

2445-08

Advanced Workshop on Nanomechanics

9 - 13 September 2013

Measuring force sensitivity at the standard quantum limit

Sydney Schreppler Ultracold Atomic Physics Group UC Berkeley

Measuring force sensitivity at the standard quantum limit

Sydney Schreppler

Ultracold Atomic Physics Group, UC Berkeley PI: Dan Stamper-Kurn

ICTP Frontiers of Nanomechanics, 10 September, 2013

From Berkeley, CA to the ICTP

From Berkeley to the ICTP

San Francisco, USA

Trieste, Italy

James Joyce

Italo

Svevo

Summary

- Standard quantum limit
- Cold atoms for optomechanics
- Measuring force sensitivity
- The phase-space picture

Limits on measuring forces

Accuracy of measurement limited to zero-point-fluctuations in one damping period [see Clerk et al., RMP 82, 1155 (2010)]

LIGO/VIRGO

Single spin NMR Rugar et al., Nature **430**, 329 (2004)

Quadrature-sensitive measurement

Standard quantum limit

Standard quantum limit

Cold atoms for optomechanics

- **Decoupling from environment**: atoms trapped in 845 nm standingwave optical dipole trap
- **Dispersive measurement**: probe light is detuned from atomic transition at 780 nm by $\Delta_{CA} \gg \sqrt{Ng}$
 - Atoms collectively shift cavity resonance $\Delta_N \propto g^2 \sin^2(kz)$
- Mechanical ground state: shot-noise limited probe allows interrogation with no added technical noise

(images + apparatus construction credit: Tom Purdy!)

Cold atoms for optomechanics

- Atom chip allows precise cloud positioning
- Collective atomic motion = mechanical degree of freedom

Cold atoms for optomechanics

 AC trap intensity modulation shifts atoms center-ofmass

$$\frac{dz}{dF} = \chi_M(\omega) \cong \frac{1}{2M\omega_m} \frac{1}{-(|\omega| - \omega_m) - i\Gamma/2}$$

Measuring applied force

Measuring applied force $4^{\times 10^{-19}}$

 Apply coherent classical force of fixed strength at incremental frequencies

 Coherent response = average Fourier transform at driven frequency

 Incoherent response = average noise power spectrum

Signal and noise spectra

Normalized coherent response to constant applied force Normalized noise spectrum x 140

Ideal vs. experimental SQL

Perfect detection efficiency $\epsilon \to 1$

Actual detection efficiency $\epsilon \rightarrow 0.12$

Phase-space response

Prepare and measure sample ~1000 times at each measurement strength

Phase-space response

What's next

Stroboscopic QND measurements

Aspelmeyer et. al, arXiv:1303.0733v1 (2013)

Thanks to:

Force calibration

