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What you will get from this talk

For the non-expert:

How we measure the geometry of the 

Universe  with galaxy clustering
In other words: the Alcock-Paczynski test on the Baryonic 

Acoustic Feature to constrain H(z), DA(z)
For the expert:

practical aspects of  binning your correlation 

functions: Multipoles, Wedges, RR(μ)
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For usage of data, mock catalogues:
Marc Manera, Cameron McBride,  The Sloan Digital Sky Survey, The WiggleZ Dark Energy Survey

The WiggleZ Group

Credits
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For usage of data, mock catalogues:
Marc Manera, Cameron McBride,  The Sloan Digital Sky Survey, The WiggleZ Dark Energy Survey

Credits

The Sloan Digital Sky Survey
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The Baryonic Acoustic Feature
as a Standard Ruler
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z~1100
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WMAP 7-year Cosmological Interpretation 13

Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

systematic error is minimized by calibrating su-
pernova luminosities directly using the geometric
maser distance measurements. This is a significant
improvement over the prior that we adopted for
the 5-year analysis, H0 = 72 ± 8 km s−1 Mpc−1,
which is from the Hubble Key Project final results
(Freedman et al. 2001).

• Gaussian priors on the distance ratios, rs/DV (z =
0.2) = 0.1905 ± 0.0061 and rs/DV (z = 0.35) =
0.1097 ± 0.0036, measured from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS) and the
Sloan Digital Sky Survey Data Release 7 (SDSS
DR7) (Percival et al. 2009). The inverse covariance
matrix is given by equation (5) of Percival et al.
(2009). These priors are improvements from those
we adopted for the 5-year analysis, rs/DV (z =
0.2) = 0.1980 ± 0.0058 and rs/DV (z = 0.35) =
0.1094± 0.0033 (Percival et al. 2007).

The above measurements can be translated into a
measurement of rs/DV (z) at a single, “pivot” red-
shift: rs/DV (z = 0.275) = 0.1390 ± 0.0037 (Per-
cival et al. 2009). Kazin et al. (2010) used the
two-point correlation function of SDSS-DR7 LRGs
to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an
excellent agreement with the above measurement
by Percival et al. (2009) at a similar redshift. The
excellent agreement between these two independent
studies, which are based on very different methods,

indicates that the systematic error in the derived
values of rs/DV (z) may be much smaller than the
statistical error.

Here, rs is the comoving sound horizon size at the
baryon drag epoch zd,

rs(zd) =
c√
3

∫ 1/(1+zd)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
. (15)

For zd, we use the fitting formula proposed by
Eisenstein & Hu (1998). The effective distance
measure, DV (z) (Eisenstein et al. 2005), is given
by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular
diameter distance:

DA(z) =
c

H0

fk
[

H0

√

|Ωk|
∫ z
0

dz′

H(z′)

]

(1 + z)
√

|Ωk|
, (17)

where fk[x] = sinx, x, and sinhx for Ωk < 0
(k = 1; positively curved), Ωk = 0 (k = 0; flat),
and Ωk > 0 (k = −1; negatively curved), respec-
tively. The Hubble expansion rate, which has con-
tributions from baryons, cold dark matter, pho-
tons, massless and massive neutrinos, curvature,
and dark energy, is given by equation (27) in Sec-
tion 3.3.

Larson et al. (2010)

CMB T-T
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r  [h-1Mpc]

#(r)
z=0, 0.3, 0.6, 1, 2, 20

Sunday, August 5, 2012



The Baryonic Acoustic Feature
as a Standard Ruler

 Early Universe (zdec∼1090): 
     CMB temp fluctuations determines 
     rs∼147 Mpc  (δrs/rs ∼1.3%;  WMAP-5 Komatsu et al. 2009)

  Late Universe : 
     SDSS-II, -III
     LRGs (z∼ 0.3, 0.6) 
     QSOs Lyman-α Forest (z>2.5) 

     Wiggle-Z
     Blue Galaxies (z∼ 0.2, 0.4, 0.6, 0.8)

     Galaxy Clusters 
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WMAP 7-year Cosmological Interpretation 13

Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

systematic error is minimized by calibrating su-
pernova luminosities directly using the geometric
maser distance measurements. This is a significant
improvement over the prior that we adopted for
the 5-year analysis, H0 = 72 ± 8 km s−1 Mpc−1,
which is from the Hubble Key Project final results
(Freedman et al. 2001).

• Gaussian priors on the distance ratios, rs/DV (z =
0.2) = 0.1905 ± 0.0061 and rs/DV (z = 0.35) =
0.1097 ± 0.0036, measured from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS) and the
Sloan Digital Sky Survey Data Release 7 (SDSS
DR7) (Percival et al. 2009). The inverse covariance
matrix is given by equation (5) of Percival et al.
(2009). These priors are improvements from those
we adopted for the 5-year analysis, rs/DV (z =
0.2) = 0.1980 ± 0.0058 and rs/DV (z = 0.35) =
0.1094± 0.0033 (Percival et al. 2007).

The above measurements can be translated into a
measurement of rs/DV (z) at a single, “pivot” red-
shift: rs/DV (z = 0.275) = 0.1390 ± 0.0037 (Per-
cival et al. 2009). Kazin et al. (2010) used the
two-point correlation function of SDSS-DR7 LRGs
to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an
excellent agreement with the above measurement
by Percival et al. (2009) at a similar redshift. The
excellent agreement between these two independent
studies, which are based on very different methods,

indicates that the systematic error in the derived
values of rs/DV (z) may be much smaller than the
statistical error.

Here, rs is the comoving sound horizon size at the
baryon drag epoch zd,

rs(zd) =
c√
3

∫ 1/(1+zd)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
. (15)

For zd, we use the fitting formula proposed by
Eisenstein & Hu (1998). The effective distance
measure, DV (z) (Eisenstein et al. 2005), is given
by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular
diameter distance:

DA(z) =
c

H0

fk
[

H0

√

|Ωk|
∫ z
0

dz′

H(z′)

]

(1 + z)
√

|Ωk|
, (17)

where fk[x] = sinx, x, and sinhx for Ωk < 0
(k = 1; positively curved), Ωk = 0 (k = 0; flat),
and Ωk > 0 (k = −1; negatively curved), respec-
tively. The Hubble expansion rate, which has con-
tributions from baryons, cold dark matter, pho-
tons, massless and massive neutrinos, curvature,
and dark energy, is given by equation (27) in Sec-
tion 3.3.

Larson et al. (2010)
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Beyond the Monopole:
The Importance of Anisotropic Clustering

H
/H

TR
U

E

DA/DATRUE

distorted
cosmology
(AP effect) 

monopole only
~DA2/H

monopole & 
quadrupole

Kazin, Sánchez & Blanton (2011)
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An Apology

I am not going to 
show BOSS clustering Wedges 
results today. (but stay tuned ..)

Most of the plots here are from 
mock catalogues.

Sunday, August 5, 2012
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z-distortions in practice: a brief practical recap

There is information in the Hexadecapole ξ4(s)

In with the new (basis): Clustering Wedges ξ(Δμ,s)

Time Permitting: NRR(μ)=! constant

Today’s Talk

Sunday, August 5, 2012
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χ(z)= c∫  dz’
zobs

0 H(z’,Ω)
_____

Dynamical:  squashing (kaiser 1987), Finger of God 

Geometrical: AP effect (Alcock&Paczynski 1979)

comoving distance

Redshift Distortions: 
Dynamical and Geometrical

Sunday, August 5, 2012
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z+1

1

r1=r2

H!DA=cΔz/(1+z)/Θ

r1=cΔz/H(z)

r2=(1+z)DA(z)Θ

In the anisotropic
Baryonic Acoustic Feature

H!DA

In the isotropic
Baryonic Acoustic Feature

DA2/H

3228 E. A. Kazin, A. G. Sánchez and M. R. Blanton

(see Samushia, Percival & Raccanelli 2011, for a discussion on
observer angle effects). As later explained, our method incorporates
large angle effects, since the templates we use are based on the true
clustering signal from the mock catalogues.

Using spherical harmonics, the anisotropic ξ (µ, s) may be written
as

ξ (µ, s) =
∑

even "

P"(µ)ξ"(s), (7)

whereP" are Legendre polynomials [e.g.P0 = 1,P2 = 1
2 (3µ2−1),

P4 = 1
8 (35µ4−30µ2+3)] and the multipole projections are defined

as

ξ" ≡ 2" + 1
2

∫ 1

−1
P"(µ)ξ (µ, s)dµ. (8)

Equations (6) and (7) can be used to find the relation between
the clustering wedges and the multipoles. Discarding contributions
from multipoles with " > 2 this relation is given by

ξ (#µ, s) = ξ0 + 1
2

(
µ3

max − µ3
min

µmax − µmin
− 1

)
ξ2. (9)

A hexadecapole term would mean an additional term given by

1
8

(
7

(
µ5

max − µ5
min

)
− 10

(
µ3

max − µ3
min

)

µmax − µmin
+ 3

)
ξ4 (10)

on the right-hand side of equation (9), and higher multipoles can be
calculated in a similar manner.

