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1 Strain induced polarization



Phenomenological tensors (3rd & 4th rank)

Pα = ηαβγ εβγ

Piezoelectricity
(needs low symmetry)

Pα = μαβγδ ∇βεγδ

Flexoelectricity
(nonzero in any symmetry)

Are ηαβγ and μαβγδ bulk properties?

Can they be computed using periodic boundary
conditions?

Does such tensors make any sense?
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1 Strain induced polarization
Piezoelectricity



1972: Piezoelectricity as a bulk property



Parsing linear piezoelectricity

Circles represent crystal planes



Parsing linear piezoelectricity

Circles represent crystal planes

First step: uniform strain (difficult!)

Second step: internal strain (easy: zone-center phonon)



Uniform strain: the key idea

Moving only one plane in an otherwise unperturbed solid

Monopoles: = 0
Dipoles: Born effective charges (they sum to zero, ASR)
Quadrupoles:
They don’t sum to zero, if symmetry is low enough

Bottom line (RMM 1972): sum of quadrupoles −→ ηαβγ
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Why a wave of interest in flexolectriciy?

Effect negligible at macroscopic length scales, possibly
very strong at the nanoscale

It looks very promising for electromechanical coupling
using nonpiezoelectric materials

Actual devices have been realized (e.g. at Penn State)

It is not at all clear whether the μαβγδ are genuine
bulk material properties

The distorted crystal lacks any lattice periodicity:
This makes the problem difficult for us theorists!



The simplest case: Elemental crystal, primitive lattice

μxxxx

Key steps the proof:

E(macro) = −4π P(macro) in this geometry

Microscopic field E(r) well defined (nonperiodical)

Macroscopic average of E(r) constant within the sample,
and boundary independent



The main ingredient

Moving only one plane in an otherwise unperturbed solid

Even multipoles: zero by symmetry

Dipole: Born effective charge = 0 (ASR)

Octupole: the leading order

Bottom line: Octupole −→ μxxxx



More useful crystals (polar)

Polar crystal seem to present a qualitatively different
challenge (work by Vanderbilt & coworkers)

Flexoelectricity is essentially a mesoscopic phenomenon:
thin films, superlattices, nanostructures (length scale?)

My conjecture:

The full 4th rank tensor μαβγδ is not a bulk material
property

Only some components (or combinations thereof)
are possibly bulk
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2 Field-lattice coupling



Manifesto

Polar dielectrics: E field coupled to the lattice:
ε∞ �= ε0
Lyddane-Sachs-Teller relationship
Dynamical matrix nonanalytic (ωLO �= ωTO)

Magnetoelectrics: E and H fields coupled to the lattice:
ME response matrices at ω = 0 and ω = ∞ different
Generalized Lyddane-Sachs-Teller relationship
Dynamical matrix nonanalyticity

Theory of field coupling needed complete reformulation
Achieved in two papers: PRL 2011 & PRB 2011



Linear magnetoelectric response (Gaussian units)

(
D
B

)
= R

(
E
H

)
≡

(
ε α
α μ

)(
E
H

)

Induced polarization & magnetization:

P =
D − E

4π
=

ε − 1
4π

E +
α

4π
H

M =
B − H

4π
=

μ − 1
4π

H +
α

4π
E (1)

α �= 0 requires absence of both
inversion symmetry and time-reversal symmetry:
Paradigmatic material Cr2O3



Revival of the magnetoelectric effect ( � 2005 )

The chase for the giant magnetoelectric effect is ongoing

ε � 1 near a ferroelectric transition
μ � 1 near a ferromagnetic transition
What about a large α ?

Candidates:

Multiferroics? (prototype: BiFeO3)
Thin films?
Anisotropic strain?
Heterogenous composites ?
(particulate, nanostructured, laminated....)
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2 Field-lattice coupling
Ordinary dielectrics



From: C. Kittel, Introduction to Solid State Physics

ε(ω) for SrF2 (real part)

Two regimes:
ε(ω) −→ ε0: static
ε(ω) −→ ε∞: “static high frequency”

a.k.a. clamped-ion, a.k.a. electronic



From: C. Kittel, Introduction to Solid State Physics

Inelastic neutron scatter-
ing in KBr

Dynamical matrix nonan-
alytic at the zone center



Ordinary dielectric, cubic binary

Three phenomenological material constants:

