

the instrument): 

                                 



0

dt)t(I
1

I  

 

If  τ  is large with respect to the period of the beating  Tb = 2 π/(ω-ω1)  the average 

intensity vanishes and the total intensity of the interference is the sum of the intensity 

of the two waves. Sum of energies means incoherent waves.  

 

On the contrary, if  τ  is of the order of or smaller than the period Tb then time 

dependence can be revealed. Modern instrumentations can do this. 

Each instrument has its characteristic time  τ and one has: 

 

if             

1

2







            the instrument “sees”  coherent waves 

 

if          

1

2







                the instrument “sees”  incoherent waves 

Therefore interference from two incoherent waves can be seen as coherent or 

incoherent depending on the characteristic time of the instrument  with respect to the 

period of the beating. 

 

SPACE INTERFERENCE  of COHERENT WAVES 

 

Two plane Waves 

 

Let consider two plane waves, of same frequency and amplitude propagating in two 

directions symmetric with respect to z axis, in the plane (x,z).  (β =0).   
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)zx(ik

2
)zx(ik

1 eAuandeAu     

 

Intensity      

 )sinkx(cosA4*uuI 22   

is periodic function of x, period  p: 

 





sin2
p;sinpk   

 

On a screen normal to z axis: interference fringes parallel to y axis. 

On the planes parallel to plane (y, z) where  one has  

 
2

)1n2(sinkx


   

 

field u(P).   

One can place metallic plane surfaces on these planes, without  disturbing the field in 

between: this is the basis of metallic guiding of waves, e.g  in applications of high 

power lasers. 

Michelson interferometer and Fabry- Perot interferometer are based on 

interference between two plane waves 

 

Two spherical  waves 

-θ 

θ 

z 

y 

 x 

u1 

u2 

 

Cosine directors of u1 







cos

0

sin







 

 

  )sinkxcos(Ae2eeAeuuu zikxikxikzik
21   
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Two spherical waves (of the same frequency and equal amplitude coefficient A1, are 

centred on   -z0 and  z0 , respectively. 

 

               

1

ikr
1

2

ikr
1

1
r

eA
uand

r

eA
u

1

    

 

For small changes of  r the phase of the first wave varies  strongly, while the 

denominator of  does not change appreciably. We can neglect  the dependence of u1 

on r and  call A the resulting amplitude.  The same can be said for the second wave. 

When the two distances are not much different from one another, which is true when 

the distance between the two sources is very small with respect to the distance of 

point P, one can assume r = r1. 

 

Therefore 
























 








 







 

2

rr
ik

2

rr
ik

2

rr
ik

ikrikr
21

111

1 eeeAeAeAuuu   

 




 









 

2

)rr(k
coseA2 12

rr
ik 1

  

Intensity I is: 

 




 


2

)rr(k
cosA4I 122

 

Lines where  

r1 

r 

* * 

- z0 z0 

 

P 



 16 

                            




 
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)rr(k 1
    =   n  π         that is     r – r1  =  n  λ    

are lines of maximum intensity:   they are hyperboloids of rotation, with foci in the 

two source points. Analogous relation is found for the lines of zero intensity. 

Intersections in a plane x =d, d large with respect to all other distances,  are 

hyperbolas. By means of a series development, one can see that the fringes are linear 

in the central region.  

These formulas are the basis for the description of  many interferometers, such as 

Young interferometer and Ronchi test. When one source goes to infinity one 

obtains Newton’s rings. 
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