For simplicity, in this study we focus on clustering wedges de-
fined by a width of #µ = 1/2. Of course, this analysis can be gen-
eralized to various wedge widths. We discuss the results obtained
with various values of #µ in Appendix B.

Defining the radial wedge ξ || as that given by 0.5 < µ < 1 and
the transverse ξ⊥ as 0 < µ < 0.5, equation (9) yields
(

ξ||

ξ⊥

)
=

(
1 3

8

1 − 3
8

) (
ξ0

ξ2

)
, (11)

or(
ξ0

ξ2

)
=

(
1
2

1
2

4
3 − 4

3

) (
ξ||

ξ⊥

)
. (12)

The hexadecapole term would add a third column in the matrix on
the right-hand side of equation (11) with absolute values of 15/128
∼ 0.12.

If ξ (µ, s) consisted only of " = 0, 2 terms, the two #µ = 1/2
wedges would form a complementary basis to that of the multipoles.
In the more generic case, these wide clustering wedges comprise
an alternative, but not totally complementary basis. It is easy to see
that given any combination of even "s, the monopole is always the
average of the #µ = 1/2 wedges, but the quadrupole is combined
with higher order multipole terms in a complicated fashion. This
means that given non-zero ξ">2 terms, these wide wedges do not
contain exactly the same information as [ξ 0, ξ 2], and hence form
an alternative, non-complementary basis. To have a fully comple-
mentary basis to ξ which contains N multipoles would, of course,
require the same number of wedges (or any other projection).

In Appendix D we test the relationships between the clustering
wedges and multipoles. We find that the two wide clustering wedges
(#µ = 1/2) are defined fairly well by the monopole and quadrupole
in velocity-space (and monopole only in real-space), and hence may
be used as an alternative basis to these multipoles to project most of
the information contained in ξ (µ, s). In the next section we utilize
this fact to show the effectiveness of the wedges to understand
geometric distortions, and use them to constrain H and DA.

3.4 Dilation and warping in clustering: a treatment of
multipoles and wedges

Here we show that radial clustering wedges are, as expected, mostly
sensitive to H while the transverse ones are most sensitive to DA,
even for two wide #µ = 1/2 clustering wedges.

Padmanabhan & White (2008) parametrize geometric distortions
in clustering. We make use of their equations (2)–(4), and introduce
them here in configuration space. We define s to be the true spatial
separation vector with radial and transverse components s||, s⊥. The
geometrically distorted separations are indicated by aD superscript.

As shown by Padmanabhan & White (2008), distortions to the
components of the separation can be parametrized by a factor
α which causes isotropic dilation and a parameter ε that causes
anisotropic warping, such that

sD|| = s||α(1 + ε)2 (13)

sD⊥ = s⊥α(1 + ε)−1. (14)

The Jacobian of transformation between the true volume element
d3s and the distorted d3sD is α3. Given that the comoving separation
dχ = c dz/H(z), and that the physical angular diameter distance is
(1 + z) DA = χ ,2 it is easy to show that the dilation parameter is
given by

α =
(

HD

H

)1/3 (
DA

DD
A

)2/3

. (15)

Applying equation (15) to equations (13) and (14) yields

1 + ε =
(

HD DD
A

H DA

)1/3

. (16)

The combination of equations (13) and (14) yields

sD = α (1 + 2εP2 (µ)) s, (17)

(µD)2 = µ2 + 6ε(µ2 − µ4). (18)

Note the difference in signs between configuration space µ and
k-space µk (equation 3 of Padmanabhan & White 2008).

Substituting these last two equations into equation (7) yields

ξD
0 (s) = ξ0(αs) + ε

(
2
5

dξ2(s)
d ln(s)

+ 6
5
ξ2(αs)

)
, (19)

ξD
2 (s) =

(
1 + 6

7
ε

)
ξ2(αs) + 4

7
ε

dξ2(s)
d ln(s)

+2ε
dξ0(s)
d ln(s)

.

(20)

Here, we neglect terms of orderO(ε2). See Appendix A for inclusion
of hexadecapole terms.

As Padmanabhan & White (2008) mention, the second and third
terms on the right-hand side of equation (19) effectively cancel
each other out, leaving ξD

0 (s) ≈ ξ0(αs). Eisenstein et al. (2005)
and Sánchez et al. (2009) demonstrated that this relationship works
accurately on the SDSS DR3 and DR6 LRG samples, respectively,
showing that the monopole alone constrains the degenerate combi-
nation in α, meaning D2

A/H . We also test for this relationship using
the mock mean of the mocks, and reproduce α without bias.

2 Assuming flatness, see Section 3.2 for a more generic treatment.

C© 2011 The Authors, MNRAS 419, 3223–3243
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

d3s=αd3sD

The Alcock-Paczynski Effect

Sunday, August 5, 2012



Large Scale Structure Workshop, Trieste, August 1st 2012 Eyal Kazin

Alcock-Paczynski measurement

Line-of-sight
Measure

Measure

Decreasing H(z)

Increasing DA(z)

Constant DA(z)*H(z)

The Alcock-Paczynski Effect
Plot Credit: Chris Blake
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Dynamical:  
       Squashing (kaiser 1987), Non-linear etc.. 
       Finger of God (velocity dispersion effect)

Geometrical: 
Alcock-Paczynski effect (Alcock&Paczynski 1979)

Timely Jargon 

z-distortions: General term for both types 
of distortions. Not solely Dynamical!

Sunday, August 5, 2012



LasDamas Mock Simulations

  Emphasize on many
     observational effects

 Results in most 
realistic uncertainties 
of clustering of the SDSS-II 
LRGs

public mocks: http://lss.phy.vanderbilt.edu/lasdamas/

  LArge Suite of 
     DArk MAtter Sims

McBride et al. ; in prep.

s  [h-1Mpc]

#(s~ BA feature scale)

Eyal Kazin Andereas Berlind
Michael Busha
Jeff Gardner
Cameron McBride
Román Scoccimarro
Frank van den Bosch
Risa Wechsler
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KAZIN & SANCHEZ: Disentangling H and DA in Clustering Measurements 20

Fig. 6.— Best Fit Results: DisentanglingH(z)−DM (z) Degeneracies with Geometric Distortions. Left plots-
real space. Right- velocity-space. Top- multipoles. Bottom- wedges. “Data” (symbols) are the geometrically

distorted signal, the template (thin dashed line) is the true signal, and the best fit models are the thick dashed line

within the region tested (40 < s < 150h−1Mpc). Here we limit our test to testing only the AP effect, resulting in

contours in Figure 6.

ξ0

Geometrical Distortion Effects on the 
2-Pt Correlation Function

Template (here I use the true mock signal)
``data” (here I use mock signal affected by AP)
 fit (here I fit Template to ``data” varying H and DA)
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KAZIN & SANCHEZ: Disentangling H and DA in Clustering Measurements 20

Fig. 6.— Best Fit Results: DisentanglingH(z)−DM (z) Degeneracies with Geometric Distortions. Left plots-
real space. Right- velocity-space. Top- multipoles. Bottom- wedges. “Data” (symbols) are the geometrically

distorted signal, the template (thin dashed line) is the true signal, and the best fit models are the thick dashed line

within the region tested (40 < s < 150h−1Mpc). Here we limit our test to testing only the AP effect, resulting in

contours in Figure 6.

ξ0

-ξ2

Geometrical Distortion Effects on the 
Clustering Multipoles

~DA2/H

~DAH

For the mathematically inclined: 
Padmanabhan & White (2008)
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ξ0

ξ*s2

ξ0⊗ξ2

simulated 
results

DA/DATRUE

H
/H

TR
U

E

-ξ2

s   [h-1Mpc]

Kazin, Sanchez & Blanton (2011)

Extra Information from the Hexadecapole

AP
effect
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ξ0

ξ*s2

ξ0⊗ξ2⊗ξ4

simulated 
results

DA/DATRUE

H
/H

TR
U

E

ξ4

-ξ2

s   [h-1Mpc]

Kazin, Sanchez & Blanton (2011)

Hexadecapole ξ4 improves constraints
(See also Taruya et al. 2011)

Extra Information from the Hexadecapole

AP
effect
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h-1
M
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4 Kazin E., Sánchez A. & Blanton M.

