

2445-05

Advanced Workshop on Nanomechanics

9 - 13 September 2013

Nanomechanical Qubits

Michael Hartmann Technische Universitaet Muenchen

Nanomechanical Qubits

Simon Rips, Martin Kiffner, Ignacio Wilson-Rae and Michael Hartmann

Technische Universität München www.ph.tum.de/quantumdynamics

Frontiers of Nanomechanics Trieste, September 2013

Ground State Cooling

A.D. O'Connell et al., Nature 464, 697 (2010).
J.D. Teufel et al., Nature 475, 359 (2011).
J. Chan et al., Nature 478, 89 (2011).
Aspelmeyer, Kippenberg, Marquardt, arXiv:1303.0733 (2013)

ground state cooling realized \rightarrow quantum regime

Classical vs Nonclassical States

$$\dot{\rho} = -i \left[H, \rho \right] + \frac{\gamma}{2} \mathcal{D}(\rho)$$

Jacobs, Phys. Rev. Lett. 99, 117203 (2007). Rabl, Phys. Rev. Lett. 107, 063601 (2011)

Nunnenkamp et al., Phys. Rev. Lett. 107, 063602 (2011)

at most quadratic in a^{\dagger}, a, X and P

states with Gaussian Wigner function stay Gaussian asymptotic states have Gaussian Wigner function

can only generate classical states

need nonlinearity to generate genuine quantum states

coupling to external nonlinearity nonlinear coupling to photons here we consider a nonlinearity in the mechanical oscillator

Linear and Nonlinear Quantum Systems

$$H = \frac{P^2}{2m} + \frac{m}{2}\omega X^2 \qquad \frac{d^2}{dt^2}X = -\omega^2 X \qquad \frac{d^2}{dt^2}\langle X \rangle = -\omega^2 \langle X \rangle$$
$$H = \frac{P^2}{2m} + \frac{m}{2}\omega X^2 + \lambda X^4 \qquad \frac{d^2}{dt^2}X = -\omega^2 X - 4\frac{\lambda}{m}X^3$$
e.g. electrical circuits:
$$X^3 \rangle \neq \langle X \rangle^3$$
I and
$$X^3 \rangle \neq \langle X \rangle^3$$
Josephson junction
$$I \propto \Phi$$
I and
$$I \propto \sin\left(2\pi \frac{\Phi}{\Phi_0}\right)$$

Tuesday, September 10, 13

Elasticity of Thin Beams

in normal modes

$$x(z) = \sum_{n} \Phi_n(z) X_n(t)$$

for one mode only

$$H = \frac{P^2}{2m} + \frac{m}{2}\tilde{\omega}_m X^2 + \tilde{\lambda}X^4$$

diamond bar of $\tilde{\omega}_m \sim 2 \text{GHz}$ 500nm x 20nm x 10nm $\hbar/(4m^2 \tilde{\omega}_m^2) \tilde{\lambda} \sim 3 \text{Hz}$

compressive strain \rightarrow buckling

very

Nonlinearity per Phonon

dynamics of mechanical oscillator:

$$H = \frac{P^2}{2m} + \frac{m}{2}\tilde{\omega}_m X^2 + \tilde{\lambda}X^4$$

if we decrease the harmonic oscillation frequency:

$$\tilde{\omega}_m \to \omega_m < \tilde{\omega}_m$$

decrease of harmonic frequency enhances nonlinearity per phonon

 $X = \sqrt{\frac{\hbar}{2m\omega_m}} \left(b + b^{\dagger}\right)$ $\tilde{\lambda} X^4 \approx \lambda \, b^{\dagger} b^{\dagger} b b$

Carbon Nanotubes

What is a good candidate?

