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Lecture I: Architecture of The Brain

Lecture 2: Maps in The Brain

Lecture 3: Maps in the brain &
interactions in neural populations
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Resource allocation in the brain

Coverage by
one architectural
element

Sensory / Cognitive / Algorithmic Space

IDEA: The huge complexity of living systems, arising from the division
into diverse functional units, can be understood in terms of a
principle -- minimize resources while maximizing function.
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Resource allocation in the brain

Coverage by
one architectural
element

Sensory / Cognitive / Algorithmic Space

Previous Lecture:

(1) Retina has multiple output cell types.

(2) We explained the structure of receptive field mosaics of each type.
(3) We then explained the relative proportions of two types: OFF cells
and ON cells
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A cognitive example: The Sense of Place
Grid cells in the brain and the
transcendental number e

Xuexin Wei, Jason Prentice,VB, in review 2012
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A simple model for a representation of space

cell | cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

Im Im Im Im Im Im Im Im

8m linear track

To achieve Im resolution on an 8m track have 8 place cells,
each of which fire when you are in a particular Im wide
location. This requires 8 cells.

Something like this may happen in a brain region called the
hippocampus (but it's more complicated, and the map is unstable to
perturbations of the environment).
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A better model for a representation of space

A
< 1 »
3 cell 1 cell 2 §
scale1
Za)
Ao
cell 1 cell 2 E cell 1 cell 2
scale 2 '
As :
cell1 | cellp I 12 f| cell 1
scale 3 ce cell 2 cell 1 celle '} ce cell 2
an
phase 1 2 3 4 5 6 7 8
animal's location linear track

This is a “binary” representation of
space and requires only 6 cells.
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Grid Cells (Medial Entorhinal Cortex): a cortical
represention of space

Hafting et al Nature 2005

Scale—increases along dorsal
ventral axis

Orientation—local ensemble
share same orientation

Phase—randomly distributed

Angle (Cegrees)

Angle— Hexagonal grids in 2d

Figure 1| Firing fields of grid cells have a repetitive triangular structure.
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Grid pattern forms at the first
encounter of an environment

a Familiar (F) Novel (N) Familiar (F)
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Grids persist in darkness
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Figure 5 | Grids persist in darkness. a, Trajectory and rate maps for a
representative dMEC cell after onset of darkness. Room lights were on for
10min (L), off for 10 min (D), and on for another 10min (L"), b-d, Firing
properties of grid cells in L, D and L' (all rats; means = s.e.m.). d
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Grid rescale
(C. Barry et al 2007 Nat. Neuro)

12.2hz 13.6hz
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Grids rotate according to the visual
cue

Wednesday, December 5, 12




Spatial characteristics of the grid system

mEC

AAAA

Ak, | ventral

AtAA

}2}& _’

dorsal

A
MAA_) ‘

6o

B

1

1

A; = Scale of grid

[; = Diameter of single grid

field
A . .
i = = Ratio of grid
i+1 scales
A
R = )\—1 = r; = Resolution

N Zm = Number of
i grid cells
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A simple modular representation of space

A
< 1 »
) cell 1 cell 2 ]
scale 1
N
. A 2
cell 1 cell 2 § cell 1 cell 2
scale 2 .
As
cell1 | cell2 ' ;
cell 1 cell2 || cell1
scale 3 cell 2 cell 1 : cell 2
phase 1 2 3 4 5 6 7 8
animal's location linear track

What ratio between scales minimizes the number of cells
required achieve a given spatial resolution?
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Optimizing the grid (simple model)

mEC

ventral
Al

. ri = Nt Ratio of grid
.. scales
oo )

A1
s . R = )\ Hrz = Resolution
: . N Zm = Number of

) I 0 grid cells
4
S 9 6%“

é'e

°° Minimize number of cells (N) for fixed
Ba | o resolution (R). This requires all r; equal.
Ly

dorsal

Result: (a) | dimension: optimal grid scale ratio = e
(b) 2 dimensions: optimal grid scale ratio = v/
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Empirical data

Frequency

as predicted by -
model. o

The ratios of grid .
scales in rats ver o
Y Barry et al., 2007
close to e ~ 1.6 o
OTO 0T5 1?0 1?5 2?0 2?5 310

normalized grid scale

2.5

2.0

The ratios of grid
scales and grid field == ==
diameter in mice is raio

close to /e. Also
predicted by model.