Figure 1. Mean two-dimensional correlation functions ξ(µ, s) from the ensemble of mock catalogues in real- (left) and velocity-space
(right). The solid contour lines, following the color scheme, correspond to the result obtained when using the correct cosmology when
converting z to comoving distances. The dashed lines show the geometrical distortions obtained by assuming wD = −1.1 instead of the
true value wT = −1. It can be clearly seen that dynamical effects dominate over the geometric.

3 THEORY

3.1 Redshift distortions: geometric vs. dynamic

Redshift distortions arise due to two effects when converting
the redshift zobs of a galaxy into a comoving distance:

χ = c

∫ zobs

0

dz
H(z)

. (3)

The first effect involves the assumption that the observed
redshift is produced entirely by the expansion of the Uni-
verse zcos. This assumption is, of course, incorrect in the
presence of peculiar velocities, which introduce an additional
Doppler component zpec leading to radial shifts in the in-
fered distances. Although these shifts are small compared
to the true distance χ(zcos) (less than 1% at z ∼ 0.3), they
strongly affect clustering measurements which depend on
separations between galaxies. We refer to these as dynami-

cal distortions.
Another, more subtle, redshift distortion effect arises

due to the conversion of redshift to distance using only ap-
proximately known cosmological parameters. The conver-
sion relies on the Hubble parameter, which can be derived
as:

(4)

H(z)2 = H2
0

(

ΩM0 (1 + z)3 + ΩK (1 + z)2

+ ΩDEe
3
∫
z

0

1+w(z′)
1+z

′
dz′

)

,

where Ωi are the standard cosmological density terms at
present day for matter (M0), curvature (K) and dark energy
(DE). The Hubble constant H0 ≡ H(0) (Hubble & Huma-
son 1931, although see Lemâıtre 1927) factors out trivially
and we thus express comoving distance in units of h−1Mpc,
where h ≡ H0/(100 km s−1Mpc−1). The rest of the param-

eters have more important, and potentially measurable, ef-
fects. We refer to these AP effects as geometric distortions.

One way of overcoming these effects is to recalculate
clustering statistics for every set of parameters when de-
termining cosmological constraints. However, that approach
is currently not practical. Instead, we calculate ξ using a
fixed fiducial set of parameters, and vary the result using
linear equations. As we show below, this method is accurate
enough.

Figure 1 illustrates dynamic and geometric distortions
in the LasDamas mock catalogues using the anisotropic ξ in
the µ − s plane. The information in this coordinate choice
is similar to that in the commonly used s|| − s⊥ plane.
We define #s to be the spatial separation vector with ra-
dial and transverse components s||, s⊥. In real-space (left
panel) the true signal corresponds to flat horizontal contour
levels in ξ(µ, s), shown as colored contours (solid lines) A
noticeable signature is the baryonic acoustic feature around
s ∼ 110h−1Mpc.

The dashed lines show the result obtained when we in-
troduce geometric distortions by using w = −1.1 instead of
the true value w = −1 when converting redshifts to comov-
ing distance. These distortions are more noticeable at large
scales, though they are also present on small scales.

The right-hand panel illustrates the equivalent measure-
ments with the addition of dynamical distortions (velocity-
space). Meaning, the solid lines correspond to the true
velocity-space result, and the dashed lines show the effect
of geometric distortions. It can be clearly seen that the dy-
namical distortions dominate over the geometric ones.

Three noticeable features are worth mentioning here.
First, the velocity dispersion effect is clearly seen in the
clustering signal along the line of sight (µ = 1). Although
commonly regarded as a small scale effect, it is still present
on scales of 60h−1Mpc, as discussed by Scoccimarro (2004).

c© 0000 RAS, MNRAS 000, 000–000

Kazin, Sanchez & Blanton (2011)

μ=s||/s

s s||

The 2D Clustering Plane !(",s)

Line-of-sight Transverse
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4 Kazin E., Sánchez A. & Blanton M.

Figure 1. Mean two-dimensional correlation functions ξ(µ, s) from the ensemble of mock catalogues in real- (left) and velocity-space
(right). The solid contour lines, following the color scheme, correspond to the result obtained when using the correct cosmology when
converting z to comoving distances. The dashed lines show the geometrical distortions obtained by assuming wD = −1.1 instead of the
true value wT = −1. It can be clearly seen that dynamical effects dominate over the geometric.

3 THEORY

3.1 Redshift distortions: geometric vs. dynamic

Redshift distortions arise due to two effects when converting
the redshift zobs of a galaxy into a comoving distance:

χ = c

∫ zobs

0

dz
H(z)

. (3)

The first effect involves the assumption that the observed
redshift is produced entirely by the expansion of the Uni-
verse zcos. This assumption is, of course, incorrect in the
presence of peculiar velocities, which introduce an additional
Doppler component zpec leading to radial shifts in the in-
fered distances. Although these shifts are small compared
to the true distance χ(zcos) (less than 1% at z ∼ 0.3), they
strongly affect clustering measurements which depend on
separations between galaxies. We refer to these as dynami-

cal distortions.
Another, more subtle, redshift distortion effect arises

due to the conversion of redshift to distance using only ap-
proximately known cosmological parameters. The conver-
sion relies on the Hubble parameter, which can be derived
as:

(4)

H(z)2 = H2
0

(

ΩM0 (1 + z)3 + ΩK (1 + z)2

+ ΩDEe
3
∫
z

0

1+w(z′)
1+z

′
dz′

)

,

where Ωi are the standard cosmological density terms at
present day for matter (M0), curvature (K) and dark energy
(DE). The Hubble constant H0 ≡ H(0) (Hubble & Huma-
son 1931, although see Lemâıtre 1927) factors out trivially
and we thus express comoving distance in units of h−1Mpc,
where h ≡ H0/(100 km s−1Mpc−1). The rest of the param-

eters have more important, and potentially measurable, ef-
fects. We refer to these AP effects as geometric distortions.

One way of overcoming these effects is to recalculate
clustering statistics for every set of parameters when de-
termining cosmological constraints. However, that approach
is currently not practical. Instead, we calculate ξ using a
fixed fiducial set of parameters, and vary the result using
linear equations. As we show below, this method is accurate
enough.

Figure 1 illustrates dynamic and geometric distortions
in the LasDamas mock catalogues using the anisotropic ξ in
the µ − s plane. The information in this coordinate choice
is similar to that in the commonly used s|| − s⊥ plane.
We define #s to be the spatial separation vector with ra-
dial and transverse components s||, s⊥. In real-space (left
panel) the true signal corresponds to flat horizontal contour
levels in ξ(µ, s), shown as colored contours (solid lines) A
noticeable signature is the baryonic acoustic feature around
s ∼ 110h−1Mpc.

The dashed lines show the result obtained when we in-
troduce geometric distortions by using w = −1.1 instead of
the true value w = −1 when converting redshifts to comov-
ing distance. These distortions are more noticeable at large
scales, though they are also present on small scales.

The right-hand panel illustrates the equivalent measure-
ments with the addition of dynamical distortions (velocity-
space). Meaning, the solid lines correspond to the true
velocity-space result, and the dashed lines show the effect
of geometric distortions. It can be clearly seen that the dy-
namical distortions dominate over the geometric ones.

Three noticeable features are worth mentioning here.
First, the velocity dispersion effect is clearly seen in the
clustering signal along the line of sight (µ = 1). Although
commonly regarded as a small scale effect, it is still present
on scales of 60h−1Mpc, as discussed by Scoccimarro (2004).
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Figure 1. Mean two-dimensional correlation functions ξ(µ, s) from the ensemble of mock catalogues in real- (left) and velocity-space
(right). The solid contour lines, following the color scheme, correspond to the result obtained when using the correct cosmology when
converting z to comoving distances. The dashed lines show the geometrical distortions obtained by assuming wD = −1.1 instead of the
true value wT = −1. It can be clearly seen that dynamical effects dominate over the geometric.

3 THEORY

3.1 Redshift distortions: geometric vs. dynamic

Redshift distortions arise due to two effects when converting
the redshift zobs of a galaxy into a comoving distance:

χ = c

∫ zobs

0

dz
H(z)

. (3)

The first effect involves the assumption that the observed
redshift is produced entirely by the expansion of the Uni-
verse zcos. This assumption is, of course, incorrect in the
presence of peculiar velocities, which introduce an additional
Doppler component zpec leading to radial shifts in the in-
fered distances. Although these shifts are small compared
to the true distance χ(zcos) (less than 1% at z ∼ 0.3), they
strongly affect clustering measurements which depend on
separations between galaxies. We refer to these as dynami-

cal distortions.
Another, more subtle, redshift distortion effect arises

due to the conversion of redshift to distance using only ap-
proximately known cosmological parameters. The conver-
sion relies on the Hubble parameter, which can be derived
as:

(4)

H(z)2 = H2
0

(

ΩM0 (1 + z)3 + ΩK (1 + z)2

+ ΩDEe
3
∫
z

0

1+w(z′)
1+z

′
dz′

)

,

where Ωi are the standard cosmological density terms at
present day for matter (M0), curvature (K) and dark energy
(DE). The Hubble constant H0 ≡ H(0) (Hubble & Huma-
son 1931, although see Lemâıtre 1927) factors out trivially
and we thus express comoving distance in units of h−1Mpc,
where h ≡ H0/(100 km s−1Mpc−1). The rest of the param-

eters have more important, and potentially measurable, ef-
fects. We refer to these AP effects as geometric distortions.