Steele et al., *Science* **325**, 1103 (2009), Lassagne et al., *Science* **325**, 1107 (2009), Schneider et al., Scientific Reports **2**, 599 (2012) nonlinearity without softening: $\lambda_0 \propto 1/(mR^2)$

 \rightarrow low mass m and transverse dimension R

Optomechanics with Softened Nanobeam

Mechanical Oscillators in Evanescent Fields

 $\mathcal{F} \sim 10^{6}$

G. Anetsberger et al., Nature Physics **5**, 909 - 914 (2009) Quirin P. Unterreithmeier, Eva M. Weig & Jörg P. Kotthaus, Nature **458**, 1001 (2009)

M. Pöllinger, D. O'Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. **103**, 053901 (2009)

Radiation Pressure Cooling cavity decay can be used to extract energy from mechanical oscillator for small nonlinearity λ 3 2 laser ground state cooling: $\kappa < \omega_m$ mechanical resolved sideband cavity regime photons oscillator

I. Wilson-Rae et al., Phys. Rev. Lett. **99**, 093901 (2007) F. Marquardt et al., Phys. Rev. Lett. **99**, 093902 (2007) J.D. Teufel et al., Nature **475**, 359 (2011) J. Chan et al., Nature **478**, 89 (2011)

Sideband Splitting

Hamiltonian of mechanical oscillator diagonal in $\lambda \propto rac{1}{\omega_m^2}$ phonon Fock basis

$$\omega_n = \omega_m n + \lambda n(n-1)$$

Steady Phonon Fock State

Hamiltonian and Damping

$$\dot{\rho} = -i \left[H, \rho \right] + \sum_{j} \frac{\kappa}{2} \mathcal{D}_{\mathrm{c},j}(\rho) + \frac{\gamma_m}{2} \mathcal{D}_{\mathrm{m}}(\rho)$$

$$H = \sum_{j} \left[-\Delta_{j} a_{j}^{\dagger} a_{j} + \left(\frac{\Omega_{j}^{*}}{2} a_{j} + \frac{\Omega_{j}}{2} a_{j}^{\dagger} \right) + G_{j} a_{j}^{\dagger} a_{j} \left(b^{\dagger} + b \right) \right] + \omega_{m} b^{\dagger} b + \lambda b^{\dagger} b^{\dagger} b b$$

 $a_j = \langle a_j \rangle + \delta a_j \qquad G_j a_j^{\dagger} a_j (b^{\dagger} + b) \rightarrow G_j \langle a_j \rangle^* \, \delta a_j \, b^{\dagger} + \text{H.c.}$

photons in cavity field fluctuations decay much faster than they are created \Rightarrow adiabatic elimination of photons in δa_j

Nanomechanical Qubits $V_e = -\frac{\alpha}{2} \int dV |E|^2$ $\approx V_{e,0}(t) + V_e^{xy}(t) X - V_e^z(t) X^2$ V_2 ASTRONOMICS IN THE OWNERS V_{ρ}^{z} enhances nonlinearity $H = \frac{P^2}{2m} + \frac{m}{2}\tilde{\omega}_m X^2 + \tilde{\lambda}X^4$ make so nonlinear that 2nd excited state becomes unreachable \rightarrow qubit \Rightarrow

Local Operations

Two-Qubit Gates

gate operation only on qubits 1 and 2: adiabatic elimination of photon mode $\rightarrow H_{eff} \approx H_{G}(t) + H_{S}$

$$H_{\rm G}(\Delta) = -\frac{g^2 X_{\rm G}^2}{\Delta} \left(\sigma_1^{01} \sigma_2^{10} + \text{H.c.} \right) - \sum_{i=1}^2 H_{{\rm G},i} \Delta \gg \omega_{\rm G}, \omega_{\rm S}$$
$$H_{\rm S}(\Delta) = -\frac{g^2 X_{\rm S}^2}{\Delta} \sum_{i \neq j > 2} \left(\sigma_i^{01} \sigma_j^{10} + \text{H.c.} \right) - \sum_{i > 2} H_{{\rm S},i}$$
$$H_{\rm G}(-\Delta) = -H_{\rm G}(\Delta)$$
$$H_{\rm S}(-\Delta) = -H_{\rm S}(\Delta)$$

