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Summary 
• Standard quantum limit 

 
• Cold atoms for optomechanics 

 
• Measuring force sensitivity 

 
• The phase-space picture 

 



Limits on measuring forces 

LIGO/VIRGO Single spin NMR 
Rugar et al., Nature 430, 
329 (2004) 

Accuracy of measurement limited to zero-point-fluctuations in one damping 
period [see Clerk et al., RMP 82, 1155 (2010)] 



Teufel, et al.  Nature Nano 4, 820 (2009) 

The effort so far 

Westphal, et al. PRA 85, 063806 (2012) 

Abbott et al., NJP 11, 073032 (2009) 



Quadrature-sensitive measurement 

 

Minimum uncertainty state: 
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Cold atoms for optomechanics 

• Decoupling from environment: 
atoms trapped in 845 nm standing-
wave optical dipole trap 
 

• Dispersive measurement: probe light 
is detuned from atomic transition at 
780 nm by  

• Atoms collectively shift cavity 
resonance  
 

• Mechanical ground state: shot-noise 
limited probe allows interrogation with 
no added technical noise 

 
(images + apparatus construction 
credit: Tom Purdy!) 



Cold atoms for optomechanics 

        )  

  

• Atom chip allows precise cloud positioning 
 

• Collective atomic motion = mechanical degree of freedom 



Cold atoms for optomechanics 
Stokes Asymmetry 

Ponderomotive squeezing 

Ground-state 
oscillator 
arrays 

Brooks et al., Nature 488, 476 (2012) 

Botter et al., 
PRL 110, 
153001 (2013). 

Brahms et al., PRL 108, 
133601 (2012) 



Applying a force 

 

 

• AC trap intensity 
modulation shifts 
atoms center-of-
mass 



Measuring applied force 

 • On cavity 
resonance, atomic 
motion recorded in 
phase of probe 

• Measurement 
produces back-
action 

 

force per photon 

Atom sheet = oscillator 



Measuring applied force 
• Apply coherent classical force of 

fixed strength at incremental 
frequencies 
 
 
 
 

• Coherent response = average 
Fourier transform at driven 
frequency 
 

 
 
 

• Incoherent response = average 
noise power spectrum  



Signal and noise spectra 
Normalized coherent response to constant applied force 
Normalized noise spectrum x 140 

=0.18  0.21       0.38      0.70        1.0       1.3           5.2          10          14          21  



Measured sensitivity 

Bath 

SQL + 1 phonon 
SQL 

For typical oscillator, 
 

  



Ideal vs. experimental SQL 

Perfect detection efficiency 
 

Actual detection efficiency 
 

zpm zpm 

zpm + 1 phonon zpm + 1 phonon 



Phase-space response 
Prepare and measure sample ~1000 times at each measurement strength 

Incoherent response 
(noise) 

Coherent response 
(signal + noise) 

 Expect diameters of ~ 1.1 
zho at SQL 



Phase-space response 
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What’s next 

Aspelmeyer et. al, arXiv:1303.0733v1 (2013) 

Stroboscopic QND 
measurements 
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Force calibration 