One way of overcoming these effects is to recalculate
clustering statistics for every set of parameters when de-
termining cosmological constraints. However, that approach
is currently not practical. Instead, we calculate ξ using a
fixed fiducial set of parameters, and vary the result using
linear equations. As we show below, this method is accurate
enough.

Figure 1 illustrates dynamic and geometric distortions
in the LasDamas mock catalogues using the anisotropic ξ in
the µ − s plane. The information in this coordinate choice
is similar to that in the commonly used s|| − s⊥ plane.
We define #s to be the spatial separation vector with ra-
dial and transverse components s||, s⊥. In real-space (left
panel) the true signal corresponds to flat horizontal contour
levels in ξ(µ, s), shown as colored contours (solid lines) A
noticeable signature is the baryonic acoustic feature around
s ∼ 110h−1Mpc.

The dashed lines show the result obtained when we in-
troduce geometric distortions by using w = −1.1 instead of
the true value w = −1 when converting redshifts to comov-
ing distance. These distortions are more noticeable at large
scales, though they are also present on small scales.

The right-hand panel illustrates the equivalent measure-
ments with the addition of dynamical distortions (velocity-
space). Meaning, the solid lines correspond to the true
velocity-space result, and the dashed lines show the effect
of geometric distortions. It can be clearly seen that the dy-
namical distortions dominate over the geometric ones.

Three noticeable features are worth mentioning here.
First, the velocity dispersion effect is clearly seen in the
clustering signal along the line of sight (µ = 1). Although
commonly regarded as a small scale effect, it is still present
on scales of 60h−1Mpc, as discussed by Scoccimarro (2004).
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Fig. 6.— Best Fit Results: DisentanglingH(z)−DM (z) Degeneracies with Geometric Distortions. Left plots-
real space. Right- velocity-space. Top- multipoles. Bottom- wedges. “Data” (symbols) are the geometrically

distorted signal, the template (thin dashed line) is the true signal, and the best fit models are the thick dashed line

within the region tested (40 < s < 150h−1Mpc). Here we limit our test to testing only the AP effect, resulting in

contours in Figure 6.
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Figure 2. Each panel displays the degeneracies between !=[w, "M0, "K] in the H − DA plane as a function of z. The axes are in units of a ‘true’ cosmology
!T = [−1, 0.25, 0]. The ‘false’ values are given in fractions in increments of #(frac) = 0.005. The legend reads such that: w < wT means w = wT ·f rac,
w > wT means w = wT /f rac, "M0 > "T

M0 means "M0 = "T
M0 · f rac, "M0 < "T

M0 means "M0 = "T
M0/f rac, "K > 0 means frac − 1 and "K < 0

means 1 − frac. In some high z panels we highlight 5, 10 per cent deviations in !. The thick boxes at low z indicate the geometric effects we test in this study.
The figure clearly shows that at (cosmologically) low redshifts there is a large degeneracy between the parameters. This is relaxed at higher redshifts where
distortions in "K and w affect mostly DA, and distortions in "M0 yield similar results to low z.

Fig. 2 shows how H and DA depend on cosmological parameters
for a number of redshifts. In each panel (each redshift) we hold
two of the three parameters "M0, "K and w (where "DE ≡ 1 −
"M0 − "K) fixed to a ‘true’ value and modify the third from its
fiducial according to the fraction indicated in the legend, between
1 and 1.5. We clearly see that at low redshifts H and DA yield
degenerate constraints on w, "K and "M, and that this degeneracy
can be broken as z increases. We notice that the dependence on "M0

does not vary much as a function of redshift, where both "K and w

align with the DA axis at high z, meaning H is not sensitive to these
parameters.

This plot demonstrates that the ("i, w) degeneracy can be broken
when applying the AP effect at high redshift (z > 2).

In this study we examine AP effects when varying w at mock
mean redshifts 〈z〉 = 0.33, and 0.44 as indicated by thick boxes in
bottom panels of Fig. 2. Fig. 2 demonstrates that our results are

similar to those we would have obtained by choosing to vary "K

or "M0.

3.3 One-dimensional projections of ξ (µ, s): introducing
clustering wedges

We define clustering wedges as

ξ (#µ, s) ≡
∫ µmax

µmin
ξ (µ′, s)dµ′

∫ µmax
µmin

dµ′ , (6)

where µ is the cosine of the angle between the separation vector s
and the line of sight. We assume here the plane-parallel, or small
angle, approximation, according to which two galaxies at the same
distance from the observer yield µ = 0 irrespective of their angular
distance. We note that the baryonic acoustic feature scale at z =
0.3 corresponds to ∼7◦ in the sky, and is smaller at larger redshifts

C© 2011 The Authors, MNRAS 419, 3223–3243
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(see Samushia, Percival & Raccanelli 2011, for a discussion on
observer angle effects). As later explained, our method incorporates
large angle effects, since the templates we use are based on the true
clustering signal from the mock catalogues.

Using spherical harmonics, the anisotropic ξ (µ, s) may be written
as

ξ (µ, s) =
∑

even "

P"(µ)ξ"(s), (7)

whereP" are Legendre polynomials [e.g.P0 = 1,P2 = 1
2 (3µ2−1),

P4 = 1
8 (35µ4−30µ2+3)] and the multipole projections are defined

as

ξ" ≡ 2" + 1
2

∫ 1

−1
P"(µ)ξ (µ, s)dµ. (8)

Equations (6) and (7) can be used to find the relation between
the clustering wedges and the multipoles. Discarding contributions
from multipoles with " > 2 this relation is given by

ξ (#µ, s) = ξ0 + 1
2

(
µ3

max − µ3
min

µmax − µmin
− 1

)
ξ2. (9)

A hexadecapole term would mean an additional term given by

1
8

(
7

(
µ5

max − µ5
min

)
− 10

(
µ3

max − µ3
min

)

µmax − µmin
+ 3

)
ξ4 (10)

on the right-hand side of equation (9), and higher multipoles can be
calculated in a similar manner.

For simplicity, in this study we focus on clustering wedges de-
fined by a width of #µ = 1/2. Of course, this analysis can be gen-
eralized to various wedge widths. We discuss the results obtained
with various values of #µ in Appendix B.

Defining the radial wedge ξ || as that given by 0.5 < µ < 1 and
the transverse ξ⊥ as 0 < µ < 0.5, equation (9) yields
(

ξ||

ξ⊥

)
=

(
1 3

8

1 − 3
8

) (
ξ0

ξ2

)
, (11)

or(
ξ0

ξ2

)
=

(
1
2

1
2

4
3 − 4

3

) (
ξ||

ξ⊥

)
. (12)

The hexadecapole term would add a third column in the matrix on
the right-hand side of equation (11) with absolute values of 15/128
∼ 0.12.

If ξ (µ, s) consisted only of " = 0, 2 terms, the two #µ = 1/2
wedges would form a complementary basis to that of the multipoles.
In the more generic case, these wide clustering wedges comprise
an alternative, but not totally complementary basis. It is easy to see
that given any combination of even "s, the monopole is always the
average of the #µ = 1/2 wedges, but the quadrupole is combined
with higher order multipole terms in a complicated fashion. This
means that given non-zero ξ">2 terms, these wide wedges do not
contain exactly the same information as [ξ 0, ξ 2], and hence form
an alternative, non-complementary basis. To have a fully comple-
mentary basis to ξ which contains N multipoles would, of course,
require the same number of wedges (or any other projection).

In Appendix D we test the relationships between the clustering
wedges and multipoles. We find that the two wide clustering wedges
(#µ = 1/2) are defined fairly well by the monopole and quadrupole
in velocity-space (and monopole only in real-space), and hence may
be used as an alternative basis to these multipoles to project most of
the information contained in ξ (µ, s). In the next section we utilize
this fact to show the effectiveness of the wedges to understand
geometric distortions, and use them to constrain H and DA.

