

2440-14

16th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

10 - 12 January 2013

Atomic-scale design of energy materials

Kristian S. Thygesen *Technical University of Denmark*

Atomic-scale design of materials for water splitting and accurate correlation energies from ACFDT

Kristian S. Thygesen

Center for Atomic-scale Materials Design

Dept. of Physics

Technical University of Denmark

Outline

- Basic principles of photocatalytic water splitting
- Evaluating stability, band gaps and band edges
- Computational screening of perovskites
- Materials for 1- and 2-photon water splitting

- Correlation energies from the ACDFT
- RPA calculations for graphene@metals
- Beyond RPA: The renormalized ALDA kernel

From sun light to fuels

Photoelectrochemical cell

2
$$h\nu$$
 + H₂O_(liq) \rightarrow ½ O_{2(gas)} + H_{2(gas)}
e-h chemical potential \geq 1.23 eV

Bak et. al., Int. J. Hydrogen Energy, vol 27 (2002) 991-1022

Materials for water splitting

- □ Chemical/structural stability
- ☐ Band gap of 1.5-3 eV (overpotentials, quasi Fermi levels, losses)
- □ Band edge positions straddle the water redox potentials
- Good electron/hole mobilities
- ☐ Low cost, abundant, non-toxic
- □ Good catalytic properties (co-catalysts)

I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, *Energy & Environmental Science*, **5**, 5814 (2012)
I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, *Energy & Environmental Science*, **5**, 9034 (2012).

Possible semi-conductors

Materials – cubic perovskites

- Perovskite, common stable structure, 50% are quasi-cubic
- Variety of properties: ferroelectricity, magnetism, superconductivity and (photo)catalytic activity
- 52 different metallic elements
- Different anions (O, N, S, F, Cl, ...)

					Н												Не
Li	Ве										В	С	N	0	F	Ne	
Na	Mg		100									AI	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn

Excluded elements:

- Non Metals
- Radioactive/toxic

 ABO_3

Density functional theory + friends

GPAW – projector augmented wave method in real space +

- J. Enkovaara *et al.* J. Phys.:Cond. Mat. **22** (2010) ← **Review article**https://wiki.fysik.dtu.dk/gpaw/ ← **Free download, GPL**
- ☐ High accuracy: Wave functions expanded on real space grids or plane waves
- ☐ High efficiency: Wave functions expanded in atomic-like orbitals (LCAO)
- ☐ Efficient parallelization (good scalability up to > 32.000 CPUs)
- ☐ Xc-functionals: LDA, GGAs, meta-GGA, LDA+U, EXX, vdWDF, GLLB, BEEF
- ☐ Time-dependent DFT (linear response+time propagation)
- Many-body perturbation theory (GW and Bethe-Salpeter equation)
- Phonons and electron-phonon coupling
- ☐ Coherent quantum electron transport
- □ QM/MM
- ☐ Atomic Simulation Environment (ASE) python scripting interface

Predicting stability of oxides – Heat of formation

- Oxides are naturally stable towards oxidation!
- DFT-RPBE calculated formation energy for rutile dioxides.
- Similar results obtained for perovskite structures.

J I Martínez, H A Hansen, J. Rossmeisl, and J. K. Nørskov, Phys. Rev B (2009)

Stability analysis

Pool of reference systems:

- ☐ Single metal bulk: A(s) and B(s)
- ☐ Single metal oxides: $A_xO_y(s)$ (and nitrides, sulfides, ...) Obtained from ICSD
- \Box Bimetallic oxides $A_x B_y O_z(s)$

- Composition and structure available experimentally
- Energy calculated from DFT
- Dissolution of metal atoms and reactions with water

Formation energy (in practice more references included):

$$\Delta E = ABO_3(s) - \min_{c_i} (c_1 A(s) + c_2 B(s) + c_3 A_x O_y(s) + c_4 B_x O_y(s) + c_5 O)$$

$$c_1 + c_3 = 1, \qquad c_2 + c_4 = 1, \qquad c_3 + c_4 + c_5 = 3$$

→ Solved by linear programming.