Mω2
TO = analytic force constant (M reduced mass)

ε∞ = electronic dielectric constant
Z ∗ = Born effective charge

Nowadays routinely computed by first principles



Other measurable quantities

Static dielectric constant:

ε0 = ε∞ +
4πe2(Z ∗)2

VcMω2
TO

Zone-center LO frequency:

ω2
LO = ω2

TO +
4πe2(Z ∗)2

ε∞VcM

Lyddane-Sachs-Teller (1941):

ω2
LO

ω2
TO

=
ε0

ε∞

All relationships exact within the harmonic approximation



Coupling to which field?

In cubic binary crystals:
ω2

TO is computed within the ordinary periodic boundary
conditions (routinely via DFPT, but possibly even via “frozen
phonons”)
Z ∗, ε∞ are computed by a linear-response code
(most popular: quantum-espresso, abinit)
In both cases the E field is the computational control
parameter

In low symmetry crystals:
The corresponding (tensorial) quantities are routinely
computed

What about magnetoelectrics?
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Free energy in linear magnetoelectrics: F({us}, E, H)

Harmonic equation of motion:

fs = − ∂F
∂us

= −
∑
s′

C(analytic)
ss′ us′ + Z ∗†

s E + ζ∗†s H

D = −4π

Vc

∂F
∂E

= ε∞E + α∞H +
4π

Vc

∑
s

Z ∗
s us

B = −4π

Vc

∂F
∂H

= α†
∞E + μ∞H +

4π

Vc

∑
s

ζ∗s us

All Cartesian indices α, β implicit
ε∞, μ∞ symmetric Cartesian tensors
α∞ electronic ME coupling: nonsymmetric tensor
Z ∗

s Born charge: nonsymmetric Cartesian tensor
ζ∗s Ìñiguez charge (2008, Born’s magnetic analog)
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Response matrix

Electronic (“clamped nuclei”) response(
D
B

)
=

(
ε∞ α∞
α†∞ μ∞

)(
E
H

)
≡ R∞

(
E
H

)

Static response (including lattice contribution)

R0 �= R∞

The difference is a function of the C(analytic)
ss′ , Z ∗

s , ζ∗s



High symmetry (all tensors simultaneously diagonal)

In ordinary dielectrics, along a principal axis:

ω2
LO

ω2
TO

=
ε0

ε∞
Lyddane-Sachs-Teller (1941)

≡ ε−1∞ ε0 − 1
1 − ε−1

0 ε∞

In magnetoelectrics R0, R∞ 2 × 2 matrices

ω2
LO

ω2
TO

= a scalar function of R0 and R∞

=
tr {R−1∞ R0 − I}
tr {I −R−1

0 R∞} generalized LST (2011)



A low-symmetry dielectric: Phonon spectrum
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Nonanalytic at the zone center
Homogeneous of degree zero in q



Nonanalytic force constants (ordinary dielectric)

Cubic binary crystal (Cartesian indices α, β implicit)

fs(q) = −
2∑

s′=1

[
C(analytic)

ss′ +
4πe2

Vc

(Z ∗)2δss′

ε∞
P(q̂)

]
us′(q)

C(analytic)
ss′ : scalar times the 3 × 3 identity

Z ∗, ε∞: scalar quantities
P(q̂) =

qαqβ

q2 projector in the q direction (nonanalytic)



Nonanalytic force constants (ordinary dielectric)

Cubic binary crystal (Cartesian indices α, β implicit)
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s , Z ∗†
s , ε∞,P(q̂)



Nonanalytic force constants (ordinary dielectric)
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Nonanalytic force constants

Ordinary dielectric (Cochran & Cowley, 1962):

fs(q) = −
∑
s′

[
C(analytic)

ss′ +
4πe2

Vc

Z ∗†
s P(q̂) Z ∗

s′

q̂†ε∞q̂

]
us′(q)

All Cartesian matrices 3 × 3: C(analytic)
ss′ , Z ∗

s , Z ∗†
s , ε∞,P(q̂)

Magnetoelectric

fs(q) = −
∑
s′

[
C(analytic)

ss′ +
4πe2

Vc
Z†

sM−1(q̂)P(q̂)Zs′

]
us′(q)