3.4 Dilation and warping in clustering: a treatment of
multipoles and wedges

Here we show that radial clustering wedges are, as expected, mostly
sensitive to H while the transverse ones are most sensitive to DA,
even for two wide #µ = 1/2 clustering wedges.

Padmanabhan & White (2008) parametrize geometric distortions
in clustering. We make use of their equations (2)–(4), and introduce
them here in configuration space. We define s to be the true spatial
separation vector with radial and transverse components s||, s⊥. The
geometrically distorted separations are indicated by aD superscript.

As shown by Padmanabhan & White (2008), distortions to the
components of the separation can be parametrized by a factor
α which causes isotropic dilation and a parameter ε that causes
anisotropic warping, such that

sD|| = s||α(1 + ε)2 (13)

sD⊥ = s⊥α(1 + ε)−1. (14)

The Jacobian of transformation between the true volume element
d3s and the distorted d3sD is α3. Given that the comoving separation
dχ = c dz/H(z), and that the physical angular diameter distance is
(1 + z) DA = χ ,2 it is easy to show that the dilation parameter is
given by

α =
(

HD

H

)1/3 (
DA

DD
A

)2/3

. (15)

Applying equation (15) to equations (13) and (14) yields

1 + ε =
(

HD DD
A

H DA

)1/3

. (16)

The combination of equations (13) and (14) yields

sD = α (1 + 2εP2 (µ)) s, (17)

(µD)2 = µ2 + 6ε(µ2 − µ4). (18)

Note the difference in signs between configuration space µ and
k-space µk (equation 3 of Padmanabhan & White 2008).

Substituting these last two equations into equation (7) yields

ξD
0 (s) = ξ0(αs) + ε

(
2
5

dξ2(s)
d ln(s)

+ 6
5
ξ2(αs)

)
, (19)

ξD
2 (s) =

(
1 + 6

7
ε

)
ξ2(αs) + 4

7
ε

dξ2(s)
d ln(s)

+2ε
dξ0(s)
d ln(s)

.

(20)

Here, we neglect terms of orderO(ε2). See Appendix A for inclusion
of hexadecapole terms.

As Padmanabhan & White (2008) mention, the second and third
terms on the right-hand side of equation (19) effectively cancel
each other out, leaving ξD

0 (s) ≈ ξ0(αs). Eisenstein et al. (2005)
and Sánchez et al. (2009) demonstrated that this relationship works
accurately on the SDSS DR3 and DR6 LRG samples, respectively,
showing that the monopole alone constrains the degenerate combi-
nation in α, meaning D2

A/H . We also test for this relationship using
the mock mean of the mocks, and reproduce α without bias.

2 Assuming flatness, see Section 3.2 for a more generic treatment.
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(see Samushia, Percival & Raccanelli 2011, for a discussion on
observer angle effects). As later explained, our method incorporates
large angle effects, since the templates we use are based on the true
clustering signal from the mock catalogues.

Using spherical harmonics, the anisotropic ξ (µ, s) may be written
as

ξ (µ, s) =
∑

even "

P"(µ)ξ"(s), (7)

whereP" are Legendre polynomials [e.g.P0 = 1,P2 = 1
2 (3µ2−1),

P4 = 1
8 (35µ4−30µ2+3)] and the multipole projections are defined

as

ξ" ≡ 2" + 1
2

∫ 1

−1
P"(µ)ξ (µ, s)dµ. (8)

Equations (6) and (7) can be used to find the relation between
the clustering wedges and the multipoles. Discarding contributions
from multipoles with " > 2 this relation is given by

ξ (#µ, s) = ξ0 + 1
2

(
µ3

max − µ3
min

µmax − µmin
− 1

)
ξ2. (9)

A hexadecapole term would mean an additional term given by

1
8

(
7

(
µ5

max − µ5
min

)
− 10

(
µ3

max − µ3
min

)

µmax − µmin
+ 3

)
ξ4 (10)

on the right-hand side of equation (9), and higher multipoles can be
calculated in a similar manner.

For simplicity, in this study we focus on clustering wedges de-
fined by a width of #µ = 1/2. Of course, this analysis can be gen-
eralized to various wedge widths. We discuss the results obtained
with various values of #µ in Appendix B.

Defining the radial wedge ξ || as that given by 0.5 < µ < 1 and
the transverse ξ⊥ as 0 < µ < 0.5, equation (9) yields
(

ξ||

ξ⊥

)
=

(
1 3

8

1 − 3
8

) (
ξ0

ξ2

)
, (11)

or(
ξ0

ξ2

)
=

(
1
2

1
2

4
3 − 4

3

) (
ξ||

ξ⊥

)
. (12)

The hexadecapole term would add a third column in the matrix on
the right-hand side of equation (11) with absolute values of 15/128
∼ 0.12.

If ξ (µ, s) consisted only of " = 0, 2 terms, the two #µ = 1/2
wedges would form a complementary basis to that of the multipoles.
In the more generic case, these wide clustering wedges comprise
an alternative, but not totally complementary basis. It is easy to see
that given any combination of even "s, the monopole is always the
average of the #µ = 1/2 wedges, but the quadrupole is combined
with higher order multipole terms in a complicated fashion. This
means that given non-zero ξ">2 terms, these wide wedges do not
contain exactly the same information as [ξ 0, ξ 2], and hence form
an alternative, non-complementary basis. To have a fully comple-
mentary basis to ξ which contains N multipoles would, of course,
require the same number of wedges (or any other projection).

In Appendix D we test the relationships between the clustering
wedges and multipoles. We find that the two wide clustering wedges
(#µ = 1/2) are defined fairly well by the monopole and quadrupole
in velocity-space (and monopole only in real-space), and hence may
be used as an alternative basis to these multipoles to project most of
the information contained in ξ (µ, s). In the next section we utilize
this fact to show the effectiveness of the wedges to understand
geometric distortions, and use them to constrain H and DA.

3.4 Dilation and warping in clustering: a treatment of
multipoles and wedges

Here we show that radial clustering wedges are, as expected, mostly
sensitive to H while the transverse ones are most sensitive to DA,
even for two wide #µ = 1/2 clustering wedges.

Padmanabhan & White (2008) parametrize geometric distortions
in clustering. We make use of their equations (2)–(4), and introduce
them here in configuration space. We define s to be the true spatial
separation vector with radial and transverse components s||, s⊥. The
geometrically distorted separations are indicated by aD superscript.

As shown by Padmanabhan & White (2008), distortions to the
components of the separation can be parametrized by a factor
α which causes isotropic dilation and a parameter ε that causes
anisotropic warping, such that

sD|| = s||α(1 + ε)2 (13)

sD⊥ = s⊥α(1 + ε)−1. (14)

The Jacobian of transformation between the true volume element
d3s and the distorted d3sD is α3. Given that the comoving separation
dχ = c dz/H(z), and that the physical angular diameter distance is
(1 + z) DA = χ ,2 it is easy to show that the dilation parameter is
given by

α =
(

HD

H

)1/3 (
DA

DD
A

)2/3

. (15)

Applying equation (15) to equations (13) and (14) yields

1 + ε =
(

HD DD
A

H DA

)1/3

. (16)

The combination of equations (13) and (14) yields

sD = α (1 + 2εP2 (µ)) s, (17)

(µD)2 = µ2 + 6ε(µ2 − µ4). (18)

Note the difference in signs between configuration space µ and
k-space µk (equation 3 of Padmanabhan & White 2008).

Substituting these last two equations into equation (7) yields

ξD
0 (s) = ξ0(αs) + ε

(
2
5

dξ2(s)
d ln(s)

+ 6
5
ξ2(αs)

)
, (19)

ξD
2 (s) =

(
1 + 6

7
ε

)
ξ2(αs) + 4

7
ε

dξ2(s)
d ln(s)

+2ε
dξ0(s)
d ln(s)

.

(20)

Here, we neglect terms of orderO(ε2). See Appendix A for inclusion
of hexadecapole terms.

As Padmanabhan & White (2008) mention, the second and third
terms on the right-hand side of equation (19) effectively cancel
each other out, leaving ξD

0 (s) ≈ ξ0(αs). Eisenstein et al. (2005)
and Sánchez et al. (2009) demonstrated that this relationship works
accurately on the SDSS DR3 and DR6 LRG samples, respectively,
showing that the monopole alone constrains the degenerate combi-
nation in α, meaning D2

A/H . We also test for this relationship using
the mock mean of the mocks, and reproduce α without bias.

2 Assuming flatness, see Section 3.2 for a more generic treatment.
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Padmanabhan & White (2008) showed that the combined infor-
mation of ξ 0(s) and ξ 2(s) can be used to measure simultaneously α

and ε. Because these parameters depend on different combinations
of H and DA, this can break the degeneracy between these param-
eters obtained from an analysis based only on the monopole. Here
we present a similar concept based on clustering wedges.

