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Topics in Theoretical Neuroscience Pt.3



Lecture 3: Maps in the brain & 
interactions in neural populations

Lecture 2: Maps in The Brain

Lecture 1: Architecture of The Brain

Wednesday, December 5, 12



Coverage by
one architectural 

element

Resource allocation in the brain

Sensory / Cognitive /  Algorithmic Space
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Coverage by
one architectural 

element

Sensory / Cognitive /  Algorithmic Space

Resource allocation in the brain

Previous Lecture:
(1) Retina has multiple output cell types.
(2) We explained the structure of receptive field mosaics of each type.
(3) We then explained the relative proportions of two types: OFF cells 
and ON cells
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 A cognitive example: The Sense of Place
Grid  cells in the brain and the 

transcendental number e
Xuexin Wei, Jason Prentice, VB, in review 2012
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A simple model for a representation of space

8m linear track

cell 8cell 7cell 6cell 5cell 4cell 3cell 2cell 1

1m 1m 1m 1m 1m 1m 1m 1m

To achieve 1m resolution on an 8m track have 8 place cells, 
each of which fire when you are in a particular 1m wide 
location.     This requires 8 cells. 

Something like this may happen in a brain region called the 
hippocampus (but it’s more complicated, and the map is unstable to 
perturbations of the environment).
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animal's location
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B

A better model for a representation of space

This is a “binary” representation of 
space and requires only 6 cells. 
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Grid Cells (Medial Entorhinal Cortex):  a cortical 
represention of space
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if li > λi+1
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Spatial characteristics of the grid system
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animal's location

scale 1

scale 2

scale 3

linear track

cell 1 cell 2

cell 1 cell 1cell 2 cell 2

cell 2 cell 2 cell 2 cell 2
cell 1 cell 1 cell 1 cell 1
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B

A simple modular representation of space

What ratio between scales minimizes the number of cells 
required achieve a given spatial resolution?
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linear track
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if li > λi+1
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Optimizing the grid (simple model)

Minimize  number of cells (N) for fixed 
resolution (R).  This requires all ri equal.

Result:   (a) 1 dimension:   optimal grid scale ratio = e
                (b) 2 dimensions: optimal grid scale ratio =

√
e

= Ratio of grid              
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a
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Empirical data

 The ratios of grid 
scales in rats very 
close to        ~ 1.6 
as predicted by 
model. 

√
e

 The ratios of grid 
scales and grid field 
diameter in mice is 
close to       .   Also 
predicted by model.

√
e

Barry et al., 2007

Giocomo et al., 2011

Good match with our simple theory!
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More realistic model

linear track
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Alternative decoding strategies
• “Winner take all” 
• Optimal probabilistic decoding (“Bayesian”) 

Grid fields at each 
scale overlap

Ambiguities arise if  
the grid field width is 
too large compared 

to the next scale
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Two dimensional grids

Invariances dictate three possible grids

Circular, 
overlapping 
firing fields

Ambiguities arise if 
the grid field width 

is too large 
compared to the 

next scale

Alternative decoding strategies
• “Winner take all” 
• Optimal probabilistic decoding (“Bayesian”) 

Wednesday, December 5, 12



ln r

Bayesian

2 dBA

N
/ N

m
in

r

WTA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 

 

ln r

N
/ N

m
in

r

1 d

Bayesian

WTA

2.72.3 1.44 1.65

Number of neurons as a function of scaling ratio

• “Winner take all” = WTA
• Optimal probabilistic decoding = Bayesian
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Theory matches experiment

(A) Ratio between 
neighboring grid 

scales (Theory error 
bars = 95% of minimal 

neuron number)

(B) Ratio between 
grid field width 
and grid scale

(Red line = 
prediction)

(C) Angles 
between grid fields 

(Red line = 
prediction)

• “Winner take all” = WTA
• Optimal probabilistic 
decoding = Bayesian
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Coverage by
one architectural 

element

Resource allocation in the brain

Sensory / Cognitive /  Algorithmic Space

But what about interactions between architectural elements?

Wednesday, December 5, 12



 The role of interactions in neural populations
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Interacting networks responding to correlated inputs
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Networks can store memories, learn things, perform 
complex computations.   
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Pairwise interacting models of response

P̂ ({σi}) = 1
Z(h,J) exp

[∑
i hiσi + 1

2

∑
i,j Jijσiσj

]

P ({σi} |s) =
exp{β(P

i(h
0
i +hi(s))σi+

1
2

P
i,j Jijσiσj)}

Z(h,J)

P ({σi}|s) = Z−1
∏

i exp
[
β (h0

i + hi(s))σi

] 〈σi(s)〉 = tanh
[
β

(
h0

i + hi(s)
)]

• The retinal ganglion cell network (and cortical slices) have response 
distributions with correlations that are well-summarized by a distribution with 
only pairwise interactions (Schneidman et al., Shlens et al., 2006):

• When Jij=0, these are independent Linear-Nonlinear-Poisson neurons:

• Generalize to have stimulus dependence (     measures neural reliability):β

What can we do with such representations of population activity?
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Two neurons: optimal strategy varies with noise

Two interacting 
neurons encoding 
correlated inputs

At high reliability (    ), the network 
decorrelates the inputs.   At low reliability (   ), 

the network enhances input correlations to 
achieve error correction via redundancy.

β
β

Population coding strategies
• Independence: Each neuron responds independently to input 
• Decorrelation:  The network decorrelates its inputs
• Error correction: The network fights noise through redundancy
• Synergy: Neural responses synergistically encode stimuli

What strategy should an optimal network follow?