Tuesday, September 10, 13

Tuesday, September 10, 13

$$\begin{aligned} \textbf{Gate Errors} \\ H &= \Delta a^{\dagger}a + g(a + a^{\dagger}) \sum_{j} X_{j} \qquad X_{j} = \frac{b_{j} + b_{j}^{\dagger}}{\sqrt{2}} \\ &+ \sum_{j} \left[\omega_{m} b_{j}^{\dagger} b_{j} + 2\lambda X_{j}^{4} + V_{j}^{xy}(t) X_{j} + V_{j}^{z}(t) X_{j}^{2} \right] \\ &\quad a \to \langle a \rangle + a \\ \dot{\varrho} &= -i \left[H, \varrho \right] + \frac{\gamma_{m}}{2} \sum_{j} \left[\overline{n} \mathcal{D}_{\uparrow, j}(b_{j}) + (\overline{n} + 1) \mathcal{D}_{\downarrow, j}(b_{j}) \right] + \frac{\kappa}{2} \mathcal{D}_{\downarrow, c}(a) \end{aligned}$$

$$\begin{aligned} \textbf{gate error:} \\ \textbf{initial states} \quad |\phi\rangle &= \frac{|j, k, \ldots \rangle + |0, 0, \ldots \rangle}{\sqrt{2}} \\ f &= \text{Tr} \sqrt{\sqrt{\varrho} \, \sigma \sqrt{\varrho}} \qquad \mathcal{E} = 1 - \overline{f} \Big|_{\text{all } |\phi\rangle} \end{aligned}$$

Gate Performance $3\,\mu\mathrm{m}$ L=20µs b) 60 $80\,\mathrm{MHz}$ a) 510 0 20 40 0 150.50.5R $0.4\,\mathrm{nm}$ = $\frac{\omega_{\rm G}}{2\pi}$ 0.40.4 $357\,\mathrm{kHz}$ = $\mathcal{E} 0.3$ $\mathcal{E} 0.3$ $\delta_{21} - \delta_{10}$ 0.20.2 $109\,\mathrm{kHz}$ = 2π 0.10.1 $\frac{g}{2\pi}$ $2.16\,\mathrm{MHz}$ =0 0 30 40 15020025020505010 0 100 0 P_{in} $1.1\,\mathrm{W}$ = $\Delta/\omega_{\rm G}$ $T_{\rm G} \cdot \omega_{\rm G}$ $\frac{\Delta}{2\pi}$ d) **c**) $53.6\,\mathrm{MHz}$ =0.11 kHz 1.5 $2\,\mathrm{MHz}$ 1 0.50.5 $T_{\rm G}$ $8.9\,\mu s$ =0.40.4T $20\,\mathrm{mK}$ = \mathcal{E} 0.3 \mathcal{E} 0.3 $5 \cdot 10^6$ Q= 0.20.2 $\frac{\kappa}{2\pi}$ $1.22 \mathrm{MHz}$ 0.10.1=0 0 E_e $76 \,\mathrm{V}/\mathrm{\mu m}$ = 10^{-3} 56 23 10^{-4} 10^{-2} 4 $(n_{\rm th}\gamma_{\rm m})/\omega_{\rm G}$ $\kappa/\omega_{\rm G}$ gate fidelity > 92% S. Rips and M.J. Hartmann, Phys. Rev. Lett. 110, 120503 (2013)

Tuesday, September 10, 13

The Team

Martin

Leib

PhD

Peter Degenfeld PhD

Alessandro Ridolfo postdoc

Elena

Humboldt

del Valle

postdoc fellow

Simon **Rips** PhD

Lukas

Robert Jirschik Diploma

Emmy Noether-Programm Deutsche Forschungsgemeinschaft DFG

external:

Ignacio Wilson-Rae

Alexander von Humboldt Stiftung/Foundation

Neumeier Diploma

www.ph.tum.de/quantumdynamics

Thank you for listening.

Tuesday, September 10, 13