

2443-7

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry

4 - 15 February 2013

Pulse characterization

U. Morgner University of Hannover Germany

Common pulse envelopes (with τ_p = Intensity FWHM): $\mathcal{E}(t) \propto \exp[-1.385(t/\tau_p)^2]$ m pu

sech - pulse Lorentzian pulse asymm. sech pulse
$$\begin{split} \mathcal{E}(t) &\propto & \mathrm{sech}[1.763(t/\tau_p)] \\ \mathcal{E}(t) &\propto & [1+1.656(t/\tau_p)^2]^{-1} \\ \mathcal{E}(t) &\propto & [\mathrm{exp}(t/\tau_p) + \mathrm{exp}(-3t/\tau_p)]^{-1} \end{split}$$

 $\Delta v =$ spectral bandwidth (FWHM)[Hz Spectra for pulses with the same pulse width

TBP

 $\Delta \tau$ = pulse duration (FWHM) [s]

 $\Delta \tau \cdot \Delta \nu \ge TBP$

$\Delta v \cong \frac{c}{2^2} \cdot \Delta \lambda$	Field envelope	Intensity profile	(FWHM)	Spectral profile	$\Delta \omega_p$ (FWHM)	твр
λ	Gauss	$e^{-2(t/\tau_G)^2}$	$1.177\tau_G$	$e^{-(\omega \tau_G)^2/2}$	$2.355/\tau_G$	0.441
	sech	$\mathrm{sech}^2(t/\tau_s)$	$1.763\tau_s$	$\mathrm{sech}^2(\pi_{\odot}\tau_s/2)$	$1.122/\tau_s$	0.315
TBP = time - bandwidth product	Lorentz	$[1+(t/\tau_L)^2]^{-2}$	$1.287\tau_L$	$e^{-2i\omega r_L}$	$0.693/ au_L$	0.315
1	asymm. sech	$\left[e^{t/\tau_{n}}+e^{-3t/\tau_{n}}\right]^{-2}$	$1.043\tau_a$	$\operatorname{sech}(\pi\omega\tau_a/2)$	$1.677/ au_a$	
Trieste, Feb 2013	rectang.	1 for $ t/\tau_r \leq \frac{1}{2}$, 0 else	τ_r	$\operatorname{sinc}^2(\omega \tau_{\tau})$	$2.78/\tau_r$	0.443

te, Feb 2013

2nd- and 3rd-order phase terms for prism and 100 grating pulse compressors

Grating compressors offer more compression than prism compressors.

Device	λ_t [nm]	We [fs-1]	φ" [fs ⁻²]	φ" (6-3)
SQ1 (L = 1 cm)	620	3.04	550	240
Piece of glass	800	2.36	362	280
Brewster prism pair, SQ1 f = 50 cm	620 800	3.84	-760	-1300
grating pair $b = 20 \text{ cm}; \beta = 0^{\circ}$	620	3.04	-8.2 104	1.1 105
$d = 1.2 \ \mu m$	800	2.36	-3 10 ⁶	6.8 10 ⁶

Note that the relative signs of the 2nd and 3rd-order terms are opposite for prism compressors and grating compressors.

te, Feb 2013

GRISM = grating prism combination

IQ

Pulse characterization	IQ
Measure either $ A(t) ^2$ and $\phi(t)$ in time domain	
or measure $ S(\omega) ^2\underline{\text{and}}\phi(\omega)$ in frequency domain	
(and measure the CEO-phase $\varphi_0)$	

ightarrow Then you know everthying about the pulse!

IQ

Pulse characterization methods

Measure $|A(t)|^2$ and $\phi(t)$ in time domain

- Autocorrelation, PICASSO
- ► FROG
- Attosecond streaking

or measure $|S(\omega)|^2$ and $\phi(\omega)$ in spectral domain

- ► SPIDER, 2DSI
- ► MIIPS

Trieste, Feb 2013

Trieste, Feb 2013

este, Feb 2013

The gate need not be—and should not be—much shorter than *E*(*t*).

e. Feb 2013

FROG Measurements of a 4.5-fs Pulse

Trieste, Feb 20

te. Feb 2013

FROG offspring

► XFROG, cross-correlation FROG

IQ

- IFROG, interferometric FROG
- ►TG-FROG, transient-grating FROG
- ▶ PG-FROG, polarization-gated FROG
- ► SD-FROG, self-diffraction FROG
- GRENOUILLE, Grating-eliminated nononsense observation of ultrafast incident laser light e-fields

Disadvantages:

- (in most cases) scanning required
- Complex algorithm

Trieste, Feb 2013

Attosecond streaking for sub-two cycle pulses

10

10

10

Pulse characterization methods

Measure $|A(t)|^2$ and $\phi(t)$ in time domain

- Autocorrelation, PICASO
- ► FROG
- Attosecond streaking

or measure $|S(\omega)|^2$ and $\varphi(\omega)$ in spectral domain

- ► SPIDER, 2DSI
- ► MIIPS

e, Feb 201

SPIDER offspring

IQ

- ZAP-SPIDER, zero additional phase SPIDER
- SEA-SPIDER, spatially encoded arrangement SPIDER
- M-SPIDER, modified SPIDER
- 2DSI, 2D spectral interferometry

MIPSImage: constraint of the second of

IQ

Intensity Autocorrelation, Interferometric Autocorrelation, PICASO, FROG, Attosecond streaking, SPIDER, 2DSI, MIIPS, ZAP-SPIDER, SEA-SPIDER, M-SPIDER, 2DSI, XFROG, IFROG, TG-FROG, PG-FROG, SD-FROG, GRENOUILLE, TADPOLE, FROGCRAB

Which one ist the right one? It depends...

este, Feb 2013

Thank you very much for your attention!