Tkacik, Prentice, Schneidman, VB (PNAS 2010)
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Computational consequences of network couplings
      Example:  Lag normalization in the retina

Trenholm, Schwab, Awatramani, VB (in review)
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A class of Direction 
Selective Ganglion Cells 
(DSGCs) removes the 
effects of retinal circuit 
delays 

“Lag normalization” in the retina
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Control cells

Lag normalization is a population effect of gap junctions

Masking destroys lag 
normalization

Blocking gap junctions 
destroys lag normalization

Paired recordings show 
that spikes in one DSGC 
reliably produce spikelets 
in its neighbor
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Lateral coupling explains lag normalization

Model schematic

Lag normalization develops by the sixth 
neuron in the model array

In(t) = Jn(t) + αIn−1(t)

In(t) =
n∑

m=1

αn−mJm(t)

Jn(t) = Gaussian spatial tuning 
curve with velocity 

dependent amplitude g(v)

α = gap junction coupling

Spiking occurs when 
the current In reaches 

some threshold C.
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Coverage by
one architectural 

element

Resource allocation in the brain

Sensory / Cognitive /  Algorithmic Space

Ongoing work:  
•Representation of textures in visual cortex 
•Planning of paths based on hippocampal place cells
•Representation of odors by the olfactory cortex 
•Representation of structured stimuli by retina 

CHALLENGE:  Understanding the interactions
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The diversity of neural structures and functions
is driven by a law of diminishing returns

Koch et al., 2005, 2006
Perge et al., 2009
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67 ms of data, 
viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Firing events
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Guinea Pig (Koch et al., 2005;  Koch et al., 2006)

How and why is the total information traffic divided up between so many 
different types of channels? 

Ganglion cell responses to natural stimuli
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All cells are equally efficient for all stimuli

C(R, Δt) = −R Δt log(RΔt) − (1 − R Δt) log(1 − R Δt)Capacity = 

All cell types are ~26% efficient for all naturalistic stimuli.
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Efficiency of a single spike on depends on firing rate
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Information traffic along the optic nerve

• Messages are transmitted asymmetrically - less 
studied sluggish cells account for most of the 
traffic

• Scaling up to human optic nerve (million 
axons) gives a traffic of order an Ethernet cable.  
This is the same order of magnitude as the 
amount of information in natural scenes 
according to Ruderman, 1994.
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Why this organization?

• Given equal coding efficiency for all types, why not use a single type 
to send all information over a high firing rate axon?
• Perhaps because the cost of signaling increases non-linearly with 
firing rate.

Type LED Brisk-
Transient Super

Mean spike 
rate for cell 4 Hz 8 Hz 40 Hz

bits/spike 2.1 1.8 1.1

spikes/s for 300 
bits/s traffic 
over cable

~140 ~170 ~270 

Comparison of three kinds of neural cables

The dominant metabolic cost in neural signaling is associated with 
spiking (Attwell & Laughlin; Lennie).

using 26% 
efficiency)
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A law of diminishing returns

In any given information channel bits/energy is optimized at a particular 
firing rate (Balasubramanian, Berry & Kimber, 2001).

Perhaps this is related to the surprising similarity of information rates of 
all retinal ganglion cells (6-13 bits/s) responding the to natural stimuli.
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Coverage by
one architectural 

element

Resource allocation in the brain

Sensory / Cognitive /  Algorithmic Space

Ongoing work:  
•Representation of textures in visual cortex 
•Planning of paths based on hippocampal place cells
•Representation of odors by the olfactory cortex 
•Representation of structured stimuli by retina 

CHALLENGE:  Understanding the interactions
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The End
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Conclusion: How smart can you get?

• Faster neurons:  Requires disproportionate 
investment of resources because of the law 
of diminishing returns 

• More neurons: Requires larger brains, and 
therefore slower communications, more 
power.  Reducing neuron size to 
compensate leads to more noise and 
uncertainty

• Communities: Communicate with other 
humans specialized to other tasks and think 
collectively?

• Technology: The book, the computer, plug-
in cognitive modules?
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Another Example: The scarcity of S cones and 
retina’s indifference to L/M ratio

Garrigan, Ratliff, Sterling, Brainard, VB (PloS Comp Bio, 2010)
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The photoreceptor distribution

3.0 μmhuman, von Greef, 

ro

con

macaque, Hsu et al., 

huma

cone axoncone axon

rod axonrod axon

• ~10-fold variability in human L/M ratios (e.g., Hagstrom et al., 1997)
• S cones are scarce (<10%) (e.g., Curcio et al., 1991)

HYPOTHESIS:  This is a consequence of maximizing chromatic 
information transfer from natural scenes.

Roorda, Williams 
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Scaling of information in cone arrays
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S coneL cone

Htot = HL + HS − Mutual Information

HL = N0.74
L H1

L HS = N0.76
S H1

S

Let NS = N - NR and optimize
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Back of the envelope estimate
• Neglect the shared information between L & S
• Set the scaling exponents of both L and S arrays to be ~ 0.75

Htot = N0.75
L H1

L + (N − NL)0.75 H1
S

• Optimize: 

• Putting in the daylight 
values for the single pixel 
entropy: 

∂Htot

∂NL

= 0 =⇒
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N
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(
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) 1
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•Then: 
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The optimal mosaic including optical factors

• Attenuation of high frequencies by macular pigment
• Chromatic aberration by the lens
• Shared information between cone types
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