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But if we wish to learn which
is the correct model of inflation
we need to go beyond the power
spectrum.
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Message:  The scale dependent halo bias observations and
CMB observations are complementary probes of non-Gaussianity.



Non-Gaussianity

Since perturbations are small, the correlation function which is
the easiest to observe beyond the power spectrum is the three
point function:

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3)



Non-Gaussianity

Squeezed limit                  :k2 ! k1, k3

Since perturbations are small, the correlation function which is
the easiest to observe beyond the power spectrum is the three
point function:

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3)
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The squeezed limit
The squeezed limit contains (model independent) information about
the physics during inflation

q → 0
B(q, k, k) ∼

H

1
q

Single field

J. Maldacena, 2003
P. Creminelli, M. Zaldarriaga, 2004
P. Creminelli, G. D’Amico, M. Musso, JN, 2011
P. Creminelli, JN, M. Simonovic, 2012
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The Scale Dependent Bias
For the local model:

fNL = 0

ζ = ζg +
3
5
f local

NL ζ2
g
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The Scale Dependent Bias

fNL < 0

ζ = ζg +
3
5
f local

NL ζ2
gFor the local model:

With a characteristic scale dependence going like: ∆bh(k) ∼ kB(k, kh, kh)

More quantitatively:

∆b(k, M) =
1

MM (k)

(
(b(g)

E − 1)δc

D(z)
F(k,M) +

dF(k,M)
d lnσM

)

Desjacques, et. al., 2011

Slosar, et. al., 2008

Dalal, et. al., 2008

Matarrese, Verde, et. al., 2008

−29 < f local
NL < +70Using this,  A. Slosar et. al. found competitive limits



The SDB is sensitive to 
the squeezed limit.
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the squeezed limit.
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Scale of observation: 

0 2 4 6 8 10
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5.0! 108

1.0! 109

1.5! 109

0.003 h Mpc−1 ! k ! 0.1 h Mpc−1

The scale dependent bias is sensitive to a configuration for which:

kL

ks
! O(0.1) to O(0.001) Mpc h−1

k1 ∼ O(1) Mpc−1 h



Quasi-single field inflation

Two fields, one light inflaton + a curvaton with a mass of order H

1 Introduction and summary

Inflation [1] has become the leading paradigm of the early universe. However, the detailed

dynamics of inflation is still a mystery. A major theme in cosmology is to build inflationary

models and compare their predictions with experimental data. The theoretical predictions

of general single field inflation models have been well understood. Nonetheless, there exists

another important possibility that the inflationary dynamics can involve multiple fields. This

leads to a variety of new models and interesting phenomenologies.

When multiple fields are involved, the field space can be decomposed into the inflationary

direction and isocurvature directions. The quanta in these field directions are called inflaton

and isocurvatons, respectively. In this paper, we investigate a class of models where there

is one flat slow-roll direction, and all the other isocurvature directions have mass at least

of order the Hubble parameter H . We call this class of models quasi-single field inflation.

If the inflaton decouples from the isocurvatons or the isocurvaton mass are all much larger

than O(H), quasi-single field inflation makes the same prediction as the single field inflation.

However, once large couplings exist and the mass are of order H , we will show that these

massive isocurvatons can have important effects on density perturbations.

In this paper, we shall study a simple model of quasi-single field inflation [2]. In this

model, the coupling between the inflaton and the massive isocurvaton is introduced by a

turning trajectory. The tangential direction of this turning trajectory is the usual slow-roll

direction, while the orthogonal direction is lifted by a mass of order H . See Fig. 1.

Figure 1: This figure illustrates a model of quasi-single field inflation in terms of turning

trajectory. The θ direction is the inflationary direction, with a slow-roll potential. The σ

direction denotes the isocurvature direction, which typically has mass of order H .

The motivations for investigating quasi-single field inflation are as follows.

2

Chen, Wang, 2009, [arXiv:0911.3380]
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In the squeezed limit:

Quasi-single field inflation

Two fields, one light inflaton + a curvaton with a mass of order H

1 Introduction and summary

Inflation [1] has become the leading paradigm of the early universe. However, the detailed

dynamics of inflation is still a mystery. A major theme in cosmology is to build inflationary

models and compare their predictions with experimental data. The theoretical predictions

of general single field inflation models have been well understood. Nonetheless, there exists

another important possibility that the inflationary dynamics can involve multiple fields. This
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CMB and LSS are 
complementary

shape “Overlap”

Two shapes are “similar” for
the CMB if they have a cosine of 
order one.