By combining equations (11) with equations (19) and (20) it
is possible to quantify the effect of geometrical distortions on the
clustering wedges:

ξD
|| (s) = ξ||

(
HD

H
s

)
+ C||(ε), (21)

ξD
⊥ (s) = ξ⊥

(
DA

DD
A

s

)
+ C⊥(ε), (22)

where we have used the fact that for small ε, α(1+2ε) ≈ HD/H and
α(1 − ε) ≈ DA/DD

A . These equations hold for clustering wedges
in general, where for $µ = 1/2 the correction terms are given by

C||(ε, α) = ε

(
−5

4
dξ0(s)
d ln(s)

− 19
140

dξ2(s)
d ln(s)

+ 213
140

ξ2(αs)
)

= ε

(
−677

840
dξ||(s)
d ln(s)

− 373
840

dξ⊥(s)
d ln(s)

)

+ ε

(
71
35

(
ξ||(αs) − ξ⊥(αs)

))
,

(23)

and

C⊥(ε,α) = ε

(
1
4

dξ0(s)
d ln(s)

− 53
280

dξ2(s)
d ln(s)

+ 123
140

ξ2(αs)
)

= ε

(
−107

840
dξ||(s)
d ln(s)

+ 317
840

dξ⊥(s)
d ln(s)

)

+ ε

(
41
35

(
ξ||(αs) − ξ⊥(αs)

))
. (24)

We neglectO(ε2) and higher contributions. Equation (25) of Taruya,
Nishimichi & Saito (2010) gives a more generic treatment of the lin-
ear AP effect in the P(µ, k) plane, whereas the equations presented
here are 1D projections.

4 PRO J E C T I O N S I N P R AC T I C E : T E S T I N G
T H E A P E F F E C T

Here we demonstrate the applicability of equations (21) and (22)
using analytic formulae and mock galaxy catalogues. We show that,
as expected from these equations the wide $µ = 1/2 ‘radial’ clus-
tering wedge dominantly constrains H, and the wide ‘transverse’
one is sensitive to DA. This means that the information from these
clustering wedges breaks the degeneracy in the combination D2

A/H

obtained from the monopole only, and that the underlying values
of H and DA can be obtained at high accuracy. In addition we
test the standard multipole technique of Padmanabhan & White
(2008).

We do not build physical models from fundamental principles
which involve understanding non-linearities. Rather, as a first natu-
ral step, we focus on testing linear equations to understand the AP
effect. To do so, as described below, we compare the true signal
to a geometrically distorted one. In further investigations (Sánchez
& Kazin, in preparation) we will present an analysis of generic
models.

As described in Section 2.2, we define the true ξ T signal to be the
mock mean results obtained using the true simulation cosmology

when converting redshifts to comoving distances χ . The distorted
signal ξ D is similar to ξ T except that we use a different cosmology
to convert z into χ . We perform this AP effect both in real- and
velocity-space, and thus we apply geometrical distortions in both
cases. Finally, we define the shifted signal ξ S to be our attempt to
reconstruct ξ D from ξ T . Technically this means that we transform
ξ T to ξ S using equations (21) and (22) for the clustering wedges
and equations (19) and (20) for multipoles.

The tests we perform are as following.

(i) Testing the statistics: in Section 4.1 we show a near perfect
dependence of the radial wedge on H and the transverse wedge on
DA by shifting ξ T results to match a ξ D signal.

(ii) Reproducing the true cosmology: we use H and DA as vary-
ing parameters when fitting a model constructed from a template
(the ξ T signal) to match ‘data points’ (the ξ D signal), and show
that the best-fitting constraints on these parameters agree with the
true values. In Section 4.2 we hold the amplitude fixed, and in
Section 4.3 we examine effects of marginalizing over amplitude
parameters bσ 8 and β.

(iii) Information in the full shape: in Section 4.4 we analyse the
effect of varying the range of scales included in the analysis.

Our mechanism is similar in concept to that used by Padmanabhan
& White (2008), with the difference that we simulate the observer’s
point of view by including large-angle effects and explicitly use a
wrong cosmology when converting redshifts to comoving distances
(equation 3). Padmanabhan & White (2008) warped distant boxes
according to a given value of ε. One main difference is that we
focus on low values of the warping parameter because our deriva-
tions are valid for small ε. Here, we focus on results obtained by
changing the DE equation of state from its true w = −1 value to
−1.1 (yielding α = 0.9832, ε = −0.0033 at the mean redshifts
of the mocks, 〈z〉 = 0.33) as well as −0.9 (yielding α = 1.0175,
ε = +0.0035) to examine two directions of shift. These choices are
semi-arbitrary, as w is known to an accuracy of 10 per cent (Ko-
matsu et al. 2009; Sánchez et al. 2009; Percival et al. 2010; Reid
et al. 2010). The distorted cosmologies analysed here correspond
to the squares shown in Fig. 2 in the z = 0.33 panel. For this low
redshift these variations are highly degenerate with misestimating
(M0 or (K.

4.1 Analysing geometric distortions

In this section we test the accuracy of equations (19)–(24) using
the suite of 160 SDSS-II mock galaxy catalogues described in Sec-
tion 2.1. This means that we use the known values of H and DA

to verify that shifting the true signal reproduces the signal that was
affected by geometric distortions.

We measure the correlation functions using the true cosmology
of the simulations (ξ T measurements) and the incorrect value of
w = −1.1 (ξ D measurements), and we use these equations to shift
the ξ T measurements to match the ξ D ones (ξ S measurements).

Our results are shown in Fig. 3. The upper plots correspond to
the results for the clustering multipoles and the bottom ones to the
clustering wedges. The left-hand plots show the measurements in
real-space, and the right in velocity-space. Each plot consists of
two panels. The top panels show ξ · s2. The ξ T results are shown
by solid black lines, the ξ D results (called AP) are by dashed red
lines and the ξ S results by the dot–dashed lines. In the bottom
panels, the ξ D results form the reference to which we compare
differences of ξ T (black) and ξ S (blue) in units of the uncertainty
σ ξ . In the multipoles the monopole results are in diamonds, and the
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Padmanabhan & White (2008) showed that the combined infor-
mation of ξ 0(s) and ξ 2(s) can be used to measure simultaneously α

and ε. Because these parameters depend on different combinations
of H and DA, this can break the degeneracy between these param-
eters obtained from an analysis based only on the monopole. Here
we present a similar concept based on clustering wedges.

By combining equations (11) with equations (19) and (20) it
is possible to quantify the effect of geometrical distortions on the
clustering wedges:
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where we have used the fact that for small ε, α(1+2ε) ≈ HD/H and
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A . These equations hold for clustering wedges
in general, where for $µ = 1/2 the correction terms are given by
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We neglectO(ε2) and higher contributions. Equation (25) of Taruya,
Nishimichi & Saito (2010) gives a more generic treatment of the lin-
ear AP effect in the P(µ, k) plane, whereas the equations presented
here are 1D projections.
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Here we demonstrate the applicability of equations (21) and (22)
using analytic formulae and mock galaxy catalogues. We show that,
as expected from these equations the wide $µ = 1/2 ‘radial’ clus-
tering wedge dominantly constrains H, and the wide ‘transverse’
one is sensitive to DA. This means that the information from these
clustering wedges breaks the degeneracy in the combination D2

A/H

obtained from the monopole only, and that the underlying values
of H and DA can be obtained at high accuracy. In addition we
test the standard multipole technique of Padmanabhan & White
(2008).

We do not build physical models from fundamental principles
which involve understanding non-linearities. Rather, as a first natu-
ral step, we focus on testing linear equations to understand the AP
effect. To do so, as described below, we compare the true signal
to a geometrically distorted one. In further investigations (Sánchez
& Kazin, in preparation) we will present an analysis of generic
models.

As described in Section 2.2, we define the true ξ T signal to be the
mock mean results obtained using the true simulation cosmology

when converting redshifts to comoving distances χ . The distorted
signal ξ D is similar to ξ T except that we use a different cosmology
to convert z into χ . We perform this AP effect both in real- and
velocity-space, and thus we apply geometrical distortions in both
cases. Finally, we define the shifted signal ξ S to be our attempt to
reconstruct ξ D from ξ T . Technically this means that we transform
ξ T to ξ S using equations (21) and (22) for the clustering wedges
and equations (19) and (20) for multipoles.

The tests we perform are as following.

(i) Testing the statistics: in Section 4.1 we show a near perfect
dependence of the radial wedge on H and the transverse wedge on
DA by shifting ξ T results to match a ξ D signal.