1.5

1.0

0.5

0.0

HCN KO mice Control mice

Good match with our simple theory!

Giocomo et al., 201 |
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More realistic model

Grid fields at each
scale overlap

if I; < Ait1

B D
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Alternative decoding strategies
* “Winner take all”

* Optimal probabilistic decoding (“Bayesian”)

Ambiguities arise if
the grid field width is
too large compared
to the next scale
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Two dimensional grids

if l; > )\z’—l—l
lei . . . . .
o / Ambiguities arise if
1

Clrcula.r, ? ? the grid field width
ovgrlapplng . Wt is too large
firing fields % compared to the

next scale

Invariances dictate three possible grids

Alternative decoding strategies
* “Winner take all”

* Optimal probabilistic decoding (“Bayesian”)
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Number of neurons as a function of scaling ratio

A . 1-d B ._ 2—-d
Te] n —
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* “Winner take all” =WTA
* Optimal probabilistic decoding = Bayesian
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(A) Ratio between
neighboring grid
scales (Theory error

bars = 95% of minimal
neuron number)

(B) Ratio between
grid field width

and grid scale
(Red line =
prediction)

Theory matches experiment
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(C) Angles
between grid fields
(Red line =

2 b1 prediction)
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* “Winner take all” =WTA

* Optimal probabilistic
decoding = Bayesian

Wednesday, December 5, 12




Resource allocation in the brain

Coverage by
one architectural
element

Sensory / Cognitive / Algorithmic Space

But what about interactions between architectural elements!?
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interactions

neural populations
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Interacting networks responding to correlated inputs

p(h) | {0}|h) p({o})
g -1
@ N
Patltcirns \ — _11
|||‘| | :—ZC |
@ 1
| I|‘||| M |

Input | network Output

Networks can store memories, learn things, perform
complex computations.
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Pairwise interacting models of response

* The retinal ganglion cell network (and cortical slices) have response
distributions with correlations that are well-summarized by a distribution with
only pairwise interactions (Schneidman et al,, Shlens et al., 2006):

P({0:}) = 55 exp [zi hioi + 13, Jijg@-aj}

* Generalize to have stimulus dependence ( 3 measures neural reliability):

expq B Zi(h?+hi(8))0i+l Zz j Jijoi0;
P({oi}|s) = At A )

* When J;=0, these are independent Linear-Nonlinear-Poisson neurons:

P({o:}]s) = 27 T1, exp [B (h) + hi(s))os] =) (0i(s)) = tanh [ (h? + hy(s))]

What can we do with such representations of population activity?
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Two neurons: optimal strategy varies with noise

Population coding strategies
* Independence: Each neuron responds independently to input
* Decorrelation: The network decorrelates its inputs
* Error correction: The network fights noise through redundancy
* Synergy: Neural responses synergistically encode stimuli

What strategy should an optimal network follow?

1 0.2
| p=2 |
0.5 | ——p=1 |
‘ | 5 |~ B=05 '
* - " _ ;’ | . abdeedl L |
- 0 I 8 0
~0.5 | | |
| |
- | -0.2 |
1 Cov(h) 1 o Cov(h) 1

At high reliability ( 3 ), the network
decorrelates the inputs. At low reliability (3),
the network enhances input correlations to
achieve error correction via redundancy.