Bandgap calculations with GLLB-SC

The GLLB xc-functional (Gritsenko, van Leeuwen, van Lenthe and Baerends):

$$E_g^{QP} = E_g^{KS} + \Delta_{xc}$$

Derivative discontinuity

Screening + response
$$v_{\mathbf{X}}(\mathbf{r}) = v_{\mathbf{S}}(\mathbf{r}) + v_{\mathrm{resp}}(\mathbf{r})$$

$$v_{\mathbf{S}}(\mathbf{r}) = \frac{2\epsilon_{x}^{\mathrm{GGA}}(\mathbf{r}; n)}{n(\mathbf{r})}$$

$$v_{\mathrm{resp}}(\mathbf{r}) = \sum_{i}^{\mathrm{occ}} K[n] \sqrt{\varepsilon_{\mathrm{r}} - \varepsilon_{i}} \frac{|\psi_{i}(\mathbf{r})|^{2}}{n(\mathbf{r})}$$

$$\Delta_{x,\mathrm{resp}}(\mathbf{r}) = \sum_{i}^{N} K(\sqrt{\varepsilon_{N+1} - \varepsilon_{i}} - \sqrt{\varepsilon_{N} - \varepsilon_{i}}) \frac{|\psi_{i}(\mathbf{r})|^{2}}{n(\mathbf{r})}$$

LDA PBE0@LDA Theoretical band gap (eV) G₀W₀@LDA GLLBSC Experimental band gap (eV)

(GPAW calculations by Falco Hüser)

GLLBSC: Screening exchange-correlation from PBEsol

First description: Gritsenko et al., Phys. Rev. A 51, 1944 (1995).

Implemented in GPAW: Kuisma et al., Phys. Rev. B 82, 115106 (2010).

Optical absorption spectra with GLLBSC-BSE

Derivative discontinuity used in single-particle energies, but not for W in the BSE.

Jun Yan, K. W. Jacobsen, and K. S. Thygesen, PRB 86, 45208 (2012)

Predicting bandgaps of oxides with GLLBSC

The GLLB-SC xc-functional:

$$E_g^{QP} = E_g^{KS} + \Delta_{xc}$$

Derivative discontinuity

- Bandgaps within ~0.5 eV of exp.
- Minimal computational cost
- Neglect of electron-hole interaction

Band edge positions

Empirical formula:

$$E_C = (\chi_A \chi_B \chi_O^3)^{1/5} - 1/2 E_{gap} + E_0$$

$$\chi = (A + I)/2$$
(Absolute electronegativity)

A: Electron affinity

I: Ionization potential

 E_{gap} : Band gap

 $E_0 = -4.5 \text{ eV}$
(NHE relative to vacuum)

M. A. Butler and D. S. Ginley, Journal of The Electrochemical Society (1978) Y Xu and MAA Schoonen, American Mineralogist (2000)

Cubic perovskites: ABO₃

Stability:

Formation energy < 0.2 eV

Light absorption:

1.5 eV < band gap < 3 eV

13 oxides↓ (Level alignment)10 oxides

One-photon water splitting – oxide candidates

Empirical formula for the conduction band relative to NHE:

Butler and Ginley (1978)

$$E_C = (\chi_A \chi_B \chi_O^3)^{1/5} - 1/2 E_{gap} + E_0$$

AgNbO₃ and **BaSnO**₃ known.

AgNbO₃ works!

BaSnO₃ defect-induced recombination

SrSnO₃ and CaSnO₃:

known in orthorhombic perovskite

→ too large gaps

Oxides, oxynitrides, oxysulfides, oxyfluorides, oxyfluornitrides

Materials candidates:

• ABO₃ :10

• ABO₂N :5 BaTaO₂N, SrTaO₂N, CaTaO₂N, LaTiO₂N (known) MgTaO₂N (unknown)

• ABON₂ :2 LaTaON₂ (known) YTaON₂ (unknown)

• ABN₃ :0

• ABO_2S :0

• ABO_2F : 3

ABOFN:0 ~19000 materials

One-photon water splitting

20 candidate materials

Project specific interface: Light absorbing materials for water splitting

Computational Materials Repository

http://cmr.fysik.dtu.dk

Tandem cell water splitting: Screening for anode materials

12 candidates

I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, K.W. Jacobsen, *EES*, **5**, 9034 (2012).

Selection criteria for anode material:

Stability: $E_{\text{form}} < 0.2$

Band gap: $1.3 < E_{gap} < 3 \text{ eV}$

Next: Layered perovskites + ICSD

Figure from Cava lab, Princeton

Preliminary screenings:

Collaboration with the **Materials Project**, Anubhav Jain, Kristin Persson, Gerbrand Ceder, GLLB band gaps for pre-optimized structures

Total energies from the ACFDT

The adiabatic connection and fluctuation-dissipation theorem:

$$E_c = -\frac{1}{2\pi} \int_0^1 d\lambda \int_0^\infty d\omega \text{Tr} \left[v \chi^{\lambda} (i\omega) - v \chi^0 (i\omega) \right]$$

Density response function from TDDFT:

Kohn-Sham response function

$$\chi^{\lambda}(\omega) = \chi^{0}(\omega) + \chi^{0}(\omega)[\lambda v + f_{xc}^{\lambda}(\omega)]\chi^{\lambda}(\omega)$$

With the RPA one obtains (λ -dependence integrated analytically):

$$E_c^{RPA} = \int_0^\infty \frac{d\omega}{2\pi} \operatorname{Tr} \left[\ln \left(1 - v \chi^0(i\omega) \right) + v \chi^0(i\omega) \right]$$

→ Implemented in GPAW with plane wave basis.

