

2445-07

Advanced Workshop on Nanomechanics

9 - 13 September 2013

Nanomechanics: a brief overview

Florian Marquardt *Erlangen (Germany)*

Nanomechanics: a brief overview

Frontiers of Nanomechanics / Trieste 2013

Florian Marquardt, Erlangen (Germany)

Of bending (nano-)beams

Leonardo da Vinci 1493

allerin atoparation (180 and 190 me Callenar valoans ple-matime - Manie wiresee (a) anavis fre has nelmester La realise de la sur felina place de la contra de digenera our to i & face company I unga of quante he fortage all's she castle hu Falland Bisto sille שילר הוא יה לירושימאיי שרקיבוא עורק היא nelmenor areas are lipe fatures aller: under pres free and for start for allow ANTE TANK ON MIN. MIL AND AND a Printer and in a for the formation

Sectionary and

for manual of mensaging Log 1110 * h/= יואימומין אינא יפי אימי איפיי purpanto lamal que from The chefter much but we cal - ABARS BAILANIA ASS STAT Former Ander amability some TATIM TRANS TRANS & PO VER 14 1 will with fill where of more and All non allant aller a some me THE PARTY - MUSICIAM FAME · MANG JIM VI MY HA WEAVE NOT New mutation come for all soresin din A stanged and and Sta Bally MA MANTER - C DOI DIC Anna (age mount an mere after Milapari) in etsmant

Galileo Galilei 1638

Daniel Bernoulli & Leonhard Euler 1744

Euler

Elasticity theory & energy approach

METHODUS INVENIENDI

LINEAS CURVAS

Maximi Minimive proprietate gaudentes,

SOLUTIO

PROBLEMATIS ISOPERIMETRICI LATISSIMO SENSU ACCEPTI

AUCTORE

LEONHARDO EULERO,

Professore Regio, & Academia Imperialis Scientiarum PETROPOLITANA Socio.

LAUSANNÆ & GENEVÆ, Apud MARCUM-MICHAELEM BOUSQUET & Socios.

MDCCXLIV.

energy: bending energy stretching energy $U \approx \int_{0}^{L} dx \left[\frac{EI}{2} (u''(x))^{2} + \frac{F}{2} (u'(x))^{2} \right]$

E: elastic modulus I: moment of inertia $I = \int dz dy z^2$ F: applied force (doubly clamped beam)

Elasticity theory still works well on the nanometer scale!

I,000,000 times smaller!

(Weig)

Elasticity theory still works well on the nanometer scale!

I,000,000 times smaller!

Mechanical vibrations

http://tsgphysics.mit.edu/pics/C%20Oscillations/C38%20Chladni_top_tile.jpg

Small vibrations of any mechanical structure described by:

deflection from equilibrium

Linear superposition of vibrations

Each eigenmode is a harmonic oscillator

Mass sensing via a shift of the eigenfrequency

Silvan Schmid (Friday)

Usually focus on **one** mechanical mode ...but interesting effects for multiple coupled modes!

Parametric drive of coupling: $F_1 = K \cos(2\pi f_{pump} t) x_2 + \dots$

...leads to "Rabi oscillations" of mechanical energy between the two modes

Hiroshi Yamaguchi (Thursday)

Quantum-mechanical mechanical harmonic oscillator

Usually: mechanical modes are **harmonic** oscillators (typically very good approximation for small vibrations, e.g. near the single-phonon level)

But: Potential use as qubits if anharmonicity (nonlinearity) can be made strong enough!

Michael Hartmann (Tuesday)

Mechanical damping

Mechanical damping

Common sources of mechanical damping

"Clamping losses": Beam attached to structure

Structural losses; e.g. due to two-level fluctuators can be excited by vibrations

How to prevent...

"Clamping losses": Engineer mode shape or surroundings

Antisymmetric mode (LKB group) Samuel Deleglise (Thursday)

"Phonon shield" (Painter group) Amir Safavi-Naeini (Wednesday)

Structural losses: increase tension (oscillation energy)

(Unterreithmeier, Faust, Kotthaus, 2010)

How to prevent...

"Clamping losses": levitate mechanical object!

Nicolai Kiesel (Thursday)

Levitate drop of superfluid helium (surface waves!)

Jack Harris (Tuesday)

The mechanical fluctuation spectrum

Thermal fluctuations of a harmonic oscillator

Classical equipartition theorem:

$$\frac{m\omega_M^2}{2} \left\langle x^2 \right\rangle = \frac{k_B T}{2} \quad \Rightarrow \quad \left\langle x^2 \right\rangle = \frac{k_B T}{m\omega_M^2}$$
 extract temperature!