Two interacting
neurons encoding
correlated inputs

Tkacik, Prentice, Schneidman,VB (PNAS 2010)
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Computational consequences of network couplings
Example: Lag normalization in the retina

Trenholm, Schwab, Awatramani,VB (in review)
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“Lag normalization” in the retina

a
Uncoupled DSGC Coupled DSGC
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A class of Direction
Selective Ganglion Cells
(DSGCs) removes the
effects of retinal circuit
delays
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Lag normalization is a population effect of gap junctions
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Masking destroys lag
normalization

Blocking gap junctions
destroys lag normalization

Paired recordings show
that spikes in one DSGC
reliably produce spikelets
in its neighbor
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Lateral coupling explains lag normalization

Model schematic

gl A A 44

1 ] 6

2 -1 0 1 2 4 2 1] 2

Intersomatic distance Intersomaltic distance

Lag normalization develops by the sixth
neuron in the model array
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Resource allocation in the brain

Coverage by
one architectural
element

Sensory / Cognitive / Algorithmic Space

Ongoing work:

* Representation of textures in visual cortex

* Planning of paths based on hippocampal place cells
* Representation of odors by the olfactory cortex

* Representation of structured stimuli by retina

CHALLENGE: Understanding the interactions
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The diversity of neural structures and functions
is driven by a law of diminishing returns

Koch et al., 2005, 2006
Perge et al., 2009
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Firing events

67 ms of data,

viewed as a movie.
[data have been smoothed]
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Some spikes move across the array:
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mircometer, average of 159 spikes
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Ganglion cell responses to natural stimuli

ON brisk-transient OFF brisk-transient ON brisk-sustained OFF brisk-sustained ON direction-selective (DS) ON-OFF DS local-edge

saccade
(%)

o
ospks/s o trials & ospks/s S o trials S ospks/s S o trials S

optic flow

object motion
o

| J\i J\ JL ] L l{‘M)'L‘ H&.___M&Am@__w_wm g&MMMMM W . L ‘ h Al ; M

1. 2 3.0 1. 2 3 1. 2 3.0 1. 2 3 1. 2 3 1. 2
time (s) time (s) time (s) time (s) time (s) time (s)

Guinea Pig (Koch et al., 2005; Koch et al., 2006)

How and why is the total information traffic divided up between so many
different types of channels!?
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All cells are equally efficient for all stimuli

Capacity = C(R, At) = —R At log(RAt) — (1 — RAt)log(1l — R At)

100 C(R.AY)
1 information rate
@ brisk-transient
80 -+ @ brisk-sustained
A ON DS
A ON-OFF DS
% 60 - A local-edge
@
* 40 -
0.26C(R,AY)
20 1(3%@} o ®
O n I I | | |
5 10 15 20 25

spks/s

All cell types are ~26% efficient for all naturalistic stimuli.
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Efficiency of a single spike on depends on firing rate

bits/spike

W’

o

2+ o
25 Roo 0.26C(R,AD/R
Q - — _
A ® Q§ T Tt — — - _

1 A‘ a2 o e o

O I I I 1

0 5 10 15 20 25
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Information traffic along the optic nerve

cell type bits/s bits/spike cells bits spikes
Brisk-transient 13 1.9 6,000 78,000 41,000
Brisk-sustained 10 1.8 24,000 240,000 133,000
ON DS 6 2.2 7,000 42,000 19,000
ON-OFF DS 8 2.2 12,000 96,000 44,000
Local-edge 7 2.1 20,000 140,000 67,000
Sluggish (other) 9 2.2 31,000 279,000 127,000
Total 100,000 875,000 431,000

* Messages are transmitted asymmetrically - less
studied sluggish cells account for most of the
traffic

* Scaling up to human optic nerve (million
axons) gives a traffic of order an Ethernet cable.
This is the same order of magnitude as the
amount of information in natural scenes
according to Ruderman, 1994.

ON DS
ON-OFF DS
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Why this organization!?

