

2443-23

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry

4 - 15 February 2013

Laser Industrial production

B. Previtali
SITEC
Italy

Laser industrial production

Barbara Previtali

WINTER COLLEGE 2013

Trends in laser development and multidisciplinary applications to science and industry

SITEC Laboratory for Laser Applications

Mechanical Engineering Department
Politecnico di Milano
Italy

- 1. didactics.
- 2. base and applied research (new laser applications).
- **3. services for industries:** development and tuning of industrial laser processes.

1 SITEC video

Barbara Previtali Associate Professor

Daniele Colombo Assistant Professor

Bruno Valsecchi Post-doc, research fellow

Patrick Pradel Ph.D.st.

Ali Gokhan Demir Ph.D.st.

Stefano Zarini Ph.D.st.

Emiliano Verga research fellow

Giovanni Riva research fellow

Pietro Maressa research fellow

LASER SOURCES

- Fiberlaser, IPG YLS3000, 3000 W MM cw
- Fiberlaser, IPG YLR1000, 1000W MM cw
- Fiberlaser, IPG YLR100, 100W SM cw
- Fiberlaser, IPG YLP, 50W pw
- Diode laser, Rofin, 2200W, 6300W
- Nd-Yag, Trumpf Powerweld, 120W pw
- Nd-YAG, Lumonics JK701, 500W pw

LASER EQUIPMENT

- Precitech HP SSL
- LaserMech heads
- Aerotech stages and spindle
- HighYag BIMO
- HighYag µ

- Laser welding;
- Laser cutting and drilling;
- Laser hardening;
- Laser cladding;
- Laser microprocessing;
- Control and monitoring of laser processes
- Modelling of laser processes;

LASER INDUSTRIAL PRODUCTION

TYPE/YEAR	2011	2012	%	2013	%
CO,	4100	4244	4	4300	-1
SOLID STATE	1611	1665	3	1695	2
FIBER	1164	1350	16	1465	8
OTHER	200	216	8	240	11
TOTAL	7075	7475	6	7700	3

2012 Annual Economic Review and Forecast - Industrial Laser Solutions, February 2013

Laser revenues by application sector

 Sales of high power laser metal cutting system is 60% (5b) of the total

2012 Total: \$137 million

LASER INDUSTRIAL PRODUCTION BY APPLICATION SECTOR

Cutting
Welding
Heat treatment
Cladding
Drilling
Marking
Scribing, milling
Cleaning

- monolithic laser source: no ordinary maintenance (lamps, mirror realignment), compact footprint
- 1 micron wavelength
- high plug efficiency: 30%
- high beam quality (BPP or M²)
- scalable power

$$d_0 = \frac{4 \cdot M^2}{\pi} \frac{\lambda \cdot f}{d_f}$$

That consolidates some applications:

Laser cutting:

- High and low thickness
- High reflective materials

Three fundamental methods

- fusion (melt and blow & reactive fusion cutting)
- vaporization
- cold cutting

2 LaserCutting video

3 LaserMicroCutting video

That consolidates some applications:

Laser cutting:

- High and low thickness
- High reflective materials

Laser welding

- High thickness laser welding
- Hybrid laser welding
- Remote laser welding

High thickness laser welding

P=10kW v=1,5m/min

Conventional Laser Welding

Characteristics of RW

- · long process distance
- · positioning via mirror system
- large working area
- · varying angle of incidence
- · highly dynamic positioning
- · working space is a sphere

Remote Welding

That consolidates some applications:

Laser cutting:

- High and low thickness
- High reflective materials

Laser welding

- High thickness laser welding
- Remote laser welding
- Hybrid laser welding

Surface machining (functionalization)

- Marking
- Texturing
- Cleaning

4 LaserMicroprocessing video

Component in titanium alloy to be connected (by adhesive) to a carbon fiber reinforced polymer.

Different types of laser texturing:

DIMPLING

GRID

CHAOTIC

ASTM D 1002-05
Apparent shear strength of single lap joint adhesively bonded metal specimens by tension loading

- Laser texturing produces 40% increase in the shear strength (in respect to the sand blasted samples)
- Different types of laser texturing do not produce significant differences

That affects:

Cinematic and dynamic behaviour of the laser systems

- linear motors
- hybrid architecture, redundant axis

Laser head and optics

- focus shift
- proper cleaning and maintanace

Monitoring and control

- process
- system

Safety

Fig. 3: Absorption of the laser radiation in the focusing lens and effect on the resulting focus shift

Fig. 7: Thermal load of the lens housing as a result of wrong dimensioning

M. Kogel-Hollacher et al., ICALEO 2009

5 Laser Cladding video

Fiber laser: a rapid grow

That opens to future developments:

Beam shaping Laser head and optics

- dual beam techniques
- diffractive optics
- wobbling: high-frequency beam oscillation

Pulsed fiber laser sources:

- short: few ns and ps regimes
- green with high power

High volume deposition with fiber laser cladding

6 High Deposition Laser Cladding video

- Laser industrial production has great importance for the photonic applications;
- Active fiber laser sources increased penetration into markets held by other laser types;
- Fiber laser sources have potentialities that can be modulated in view of the applications:
 - Laser cutting: scalable power, high beam quality, long depth of field
 - Laser welding: scalable power, small diameter, high power density,
 - Laser cladding: scalable power, multimode distribution, beam shape-ability
 - Micro-machinig: high peak power, high pulse energy, small diameter, high beam quality, wavelength shorter than 1 mm

Barbara Previtali

Politecnico di Milano Dipartimento di Meccanica SITEC

www.sitec.mecc.polimi.it

barbara.previtali@polimi.it