

2440-12

16th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

10 - 12 January 2013

A direct approach to the calculation of many-body Green's functions: beyond quasiparticles

Lucia Reining

Ecole Polytechnique, Palaiseau

France

A direct approach to the calculation of many-body Green's functions: beyond quasiparticles

Giovanna Lani, Pina Romaniello, Matteo Guzzo, Lucia Reining

Palaiseau Theoretical Spectroscopy Group & friends

A direct approach to the calculation of many-body Green's functions: beyond quasiparticles

- → Many-body perturbation theory: GW
- → An alternative strategy
- → Insight from a simple model
- → An exponential solution for G
- → What's ongoing?
- → Outlook

Hole - (N-1) (excited) electrons

$A(\omega)\sim Im[G(\omega)]$

From Damascelli et al., RMP 75, 473 (2003)

Coupling to other excitations!

Many-body perturbation theory

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

$$G(1,2) = -i < T[\psi(1)\psi^{\dagger}(2)] >$$

$$1 = (r_1, \sigma_1, t_1)$$

Many-body perturbation theory

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Stati

$$\sim GG \rightarrow HF$$

Dyson equation:
$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 \Sigma \mathcal{G}$$

$$\Sigma \sim i v_c G$$

Many-body perturbation theory: GW

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

1. Linearization
$$V_H [\varphi] = V_H^0 + v_c \chi \varphi$$

$$\mathcal{G}(t_1 t_2) = \mathcal{G}_H(t_1 t_2) + \mathcal{G}_H(t_1 t_3) \bar{\varphi}(t_3) \mathcal{G}(t_3 t_2) + i \mathcal{G}_H(t_1 t_3) \mathcal{W}(t_3 t_4) \frac{\delta \mathcal{G}(t_3 t_2)}{\delta \bar{\varphi}(t_4)},$$

.....leads to screening: $W = \varepsilon^{-1} v_{\epsilon}$

Many-body perturbation theory: GW

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

1. Linearization
$$V_H [\varphi] = V_H^0 + v_c \chi \varphi$$

$$\mathcal{G}(t_1t_2) = \mathcal{G}_H(t_1t_2) + \mathcal{G}_H(t_1t_3)\bar{\varphi}(t_3)\mathcal{G}(t_3t_2) + i\mathcal{G}_H(t_1t_3)\mathcal{W}(t_3t_4)\frac{\delta\mathcal{G}(t_3t_2)}{\delta\bar{\varphi}(t_4)},$$

Lani et al., New J. Phys. 14, 013056 (2012)

$$G = G_0 + G_0 \Sigma G$$

$$\rightarrow \Sigma \sim i \mathcal{WG}$$

"GW"

With optimized QP energies and wavefunctions

great bandstructure

Dyson equation → no T=0 bandstructure problem.

van Schilfgaarde, Kotani, Faleev, Phys. Rev. Lett. 96, 226402 (2006)

With optimized QP energies and wavefunctions

great bandstructure

What about the rest?

van Schilfgaarde, Kotani, Faleev, Phys. Rev. Lett. 96, 226402 (2006)

GW: Electron-plasmon coupling

From Damascelli et al., RMP 75, 473 (2003)

$$\mathcal{G} =$$

Hedin 1965

Valence satellites in "simple" silicon

- - - Dashed: GW

Kheifets et al., PRB 68, 2003

GW: QP ok, satellite is completely wrong Experiment might also have limitations

XPS Spectrum of bulk Si

F. Sirotti and M. Silly,
Synchrotron Soleil, France

XPS Spectrum of bulk Si

F. Sirotti and M. Silly,
Synchrotron Soleil, France

Quasiparticle bands

$$E_i = \varepsilon_i + Re \Sigma(E_i)$$

XPS Spectrum of bulk Si

F. Sirotti and M. Silly, Synchrotron Soleil, France

Plasmon satellites

 $Im\Sigma(\omega) \sim ImW(\omega)$

Peaked at 17 eV

Bottom valence: a plasmaron!

Total G₀W₀ Spectral Function

G₀W₀ Spectral Function:

Plasmaron peaks stronger than plasmon peaks (Can mask plasmon contribution)

Artefact! Blomberg, Bergerse, Can. J. Phys. 50, 2286 (1972); Kus, Blomberg, Can. J. Phys. 51, 102 (1973)

No replicas within G_0W_0 (See e.g. for sodium Aryasetiawan et al., PRL 77, 1996)

G₀W₀ Spectral Function:

Plasmaron peaks stronger than plasmon peaks (Can mask plasmon contribution)

Artefact! Blomberg, Bergerse, Can. J. Phys. 50, 2286 (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); No replicas within G. W. Artefact! Blomberg, Can. J. Phys. 51, 1008 (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); Suspicious (1972); Artefact! Blomberg, Can. J. Phys. 51, 1008 (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); Artefact! Blomberg, Can. J. Phys. 51, 1008 (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); Artefact (1972); Kus, Blomberg, Can. J. Phys. 51, 1008 (1972); Artefact (1972);

An alternative strategy?