* Given equal coding efficiency for all types, why not use a single type
to send all information over a high firing rate axon?
* Perhaps because the cost of signaling increases non-linearly with

firing rate.
Comparison of three kinds of neural cables
Brisk-
Type LED Transient Super
Mean spike | 4y, 8 Hz 40 Hz
rate for cell
bits/spike 2.1 |.8 .1
spikes/s for 300 : 0
bits/s traffic ~140 ~170 ~270 «—T— ufsflng 26%
over cable efficiency)

The dominant metabolic cost in neural signaling is associated with
spiking (Attwell & Laughlin; Lennie).
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A law of diminishing returns

Rﬂ"i‘ ax

Information (R)

|
Emfn Emax
Energy (E)

In any given information channel bits/energy is optimized at a particular
firing rate (Balasubramanian, Berry & Kimber, 2001).

Perhaps this is related to the surprising similarity of information rates of
all retinal ganglion cells (6-13 bits/s) responding the to natural stimuli.
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Resource allocation in the brain

Coverage by
one architectural
element

Sensory / Cognitive / Algorithmic Space

Ongoing work:

* Representation of textures in visual cortex

* Planning of paths based on hippocampal place cells
* Representation of odors by the olfactory cortex

* Representation of structured stimuli by retina

CHALLENGE: Understanding the interactions
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The End
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Conclusion: How smart can you get!?

* Faster neurons: Requires disproportionate
investment of resources because of the law
of diminishing returns

* More neurons: Requires larger brains, and
therefore slower communications, more
power. Reducing neuron size to 4 I'Il'\"':-u A
compensate leads to more noise and “l l(‘"llh'(‘ll ¢

uncertainty

e pronsne] by
CAN'WE GET AM /
SMARTIR?

e Communities: Communicate with other
humans specialized to other tasks and think
collectively?

* Technology: The book, the computer, plug-
in cognitive modules?
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Another Example: The scarcity of S cones and
retina’s indifference to L/M ratio

Garrigan, Ratliff, Sterling, Brainard,VB (PloS Comp Bio, 2010)
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The photoreceptor distribution

% S cones

NE&Eoo
cCooocOoo

A L

Human Eye

[ER Ly %l prtegde?

Roorda, Williams %

e ~|0-fold variability in human L/M ratios (e.g., Hagstrom et al., 1997)
* S cones are scarce (<10%) (e.g., Curcio et al., 1991)

HYPOTHESIS: This is a consequence of maximizing chromatic
information transfer from natural scenes.
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Cone responses are highly correlated

1

0.9
0.8
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0
T 06 |
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Scaling of information in cone arrays

744
Fit: H=4"*N

16
14 ,°/
12 | -,

10 | P

Array Entropy
d

2 1 2 3 4 5
# of cells

Hp =Np™Hjp

Array Entropy

762
Fit: H = 4*N
16 =
14 | Vo4
T d
L P s
12 o
7
10 [ -7
©
| 7’
8 e S cone
Lo
s |
4T
2 4 2 3 4
# of cells

Hg = Ng™® Hg

Hi.t = H;, + Hg — Mutual Information

Let Ns = N - NRr and optimize
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Back of the envelope estimate

* Neglect the shared information between L & S
* Set the scaling exponents of both L and S arrays to be ~ 0.75

*Then: Hiot = N)™ H; + (N — Np)*™ Hg

* Optimize: Ot _ 0

ONTy,

* Putting in the daylight
values for the single pixel
entropy:

—

Array Entropy

Max = 75% Red

0

10 20 30 40 50 60 70 80 90 100
% Red Cells
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The optimal mosaic including optical factors

* Attenuation of high frequencies by macular pigment

* Chromatic aberration by the lens

* Shared information between cone types

0.32

0.28 (

L / M array with chromatic blur

0.24
)

E o020
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& 148
©
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= 017
&

= 015
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L / S array with chromatic blur

013
011
oo bvoor—r—"r—""-—-"-7355-—-"7"="—-"7"—-"1"
0 20 40 60 80 100
% L cones

% S cones

Retinal measurements
Curcio, et al., 1991

r

Eccentricity (mm)

Wednesday, December 5, 12