Graphene on metals: A prototypical metal/organic interface

Varykhalov et al. PRL 101, 157601 (2008)

- ☐ Graphene is strongly bound on Ni(111) (hybridization opens band gap)
- ☐ Intercalation of a monolayer Au restores the Dirac cone
- ☐ Weak physisorption found for Pt(111), Ag(111), Cu(111), Au(111)
- ☐ Strong chemisorption found for Ni(111), Co(0001), Pd(111)

DTU

Graphene on metals: A challenge for DFT

		Со	Ni	Pd	Ag	Au	Cu	Pt	Al
vdW-DF	d (Å)	3.40	3.50	3.50	3.55	3.57	3.58	3.67	3.72
vuv-Dr	$E_b \; (\mathrm{meV})$	30	37	39	33	38	38	43	35
LDA	d (Å)	2.08	2.08	2.33	3.32	3.35	3.21	3.25	3.46
LDA	$E_b \; (\mathrm{meV})$	175	123	79	45	31	35	33	25
Exp.	d (Å)	1.5-2.2	2.1	-	-	5	-	3.3	-
Ελρ.	Hybridization	strong	strong	strong	weak	weak	weak	weak	-

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, van den Brink, P. J. Kelly, PRL 101, 026803 (2008) M. Vanin, J.J. Mortensen, A.K. Kelkkanen, J.M. Garcia-Lastra, K.S. Thygesen, K.W. Jacobsen, PRB 81, 081408 (2010)

DTU

Potential energy surfaces of graphene@Cu(111)

T. Olsen, J. Yan, J. J. Mortensen, and KST, Phys. Rev. Lett. 107, 156401 (2011)

Covalent vs. dispersion interaction

- □ vdW-DF accounts well for dispersive interactions, but misses covalent binding
- ☐ RPA seems to capture both effects

Towards chemical accuracy

- □ RPA gives proper description of long-range correlation, but...
- ☐ RPA severely underestimates absolute correlation energies
- ☐ RPA underestimates covalent bonds
- ☐ This could be improved by inclusion of an xc kernel

For the adiabatic LDA (ALDA) one has

$$f_x^{\lambda} = \lambda f_x$$

The coupling constant integration can then be performed to yield

$$E_c^{ALDA_-X} = \int_0^\infty \frac{d\omega}{2\pi} \operatorname{Tr} \left[\chi^0(i\omega) v \left(\chi^0(i\omega) f_x \right)^{-1} \ln \left(1 - \chi^0(i\omega) f_x \right) + v \chi^0(i\omega) \right]$$

But... ALDA does not improve RPA (overbinds) and suffers from convergence problems [Furche and Voorhis JCP **122**, 164106 (2005)].

The renormalized ALDA kernel (rALDA)

Coupling constant averaged correlation hole of the uniform gas:

- ☐ RPA (ALDA) underestimate (overestimates) correlation energies
- \square For $q < 2k_F$ the ALDA kernel is close to the exact result

Renormalized ALDA kernel: $f_{Hxc}^{rALDA}[n](q) = \theta(2k_F - q) f_{Hxc}^{ALDA}[n]$

Correlation energy of HEG

Renormalized ALDA kernel: $f_{Hxc}^{rALDA}[n](q) = \theta(2k_F - q) f_{Hxc}^{ALDA}[n]$

T. Olsen and KST, RRB **86**, 081103(R) (2012)

rALDA for inhomogeneous systems

Renormalized ALDA kernel: $f_{Hxc}^{rALDA}[n](q) = \theta(2k_F - q) f_{Hxc}^{ALDA}[n]$

For inhomogeneous systems we replace:

$$r \to |r-r|$$
 , $k_F \to [3\pi^2 \tilde{n}(r,r')]^{1/3}$, $\tilde{n}(r,r') = [n(r) + n(r')]/2$

Atomization energies (kcal/mol):