C(analytic)
ss′,3×3 , Z†

s,3×6, M−1
6×6(q̂), P6×6(q̂), Zs,6×3



Ingredients

C(analytic)
ss′,3×3 calculated at E = 0 and H = 0

Z†
s,3×6 ≡ ( Z ∗†

s , ζ∗†s ) electric & magnetic lattice couplings
Zs,6×3

P6×6(q̂) diagonal on the field indices:

P(q̂) =
qαqβ

q2

M−1
6×6(q̂) diagonal on the Cartesian indices, inverse of

M(q̂) =

(
q̂†ε∞q̂ q̂†α∞q̂
q̂†α†∞q̂ q̂†μ∞q̂

)
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3 Additional topics
First-principle calculations: H vs. B



Which macroscopic fields?

In dealing with lattice coupling:
E and H play the major role

E and H longitudinal (D and B transverse).

In running first-principle calculations:
E and B play the major role

A standard (e.g. “frozen phonon”) calculation means
E = B = 0 (not H = 0)
Linear response to E: implemented, standard DFPT
Linear response to B: algorithm known (Essin et al. 2010)

Ergo:

A standard calculation would not provide C(analytic)
ss′

A linear-response calculation does not provide
Z ∗†

s , ε∞, α∞, ζ∗†s , μ∞,



The analytic term

We run one of the existing linear-response codes
(quantum-espresso, abinit) at E = B = 0

Output for a magnetoelectric crystal: force constants

C̃ss′ �= C(analytic)
ss′

At B = 0 in general H �= 0: the spurious H contribution
must be discounted:

C(analytic)
ss′ = C̃ss′ − 4π

Vc
ζ∗†s μ−1

∞ ζ∗s′



Ingredients for the non analytic term

The present codes provide the linear response to E
In ordinary dielectrics

Z ∗†
s =

∂fs

∂E
, ε∞ = 1 + 4π

∂P
∂E

In MEs even these standard formulas require a correction

Future codes will provide the linear response to E and B:

∂fs

∂E
,

∂P
∂E

,
∂M
∂E

,
∂fs

∂B
,

∂P
∂B

,
∂M
∂B

These uniquely define the linear response to E and H:

Z ∗†
s , ε∞, α∞, ζ∗†s , μ∞,



Outline

3 Additional topics
First-principle calculations: H vs. B
Microscopic origin of the magnetic lattice coupling



E field: macroscopic vs. microscopic

E(micro)(r) is the “real” electric field inside the material:

fs = eZs E(micro)(rs) eZs bare nuclear charge

fs = eZ ∗†
s E force induced by macroscopic E field (us = 0)

Z ∗†
s =

E(micro)(rs)

E
Zs

Z ∗
cation > 0 Z ∗

anion < 0

CAVEAT: No pseudopotentials here!



The magnetic (Ìñiguez)“effective charge”

Z ∗
s = −1

e
∂2F

∂E∂us
ζ∗s = −1

e
∂2F

∂H∂us

M =
e
Vc

ζ∗s us magnetization induced by us (E = H = 0)

fs = e ζ∗†s H force induced by macroscopic H field (us = 0)

fs = e ζ∗†s
∂H
∂B

B = e
ζ∗†s

μ∞
B

What about microscopics?

fs = e Zs E(micro)(rs) fs
?∝ B(micro)(rs)



Microscopic forces

fs has nothing to do with B(micro)(rs)

fs = e Zs E(micro)(rs) even in the magnetoelectric case!

Ordinary dielectrics:
E(micro)(rs) is a linear function of E (or D)

Magnetoelectrics:
E(micro)(rs) is a linear function of both E and H (or B)
it may be nonzero even when E = 0 and H �= 0



Conclusions (magnetoelectrics)

The fields E and H are coupled to the lattice on the same
footing (formally)

Fields coupling affects:
Magnetoelectric response
Lyddane-Sachs-Teller relationship
Nonanalytic term in the zone-center dynamical matrix
Theory exact at the harmonic level

The fields E and B (not H) are the control parameters in
first-principle calculations. How to cope with this

Microscopic origin of the magnetic lattice coupling



Thank you for your attention!

Total Energy 1999, Poster Session
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