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

1. Linearization
$$V_H = V_H^0 + v_c \chi \phi$$

$$\mathcal{G}(t_1t_2) = \mathcal{G}_H(t_1t_2) + \mathcal{G}_H(t_1t_3)\bar{\varphi}(t_3)\mathcal{G}(t_3t_2) + i\mathcal{G}_H(t_1t_3)\mathcal{W}(t_3t_4)\frac{\delta\mathcal{G}(t_3t_2)}{\delta\bar{\varphi}(t_4)},$$
i et al. New L. Phys. 14, 012056 (2012).

Lani et al., New J. Phys. 14, 013056 (2012)

Dyson equation:
$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 \Sigma \mathcal{G}$$

$$\sim GG \rightarrow GW$$

An alternative strategy

$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V_H \mathcal{G} + \mathcal{G}_0 \varphi \mathcal{G} + i \mathcal{G}_0 v_c \frac{\delta \mathcal{G}}{\delta \varphi}.$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

1. Linearization
$$V_H = V_H^0 + v_c \chi \phi$$

$$\mathcal{G}(t_1t_2) = \mathcal{G}_H(t_1t_2) + \mathcal{G}_H(t_1t_3)\bar{\varphi}(t_3)\mathcal{G}(t_3t_2) + i\mathcal{G}_H(t_1t_3)\mathcal{W}(t_3t_4)\frac{\delta\mathcal{G}(t_3t_2)}{\delta\bar{\varphi}(t_4)},$$

Lani et al., New J. Phys. 14, 013056 (2012)

Solve differential equation!

Two problems:

- * solve the set of differential equations
- * pick the good solution!

→ Insight from a simple model

$$G = G_H + G_H \phi G + i G_H W \delta G / \delta \phi$$

"1 point"

Lani et al., New J. Phys. 14, 013056 (2012)

Great for questions like: how to pick the good solution?

Ex.: Does a self-consistent GW calculation always converge

- * to the same result, for any starting point?
- * to the physical solution, if there is more than one?

$$G = G_H + G_H \phi$$
 $G - G_H W \delta G / \delta \phi$ "exact"

$$G = G_{H} - G_{H}(W G)G$$

GW

Quadratic equation: 2 solutions, G₁ and G₂!

Which one will we find?

$$G = G_{H} / (1 + G_{H} W G)$$

Solution 1:

$$\rightarrow$$
 iterate $G^{n+1} = G_H / (1 + G_H W G^n)$

 \rightarrow continuous fraction. For all starting points: Converges to G_1 with $G_1[W \rightarrow 0] = G_H$

Benchmarking

Determined by $G[W \rightarrow 0] = G_H$

1-point Hedin's equations

• Iterative self-consistent scheme $(\Sigma = -uy_0)$:

$$y^{(1)} = y_u^{G_0 W_0} = \frac{y_0}{1 + u y_0^2}$$

. . .

$$y_u^{(4)} = y_0 \frac{1 + 3uy_0^2 + u^2y_0^4}{1 + 4uy_0^2 + 3u^2y_0^4}$$

• Direct self-consistent scheme $(\Sigma = -uy_u)$:

$$y_u = \frac{\pm \sqrt{1 + 4uy_0^2} - 1}{2uy_0}$$

$$G = G_H + G_H \phi$$
 $G - G_H W \delta G / \delta \phi$ "exact"

$$G = G_{H} - G_{H}(W G)G$$

GW

Quadratic equation: 2 solutions, G₁ and G₂!

Solution 1: iterate Dyson equation as usual \rightarrow continuous fraction, well behaved W \rightarrow 0 limit.

$$G = 1/(WG) - 1(WG_{H})$$

$$\rightarrow$$
 iterate $G^{n+1} = 1/(WG^n) - 1(WG_H)$

 \rightarrow continuous fraction. For all starting points: Converges to G_2 with $G_2[W \rightarrow 0]$ divergent!

$$G = G_H + G_H \phi$$
 $G - G_H W \delta G / \delta \phi$ "exact"

$$G = G_{H} - G_{H}(W G)G$$

GW

Quadratic equation: 2 solutions, G₁ and G₂!

Solution 1: iterate Dyson equation as usual

→ continuous fraction, well behaved
$$W_{\text{int}}$$
 mit.

Solution 2???

→ iterate W^{ay} W^{out} W

- → continuous fraction. For all starting points: Converges to G_2 with $G_2[W \rightarrow 0]$ divergent!

- \rightarrow Self-consistency for GW₀ is a good thing
- \rightarrow Expect that standard self-consistent GW₀ is ok
- → Expect more delicate situation beyond GW₀
- → 1-point model is marvellous playground:
 - * Benchmarks
 - * New approximations beyond GW
 - * insight: how to solve DE, how to pick solution.

More physics?