Possibilities:

•Direct time-resolved detection

•Analyze fluctuation spectrum of x

The fluctuation spectrum

The fluctuation spectrum

Fluctuation spectrum from the susceptibility: Fluctuation-dissipation theorem

$$\begin{array}{ll} \operatorname{response} & \operatorname{force} \\ \left< \delta x \right> (\omega) = \chi_{xx}(\omega) F(\omega) \\ & \operatorname{susceptibility} \end{array}$$

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}\chi_{xx}(\omega)$$
 (classical limit)

for the damped oscillator:

$$m\ddot{x} + m\omega_{M}^{2}x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_{M}^{2} - \omega^{2}) - im\Gamma\omega}F(\omega)$$

$$\chi_{xx}(\omega)$$

T=300 K

Gigan et al., Nature 2006

Coupling radiation to a mechanical resonator

radio-frequency (kHz-MHz) microwaves (GHz) optical (THz) resonant

coupling

force $\sim E(t)$

optomechanical coupling force ~ E²(t)

The standard optomechanical setup

$$\hat{H} = \hbar \omega_{\rm cav} \cdot (1 - \hat{x}/L) \hat{a}^{\dagger} \hat{a} + \hbar \Omega \hat{b}^{\dagger} \hat{b} + \dots$$

Recent Review "Cavity Optomechanics": M. Aspelmeyer, T. Kippenberg, FM; arXiv 2013 $\hat{x} = x_{\rm ZPF}(\hat{b} + \hat{b}^{\dagger})$ $x_{\rm ZPF} = \sqrt{\hbar/2m\Omega}$

Optomechanical experiments (selection)

Photonic crystals: Very strong coupling between localized vibrational and optical modes

Amir Safavi-Naeini (Wednesday)

Isabelle Robert (Thursday)

Nano-Optomechanics: Nanowire in a light field

- Ultra-sensitive nanooptomechanical detection of a bidimensional nanomechanical degree of freedom
- •Topological structure of the radiation force in a focused laser beam

Pierre Verlot (Friday)

Coupling to atoms

Samuel Deleglise (Thursday)

Measuring mechanical motion

Optical detection of mechanical motion

I. measurement imprecision laser beam (shot noise limit!)

2. measurement back-action:

fluctuating force on system nois

noisy radiation pressure force

"Standard quantum limit" of displacement detection

Best case allowed by quantum mechanics:

$$S_{xx}^{(\text{meas})}(\omega) \ge 2 \cdot S_{xx}^{T=0}(\omega)$$

"Standard quantum limit (SQL) of displacement detection" Challenge: Reach optimal regime (where backaction becomes important)

Recent experimental results:

Solid state: Membrane resonator

Cold atoms

(Berkeley group)

Thomas Purdy (Monday)

Sydney Schreppler (Tuesday)

Strong backaction induces squeezing of radiation field!

Membrane position

Sensitive measurement can be used for feedback!

here: use feedback to optimize squeezing of a thermal mechanical state v

general trick: time-dependent modulation of spring constant produces squeezing

Menno Poot (Friday)

Mechanical resonators from carbon

Carbon nanotubes: very low mass, strong quantum zeropoint fluctuations – couple to other quantum devices!

Carbon nanotubes or diamond in photonic circuits

Diamond nanophotonic circuits

Waveguide integrated carbon nanotubes

Wolfram Pernice (Tuesday)

The Quantum Regime

(still mostly theory, but first experiments exist)

ጅ PHYSICS TODAY

The quantum mechanic's toolbox

Putting Mechanics into Quantum Mechanics

Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon.

Keith C. Schwab and Michael L. Roukes

Everything moves! In a world dominated by electronic devices and instruments it is easy to forget that all measurements involve motion, whether it be the motion of electrons through a transistor, Cooper pairs or quasiparticles through a superconducting quantum interference device (SQUID), photons through an optical interferometer-or the simple displacement of a mechanical element

achieved to read out those devices, now bring us to the realm of quantum mechanical systems.

The quantum realm

What conditions are required to observe the quantum properties of a mechanical structure, and what can we learn when we encounter them? Such questions have received

Schwab and Roukes, Physics Today 2005

nano-electro-mechanical systems Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010

optomechanical systems

Laser-cooled to ground state: Teufel et al in microwave circuit 2011, Painter group in photonic crystal 2011

piezoelectric nanomechanical resonator

(GHz @ 20 mK: ground state!)

swap excitation between qubit and mechanical resonator in a few ns!

Andrew Cleland (Tuesday, ICTP Coll.)

Nanomechanical resonator coupled to spin

Mikhail Lukin (Tuesday)

Two-level system as a probe of a mechanical resonator

probe quantum superpositions of a macroscopic resonator via multiple Ramsey measurements:

$$\Rightarrow C(t_1, t_2) = \langle Z(t_2) Z(t_1) \rangle$$

Correlations between subsequent measurement outcomes violate the Leggett-Garg inequality

$$C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

and can be used for other fundamental tests of quantum mechanics !

Peter Rabl (Tuesday)

Synchronization between multiple resonators in the quantum regime

 $\left[\leftrightarrow\right]\leftrightarrow\left[\leftrightarrow\right]$

Andreas Nunnenkamp (Thursday)

Optomechanical control & entanglement with light pulses

Klemens Hammerer (Friday)

A quantum interface: Taking quantum information from microwave to optical

Mechanical mode connects resonators with different frequencies

Mechanical mode

Connect different parts of a hybrid quantum network Achieve quantum operations through the mechanical mode