	LDA	PBE	RPA@LDA	RPA@PBE	ALDA	rALDA	Exp.
H_2	-113	-105	-109	-109 (109)	-110	-107	-109
N_2	-268	-244	-225	-224 (223)	-229	-226	-228
O_2	-174	-144	-103	-112 (113)	-155	-118	-120
$^{\rm CO}$	-299	-269	-234	-242 (244)	-287	-253	-259
F_2	-78	-53	-13	-30 (30)	-74	-39	-38
$_{ m HF}$	-161	-142	-122	-130 (133)	-157	-136	-141
$\rm H_2O$	-266	-234	-218	-222 (223)	-249	-225	-233
MAE	33	10.1	14.9	8.4	19	3.7	

T. Olsen and KST, RRB **86**, 081103(R) (2012)

Absolute correlation energies (kcal/mol):

	LDA	PBE	RPA	ALDA_X	rALDA	Exact
Н	-14	-4	-13	6	-2	0
H_2	-59	-27	-51	-16	-28	-26
${\rm He}$	-70	-26	-41	-19	-27	-26

→ For more about rALDA including results for solids see Thomas Olsen's poster.

Conclusions

- ☐ High-throughput screening of >19.000 light-harvesting perovskites for water splitting
- ☐ Efficient and reliable calculation of band gaps from the GLLB-SC xcfunctional + empirical model for band alignment
- ☐ Future: Extend to other materials and structures (double/layered perovskites) + include experimental data (ICSD)

- ☐ Graphene@metals: A challenge for ab-initio theory. RPA indicates a delicate balance between covalent and dispersive interactions
- ☐ RPA underestimates covalent bonding (local correlation problem)
- \square ALDA does not improve on RPA: xc-hole diverges for r = 0!
- The renormalized rALDA cures the problems of ALDA and yields very accurate energies for both molecules and solids.

Acknowledgements

CAMD/DTU:

Ivano E. Castelli

Thomas Olsen

Jun Yan (now Stanford Univ.)

Falco Hüser

Jens Jørgen Mortensen

Karsten Jacobsen

CINF-CASE/DTU:

Ib Chorkendorff

Søren Dahl (now at Topsøe A/S)

Stanford University:

Tom Jaramillo

CASE

Tandem cell efficiency

Solar-to-hydrogen energy conversion efficiency

(J. R. Bolton et al., Nature 1985.)

(M. G. Walter et al., *Chem Rev* **110**, 6446, 2010)

(I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, Energy & Environmental Science, doi: 10.1039/c2ee22341d)

Design rules for two-photon water splitting

Screening parameters	One-photon WS	Two-photon WS
Chemical/structural stability (ΔE) Bandgap ($E_{\rm gap}$) Band edges ($VB_{\rm edge}$, $CB_{\rm edge}$)	$\Delta E \le 0.2 \text{ eV}$ $1.5 \le E_{\text{gap}} \le 3 \text{ eV}$ $VB_{\text{edge}} > 1.23 \text{ eV}$ $CB_{\text{edge}} < 0 \text{ eV}$	$\begin{array}{l} \Delta E \leq 0.2 \; \mathrm{eV} \\ 1.3 \leq E_{\mathrm{gap}} \leq 3 \; \mathrm{eV} \\ \mathrm{VB_{\mathrm{edge}}^{\mathrm{anode}}} > 1.23 \; \mathrm{eV} \\ \mathrm{CB_{\mathrm{edge}}^{\mathrm{cathode}}} < 0 \; \mathrm{eV} \\ \mathrm{VB_{\mathrm{edge}}^{\mathrm{cathode}}} > \mathrm{CB_{\mathrm{edge}}^{\mathrm{anode}}} \end{array}$

Tandem cell water splitting: Screening results

12 candidates

+ 20 from overall WS

I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, *Energy & Environmental Science*, **5**, 9034 (2012).

LaTiO₂N now under experimental investigation at CINF/CASE/DTU.

Analyzing gap formation

energy (eV)

-10

ZnSiO₃

Formation energy = -1 eV;

Band gap = 2.4 eV.

Valence band:

O – p orbitals (too deep for water-splitting);

Conduction band:

Zn - s orbitals.

AgNbO₃

Formation energy = -0.6 eV;

Band gap = 3.0 eV.

Valence band:

Ag - d and O - p orbitals;

Conduction band:

Nb - d orbitals.

Oxynitrides

Tandem cell principle

Two semiconductors – two photons

SC 1: Hole for oxygen evolution

• SC 2: Electron fro hydrogen evolution

Requirements:

- structural/chemical stability;
- two visible light harvests (optimal gaps: 1.1 eV and 1.7 eV);
- band edges that match with oxygen and hydrogen potentials;
- Small overlap between the semiconductors band edges for the electron transfer reaction.

H₂ photocatalyst: Si

O₂ photocatalyst: screening

Transparent protecting shield – photoanode