Solve linearized differential equation with times

$$G = G_H + G_H \phi \quad G + i G_H W \delta G / \delta \phi$$

$$\mathcal{G}(t_1 t_2) = \mathcal{G}_H(t_1 t_2) + \mathcal{G}_H(t_1 t_3) \bar{\varphi}(t_3) \mathcal{G}(t_3 t_2) + i \mathcal{G}_H(t_1 t_3) \mathcal{W}(t_3 t_4) \frac{\delta \mathcal{G}(t_3 t_2)}{\delta \bar{\varphi}(t_4)},$$

Solve linearized differential equation with times

$$G = G_H + G_H \phi \quad G + i G_H W \delta G / \delta \phi$$

$$\mathcal{G}(t_1 t_2) = \mathcal{G}_H(t_1 t_2) + \mathcal{G}_H(t_1 t_3) \bar{\varphi}(t_3) \mathcal{G}(t_3 t_2) + i \mathcal{G}_H(t_1 t_3) \mathcal{W}(t_3 t_4) \frac{\delta \mathcal{G}(t_3 t_2)}{\delta \bar{\varphi}(t_4)},$$

 $cfU(\omega)$!!!

$$\mathcal{G}(t_1 t_2) = \mathcal{G}_{\Delta}(\tau) e^{i\Delta^{QP} \tau} e^{i\int_{t_1}^{t_2} dt' [\bar{\varphi}(t') - \int_{t'}^{t_2} dt'' \mathcal{W}(t't'')]}$$

$$\mathcal{G} = -$$

$$A(\omega) = \frac{\Gamma}{\pi} e^{-\frac{\lambda}{\omega_p^2}} \left[\frac{1}{(\omega - \varepsilon^{QP})^2 + \Gamma^2} + \frac{\lambda}{\omega_p^2} \frac{1}{(\omega - \varepsilon^{QP} + \omega_p)^2 + \Gamma^2} + \frac{1}{2} \left(\frac{\lambda}{\omega_p^2} \right)^2 \frac{1}{(\omega - \varepsilon^{QP} + 2\omega_p)^2 + \Gamma^2} + \frac{1}{6} \left(\frac{\lambda}{\omega_p^2} \right)^3 \frac{1}{(\omega - \varepsilon^{QP} + 3\omega_p)^2 + \Gamma^2} + \dots \right]$$

Exponential solution: ↔ cumulant expansion

- L. Hedin, Physica Scripta 21, 477 (1980), ISSN 0031-8949.
- L. Hedin, J. Phys.: Condens. Matter **11**, R489 (1999).
- P. Nozieres and C. De Dominicis, Physical Review 178, 1097 (1969), ISSN 0031-899X.
- D. Langreth, Physical Review B 1, 471 (1970).

Sodium: Aryasetiawan et al., PRL 77, 1996)

Kheifets et al., PRB 68, 2003 Silicon

Here: one possible simple approximation

Spectral Function from exponential:

Spectrum, exponential versus GW and experiment:

M. Guzzo et al., PRL 107, 166401 (2011)

Graphite

Satellites?

See e.g. Vos et al., PRB 63, 033108 (2001) Sattler et al., PRB 63, 155204 (2001) McFeely et al., PRB 9, 5268 (1974)

Exp: Eberlein et al., Phys. Rev. B 77, 233406 (2008)

Graphite

M. Guzzo et al., PhD thesis. Exp: SOLEIL TEMPO beamline.

Exp: Eberlein et al., Phys. Rev. B 77, 233406 (2008)

Graphite → Graphene

Exponential calculation, spectral function of graphite and graphene

Very good description of plasmon satellites

Can make predictions

There is more in life......

→ What's ongoing?

$$G(1,2;[\bar{\varphi}]) = G_H^0(1,2) + \int d3d5G_H^0(1,3)\bar{\varphi}(3)G(3,2;[\bar{\varphi}]) +$$

+
$$i \int d3d5 G_H^0(1,3) W(3^+,5) \frac{\delta G(3,2;[\bar{\varphi}])}{\delta \bar{\varphi}(5)}$$

$$(1) \rightarrow (r_1, \sigma_1, t_1)$$

Solution of the (almost) full equations.....

→ What's ongoing?

- \rightarrow We have: explicit $G(1,2,[\phi,W,q])$
- → We have sum rules for q
 - * from the Differential eq.
 - * from the $W \rightarrow 0$ condition
- → We have symmetry constraints
 - * from rules on fctl derivatives

Outlook

→ Full solution (ok ok, some approxs....)

→ coupling of other excitations

→ 2-particle G

Palaiseau Theoretical Spectroscopy Group & friends

Giovanna Lani, Matteo Guzzo, Lorenzo Sponza, Francesco Sottile, Matteo Gatti, Christine Giorgetti, Lucia Reining

Toulouse: Pina Romaniello, Arjan Berger

U. Washington: John Rehr, Joshua Kas

Synchrotron SOLEIL: Fausto Sirotti, Matthieu Silly

http://etsf.polytechnique.fr http://www.etsf.eu