(ii) Reproducing the true cosmology: we use H and DA as vary-
ing parameters when fitting a model constructed from a template
(the ξ T signal) to match ‘data points’ (the ξ D signal), and show
that the best-fitting constraints on these parameters agree with the
true values. In Section 4.2 we hold the amplitude fixed, and in
Section 4.3 we examine effects of marginalizing over amplitude
parameters bσ 8 and β.

(iii) Information in the full shape: in Section 4.4 we analyse the
effect of varying the range of scales included in the analysis.

Our mechanism is similar in concept to that used by Padmanabhan
& White (2008), with the difference that we simulate the observer’s
point of view by including large-angle effects and explicitly use a
wrong cosmology when converting redshifts to comoving distances
(equation 3). Padmanabhan & White (2008) warped distant boxes
according to a given value of ε. One main difference is that we
focus on low values of the warping parameter because our deriva-
tions are valid for small ε. Here, we focus on results obtained by
changing the DE equation of state from its true w = −1 value to
−1.1 (yielding α = 0.9832, ε = −0.0033 at the mean redshifts
of the mocks, 〈z〉 = 0.33) as well as −0.9 (yielding α = 1.0175,
ε = +0.0035) to examine two directions of shift. These choices are
semi-arbitrary, as w is known to an accuracy of 10 per cent (Ko-
matsu et al. 2009; Sánchez et al. 2009; Percival et al. 2010; Reid
et al. 2010). The distorted cosmologies analysed here correspond
to the squares shown in Fig. 2 in the z = 0.33 panel. For this low
redshift these variations are highly degenerate with misestimating
(M0 or (K.

4.1 Analysing geometric distortions

In this section we test the accuracy of equations (19)–(24) using
the suite of 160 SDSS-II mock galaxy catalogues described in Sec-
tion 2.1. This means that we use the known values of H and DA

to verify that shifting the true signal reproduces the signal that was
affected by geometric distortions.

We measure the correlation functions using the true cosmology
of the simulations (ξ T measurements) and the incorrect value of
w = −1.1 (ξ D measurements), and we use these equations to shift
the ξ T measurements to match the ξ D ones (ξ S measurements).

Our results are shown in Fig. 3. The upper plots correspond to
the results for the clustering multipoles and the bottom ones to the
clustering wedges. The left-hand plots show the measurements in
real-space, and the right in velocity-space. Each plot consists of
two panels. The top panels show ξ · s2. The ξ T results are shown
by solid black lines, the ξ D results (called AP) are by dashed red
lines and the ξ S results by the dot–dashed lines. In the bottom
panels, the ξ D results form the reference to which we compare
differences of ξ T (black) and ξ S (blue) in units of the uncertainty
σ ξ . In the multipoles the monopole results are in diamonds, and the
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Padmanabhan & White (2008) showed that the combined infor-
mation of ξ 0(s) and ξ 2(s) can be used to measure simultaneously α

and ε. Because these parameters depend on different combinations
of H and DA, this can break the degeneracy between these param-
eters obtained from an analysis based only on the monopole. Here
we present a similar concept based on clustering wedges.

By combining equations (11) with equations (19) and (20) it
is possible to quantify the effect of geometrical distortions on the
clustering wedges:
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We neglectO(ε2) and higher contributions. Equation (25) of Taruya,
Nishimichi & Saito (2010) gives a more generic treatment of the lin-
ear AP effect in the P(µ, k) plane, whereas the equations presented
here are 1D projections.
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Here we demonstrate the applicability of equations (21) and (22)
using analytic formulae and mock galaxy catalogues. We show that,
as expected from these equations the wide $µ = 1/2 ‘radial’ clus-
tering wedge dominantly constrains H, and the wide ‘transverse’
one is sensitive to DA. This means that the information from these
clustering wedges breaks the degeneracy in the combination D2

A/H

obtained from the monopole only, and that the underlying values
of H and DA can be obtained at high accuracy. In addition we
test the standard multipole technique of Padmanabhan & White
(2008).

We do not build physical models from fundamental principles
which involve understanding non-linearities. Rather, as a first natu-
ral step, we focus on testing linear equations to understand the AP
effect. To do so, as described below, we compare the true signal
to a geometrically distorted one. In further investigations (Sánchez
& Kazin, in preparation) we will present an analysis of generic
models.

As described in Section 2.2, we define the true ξ T signal to be the
mock mean results obtained using the true simulation cosmology

when converting redshifts to comoving distances χ . The distorted
signal ξ D is similar to ξ T except that we use a different cosmology
to convert z into χ . We perform this AP effect both in real- and
velocity-space, and thus we apply geometrical distortions in both
cases. Finally, we define the shifted signal ξ S to be our attempt to
reconstruct ξ D from ξ T . Technically this means that we transform
ξ T to ξ S using equations (21) and (22) for the clustering wedges
and equations (19) and (20) for multipoles.

The tests we perform are as following.

(i) Testing the statistics: in Section 4.1 we show a near perfect
dependence of the radial wedge on H and the transverse wedge on
DA by shifting ξ T results to match a ξ D signal.

(ii) Reproducing the true cosmology: we use H and DA as vary-
ing parameters when fitting a model constructed from a template
(the ξ T signal) to match ‘data points’ (the ξ D signal), and show
that the best-fitting constraints on these parameters agree with the
true values. In Section 4.2 we hold the amplitude fixed, and in
Section 4.3 we examine effects of marginalizing over amplitude
parameters bσ 8 and β.

(iii) Information in the full shape: in Section 4.4 we analyse the
effect of varying the range of scales included in the analysis.

Our mechanism is similar in concept to that used by Padmanabhan
& White (2008), with the difference that we simulate the observer’s
point of view by including large-angle effects and explicitly use a
wrong cosmology when converting redshifts to comoving distances
(equation 3). Padmanabhan & White (2008) warped distant boxes
according to a given value of ε. One main difference is that we
focus on low values of the warping parameter because our deriva-
tions are valid for small ε. Here, we focus on results obtained by
changing the DE equation of state from its true w = −1 value to
−1.1 (yielding α = 0.9832, ε = −0.0033 at the mean redshifts
of the mocks, 〈z〉 = 0.33) as well as −0.9 (yielding α = 1.0175,
ε = +0.0035) to examine two directions of shift. These choices are
semi-arbitrary, as w is known to an accuracy of 10 per cent (Ko-
matsu et al. 2009; Sánchez et al. 2009; Percival et al. 2010; Reid
et al. 2010). The distorted cosmologies analysed here correspond
to the squares shown in Fig. 2 in the z = 0.33 panel. For this low
redshift these variations are highly degenerate with misestimating
(M0 or (K.

4.1 Analysing geometric distortions

In this section we test the accuracy of equations (19)–(24) using
the suite of 160 SDSS-II mock galaxy catalogues described in Sec-
tion 2.1. This means that we use the known values of H and DA

to verify that shifting the true signal reproduces the signal that was
affected by geometric distortions.

We measure the correlation functions using the true cosmology
of the simulations (ξ T measurements) and the incorrect value of
w = −1.1 (ξ D measurements), and we use these equations to shift
the ξ T measurements to match the ξ D ones (ξ S measurements).

Our results are shown in Fig. 3. The upper plots correspond to
the results for the clustering multipoles and the bottom ones to the
clustering wedges. The left-hand plots show the measurements in
real-space, and the right in velocity-space. Each plot consists of
two panels. The top panels show ξ · s2. The ξ T results are shown
by solid black lines, the ξ D results (called AP) are by dashed red
lines and the ξ S results by the dot–dashed lines. In the bottom
panels, the ξ D results form the reference to which we compare
differences of ξ T (black) and ξ S (blue) in units of the uncertainty
σ ξ . In the multipoles the monopole results are in diamonds, and the
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Large Scale Structure Workshop, Trieste, August 1st 2012 Eyal KazinFig. 6.— Line-of-sight and transverse angular slices of ξ. Each panel shows two angular wedges of the
redshift-space correlation function ξ(s) as predicted for BOSS from the Horizon Run simulations. The size
of the wedges are indicated in each panel (starting at 45◦ at the top and decreasing towards the bottom).
The solid red lines show the wedges closest to the line-of-sight direction, and the dotted blue lines show
the wedges closest to the tranverse direction. In each case we give the 1σ uncertainty in the mock mean
as the error bars and the uncertainty for a single BOSS volume as the gray band. The angular slices are
∆θ = 45◦, 22.5◦, 11.2◦, 5.6◦ and 3◦. The dashed line is the monopole prediction and is the same in all
panels, with uncertainties given for one BOSS volume (i.e., not the mock mean). The symbols in the top
right panel are the result for DR7-Full in the ∆θ = 45◦ slices, where red diamonds are for the line-of-sight
direction and the blue squares are for the transverse direction.
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BOSS 2014 Predicted Wedges !(#",s)
Kazin et al. (2010b)
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Fig. 13.— Model: Wedges ξNL,NW
||,⊥ (Equation 17), Params Space: [b, k∗, AMC](LEFT plot uses

minimum χ2 value of k∗ = 0.125)

Fig. 14.— Model: Wedges ξNL,NW,A(r)
||,⊥ (Equation 16), Params Space:

[b, a1L, a2L, a3L, a1T, a2T, a3T](LEFT, k∗ fixed at 0.150), [b, k∗, a1L, a2L, a3L, a1T, a2T, a3T](RIGHT,

plotted uses minimum χ2 with k∗ = 0.143)
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Testing Model on Mock Wedges

DA/DATRUE

H
TR

U
E  

/H

Simulated Data: BOSS PTHalos (of Manera et al. 2012)

Kazin, Sánchez & the SDSS (in prep.)
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Clustering Wedges in the Data

WiggleZ (0.2<z<1)
(bias ~ 1)

Davis, Kazin & the WiggleZ (in prep.)