F1 · F2 ≡
∑

k1,k2,k3

F1(k1, k2, k3)F2(k1, k2, k3)
σ2(k1)σ2(k2)σ2(k3)

cos(F1, F2) ≡
F1 · F2√

(F1 · F1)(F2 · F2)
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Forecast

Dark Energy Task Force stage IV:

7

Sky coverage 2 × 104 square degrees

Minimum redshift 0.5

Maximum redshift 2.1

Typical galaxy halo mass 1012 M!h−1

TABLE I: Description of the Dark Energy Task Force stage IV survey used.

For the Gaussian bias we use the results reported in figure 4 of Ref. [20], who in turn use the results of Ref.
[32]. There the bias is estimated using the halo model, a semi-analytic model for galaxy formation, and assuming a
spectroscopic selection based on Hα emission with a threshold given for a survey similar to Euclid.

The modification of the halo power spectrum due to non-Gaussianity will depend on the halo mass. Here we take
the typical masses of the haloes of the galaxies observed to be 1012 M!h−1 as in [20], see their figure 3. We compute
the non-Gaussian modification to the halo bias evaluated at this fixed mass. We don’t expect the errors induced by
fixing the mass in equation (16) to be of qualitative importance for our results.

The number of galaxies at a given redshift can be computed from the halo mass function n(z, M) (the number of
haloes in a differential mass interval at a given redshift), and the first moment of the halo occupation distribution
〈Ng|M〉 (very roughly the probability that there be Ng galaxies in a halo of mass M)

ng(z) =

∫ ∞

Mg

n(M, z)〈Ng|M〉dM , (18)

where Mg is the minimum halo mass for a galaxy observed by the survey for which we again follow Ref. [20] and take
Mg = 1011 M!h−1, see their section 4.4. Since the average number of galaxies is important only in computing the
shot noise, which we have verified has a small effect, we neglect the non-Gaussian correction to the mass function and
use the Sheth and Tormen mass function [33]. As for the first moment of the halo occupation distribution, we follow
Ref. [20] and use the following expression [34, 35]

〈Ng|M〉 = Ng,0

(

M

M0

)θ

, (19)

and the parameters θ, M0 and Ng,0 depend on the type of galaxy considered. We assume here typical galaxies to be
blue, for which Ng,0 = 0.7 and θ = 0 if M ≤ M0 and θ = 0.8 otherwise and take M0 = 4 × 1012 M!h−1 as in section
4.1 of Ref. [20]. Let us stress that the average number of galaxies affects only the shot noise which we verify to be
small and our results will not be very sensitive to the assumptions made in computing it.

V. FORECAST

We work under the approximation that the Likelihood for the (Eulerian) halo power spectrum is a Gaussian centered
around a “fiducial” model for which the values of the parameters of interest fNL and ν are fixed at f̄NL and ν̄

lnL = −
1

2

(∆P )2

σ2
P

, (20)

where ∆P ≡ P −P |f̄NL, ν̄ is the deviation from the fiducial model. The standard procedure is to assume the behavior
of the halo power spectrum to be nearly linear on the parameters of interest (here called generically θi), so that
the Likelihood function is a Gaussian also in terms of those parameters. One can then estimate the variance and
covariance of a future survey by computing the Fisher information matrix on the parameters

Fij =
∂2| lnL|
∂θi∂θj

. (21)

∆χ2 =
∑

i

V (zi)
(2π)2

∫ kmax

kmin

dk k2

(
1− 1

ng(zi)P (k)

)2(∆P (k, zi)
P (k, zi)

)2

kmax 0.1 h/Mpc
〈ζ3〉 ∼ 1/q3/2+ν



Results of  other groups

Sefusatti et. al.  [arXiv:1204.6318]



A parametrization

∆b(k, M) = fp
NL

A(M)
kβ

One can roughly approximate       with a power law∆b

Gank, Komatsu  [arXiv:1204.4241]

Agullo, Shandera [arXiv:1204.4409]See also:



Conclusions

• Recent developments tell us that the squeezed limit of the 
bispectrum contains a wealth of model independent 
information.

• The scale dependent halo bias is a good probe of the 
squeezed limit (while the CMB might not be).

• The CMB and scale dependent halo bias observations are 
complementary probes of non-Gaussianity.

• If Planck observes a large local and equilateral non-
Gaussianity, the scale-dependent halo bias will be needed 
to tell whether it is due to a model like the quasi-single 
field.



THE END