Sánchez & Kazin (in prep.)

SDSS-II LRGs (0.16<z<0.44)
(bias ~ 2.2)
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Clustering Wedges in the Data

WiggleZ (0.2<z<1)
(bias ~ 1)

SDSS-II LRGs (0.16<z<0.44)
(bias ~ 2.2)

Davis, Kazin & the WiggleZ (in prep.)

Reconstructed

Credit for reconstructed data: Nikhil Padmanabhan

Sánchez & Kazin (in prep.)
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WiggleZ measurements of DA(z) and H(z)

arXiv:1204.3674

WiggleZ H-DA Results
H(z) measurements

arXiv:1204.3674

Hubble Diagram

da/dt measurements

arXiv:1204.3674arXiv:1204.3674

Accelerating
expansion

Same-same but 
different: da/dt=H⋅a

Blake & the WiggleZ (2012)
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ξ(Δμ,s) wedges more practical than than 2D ξ(μ,s) 
plane because:

Higher S/N
Much cheaper (=easier) covariance matrix 

Compared to multipoles ξl(s) in constraining H,DA,f:
Is one basis better than the other?
Are two peaks more useful than one?
to be continued ...

Clustering Wedges (temporary) 
Summary
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Warning!

The following slides contain 
information that might not be 
appropriate for  individuals 
that live inside a periodic box. 

The following slides contain 
information that might not be 
appropriate for  individuals 
that live inside a periodic box. 
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LasDamas (SDSS-II geometry)
0.16<z<0.44  volume limited
8000 deg2, SDSS sky-coverage

Horizon Run (~BOSSish 2014)
0.16<z<0.6  volume limited
10,300 deg2 (π str)    BOX

0.40 10.2 0.80.6 0.40 10.2 0.80.6

Eyal Kazin

NRR(μ)=" constant

NRR(µ)≠ constant
simulated SDSS-II simulated BOSS

Horizon Run mocks
(see details below)

0.40 10.2 0.80.6 0.40 10.2 0.80.6

µ= s||/s

scale [h-1Mpc]
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http://sdss3.org/dr9/

BOSS Advertisement

Now in your nearest browser!
More than 800,000 spectra in over 3,000 deg2
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NRR(μ)=" constant

BOSS CMASS DR9- now public!

North South

LOS LOS

s s||
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Introduction

Ongoing sky surveys are measuring ever larger volumes of the Universe trans-

forming cosmology into a precision science. A vital test for any cosmological model

is the manner in which matter is distributed. Using the largest volume of galaxies

publicly available today, provided by the Sloan Digital Sky Survey (SDSS; York

et al. 2000), I present state of the art measurements of galaxy clustering. In par-

ticular, I focus on two distinct signatures, which are used to test the geometry of

the Universe, its constituents as well as gravity on very large scales.

First, the so-called baryonic acoustic feature is a residual from early Universe

plasma waves that left their signature in the form of spherical shells in the distri-

bution of matter. Recent detection in galaxy clustering (Eisenstein et al. 2005 and

numerous subsequent studies) serves as important link between the “late” to the

“early” Universe. Also, as these wave echos have a characteristic length of ∼ 150

Mpc (nearly half a billion light-years), a feature in clustering serves as a cosmic

ruler, which can ultimately be used to examine the nature of the expansion of the

Universe.

Second, I analyze observational effects called redshift distortions. As galaxy

Doppler shifts measurements serve as proxies for distance, slight misestimations

of the redshift-distance relationship cause the observed redshift-space maps to ap-

pear distorted from the real distribution. I examine these effects, which are both

dynamical as well as geometrical in nature, and can be used to test gravity as well

as cosmic geometry on very large-scales.

ξ! ≡
∫ +1

−1

dµP!(µ)ξ(µ, s) =
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dµP!(µ)
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[up to (2l+1)/2]

!  Estimators: Direct vs Integrated
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Introduction

Ongoing sky surveys are measuring ever larger volumes of the Universe trans-

forming cosmology into a precision science. A vital test for any cosmological model

is the manner in which matter is distributed. Using the largest volume of galaxies

publicly available today, provided by the Sloan Digital Sky Survey (SDSS; York

et al. 2000), I present state of the art measurements of galaxy clustering. In par-

ticular, I focus on two distinct signatures, which are used to test the geometry of

the Universe, its constituents as well as gravity on very large scales.

First, the so-called baryonic acoustic feature is a residual from early Universe

plasma waves that left their signature in the form of spherical shells in the distri-

bution of matter. Recent detection in galaxy clustering (Eisenstein et al. 2005 and

numerous subsequent studies) serves as important link between the “late” to the

“early” Universe. Also, as these wave echos have a characteristic length of ∼ 150

Mpc (nearly half a billion light-years), a feature in clustering serves as a cosmic

ruler, which can ultimately be used to examine the nature of the expansion of the

Universe.

Second, I analyze observational effects called redshift distortions. As galaxy

Doppler shifts measurements serve as proxies for distance, slight misestimations

of the redshift-distance relationship cause the observed redshift-space maps to ap-

pear distorted from the real distribution. I examine these effects, which are both

dynamical as well as geometrical in nature, and can be used to test gravity as well

as cosmic geometry on very large-scales.

ξ! ≡
∫ +1

−1

dµP!(µ)ξ(µ, s) =

∫ +1

−1

dµP!(µ)
DD(µ, s)−RR(µ, s)
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(1)

1
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"=
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[up to (2l+1)/2]
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(1σ for 160 mocks)
simulated SDSS-II

ξ0DIRECT

ξ0INTEGRATED

(1σ for Hubble volume)

ξ0DIRECT-ξ0INTEGRATED

1σ

(1σ for one mock)
5% effect in SDSS-II

!  Estimators: Direct vs Integrated
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!  Estimators: Direct vs Integrated
Investigating 610 BOSS Mocks

(ξINTEGRATED - ξDIRECT)/σξ

10% of 1σξ line: indicating wedges are less 
sensitive to method of estimator 
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But, don’t you degrade 
the Cij,

 when integrating 
over noisy data bins?

!  Estimators: Direct vs Integrated
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wedges

increase in noise?
no, not too shabby (on most scales)...

!  Estimators: Direct vs Integrated
Investigating 610 BOSS Mocks

multipoles

S/N=ξ/σξ
(σξINTEGRATED - σξ DIRECT)/σξ

10% of 1σξ line:  indicating wedges are 
less sensitive to method of estimator 
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ξ(Δμ,s) wedges more practical than than 2D ξ(μ,s) 
plane because:

Higher S/N
Much cheaper (=easier) covariance matrix 

Comparing ξ(Δμ) wedges
   to ξl(s) multipoles in 
   constraining H,DA,f

Clustering Wedges (temporary) 
Summary

3D -> 2D -> 1 D
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ξ(Δμ,s) wedges more practical than than 2D ξ(μ,s) 
plane because:

Higher S/N
Much cheaper (=easier) covariance matrix 

Compared to multipoles ξl(s) in constraining H,DA,f:
Is one basis better than the other?
Are two strong peaks more useful than one?
to be continued ...

Clustering Wedges (temporary) 
Summary

Thank You!
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Covariance Matrix Comparison
(Normalized)

Cij from LasDamas 0.16<z<0.44 (of McBride et al. in prep)

ξl(s)

ξ0⊗ξ2ξ0

ξ2

ξ(Δμ,s)

ξ||⊗ξ⊥ξ||

ξ⊥

Δs=6.7 h-1Mpc range 5-197 h-1Mpc

5 200 100 5 200 100 
h-1Mpc

5 200 100 5 200 100 
h-1Mpc
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