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1.  What are mechanical systems useful for? 
-- connect hybrid systems/different channels/noise 
 
2.   Optomechanical quantum interface 
-- quantum operations/protocols 
-- Overcome mechanical noise via dark modes 
  
3.  Another mechanical mode coupling with 
superconducting resonator 

4.  Emulating phonons … 

Outline 



What Are Mechanical Systems Useful For? 
theory	  &	  exp	  

advancements	  in	  
mechancial	  system	  

ground	  state	  
cooling	  

quantum	  state	  
engineering	   squeezing	  

Material/
sample	  

engineering	  

Q-‐factor	  
10,000,000…	  

	  
Freq.	  range	  

	  	  
Coupling	  
Strong	  

Ultra-‐strong…	  

Any	  applicaGons	  besides	  studying	  quantum	  features	  of	  macroscopic	  systems?	  



Mechanical systems can couple with numerous other systems 
 
 
 
 
 
 
 
 
 
 
 
•  Coupling with qubits, cavity modes, spins in solids etc… 
•  Coupling with systems in different frequency range – microwave – optical… 
•  Coupling with systems in different setup – atomic systems, solid-state, … 
•  Weak coupling, strong coupling, ultra-strong coupling (?) … 

beam 

Cooper pair  
box 

Qubit-‐resonator	  coupling	  
Armour,	  Blencowe,	  Schwab,	  PRL	  	  (2002)	  

Cavity-‐mechanical	  mode	  
Different	  frequency	  range	  

Kippenberg,	  Vahala,	  Science	  (2008)	  



What Are Mechanical Systems Useful For? 

The mechanical systems can be exploited as an interface to connect 
Systems with very different frequency or property 
•  Connecting qubits as a quantum bus 
•  Connecting qubit with cavity 
•  Connecting optical cavities at different frequency  
•  Connecting optical cavity and microwave cavity 
•  Connecting solid-state device and atomic systems … 
 
Cavity optomechanics – Aspelmeyer, Kippenberg, Marquardt, arxiv:1303.0733 
•  Strong coupling between light and mechanical modes demonstrated 
(in both microwave and optical systems,  g/κ > 1 ) 
•  Mechanical modes approach quantum ground state  
O’Connell et al, Nature (2010), Teufel et al, Nature (2011), 
Riviere et al, PRA (2011), Chan et al, Nature (2011),  Brahms et al, PRL (2012) 
•  Optomechanically induced transparency, mechanical dark mode, etc 
Weis et al, Science (2010), Teufel et al, Nature (2011), Safavi-Naeini et al   
Nature (2011), Dong et al Science (2012), Karuza et al, PRA (2013),  



Ø  Strong/controllable light-matter coupling/large cooperativity 
Ø  Mechanical mode connects cavities with different frequencies 
     e.g. optical cavity – mechanical mode - microwave cavity 
 
 
 
 
 
 
 
 
 
 
 
Ø  Connect different parts of a hybrid quantum network/transducer 
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, PRL (2010) 
Ø  Achieve quantum operations through mechanical mode 

Optomechanical Quantum Interface 
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a1, a2, bm



a1in a2in

a2
out

a1
out

b
out

bin

a1 a2

bm

Two cavity modes (information carrier) and a mechanical mode (interface) 
Cavity modes can have distinct frequency – microwave, optical … (hybrid) 
Input, output channels for all three modes – mechanical thermal noise  

Goal: manipulate quantum states in the cavity channels/modes using their 
coupling with the mechanical mode 
•  Transfer of quantum states – quantum wavelength conversion  
•  Generate entanglement between cavity modes of different frequencies  

Optomechanical Quantum Interface 



Mechanical Effects of Light 

Radiation pressure force on the mirror – cavity backaction  

Hint = G0a
†ax̂ = F · x̂ = ~�! · a†a

e.g. C.K. Law, PRA (1995), Interaction between a moving mirror 
and radiation pressure: A Hamiltonian formulation 

F 
a(λ1) 

Optical cavity + movable mirror 
Photon scattered by mirror 
Forces on mirror ~ photon number 

Superconducting resonator - NEMS 
Mechanical motion changes capacitance 
Forces on NEMS ~ photon number 



Radiation pressure force and effective linear coupling 

HG = �Gia
†
iaiq

Heff = ✏ia
†
i bm + ✏?i b

†
mai

ais =
�iEi

i/2� i(�i +Giqs)

Cavity-mechanical mode coupling: mechanical shift of cavity resonance 
 
 
Pumping on cavity mode – steady state amplitude, Δi: laser detuning 
 
 
 
Red sideband driving – effective linear coupling 
 
 
 
Blue sideband driving – effective linear coupling (instability etc…) 
 

Heff = i✏i

⇣
a†i b

†
m � bmai

⌘

Mechanical Effects of Light 



Radiation pressure force and effective linear coupling 

Red detuned driving 	   Blue detuned driving 	  

Mechanical Effects of Light 



Simple quantum wave length conversion scheme 

Red sideband driving – beam-splitter operation 
 
 
Generate transformation - transfer of state with two swap pulses 

Heff = ✏ia
†
i bm + ✏?i b

†
mai

ai(t) = cos(✏it)ai(0) + i sin(✏it)bm(0)

bm(t) = cos(✏it)bm(0) + i sin(✏it)ai(0)

Double-swap scheme: 
1. Swap modes a1 and bm 
    - initial state to bm 
 
2. Swap modes bm and a2 
    - initial state to a2 

2	
 3	

3’	
2’	


a

b1

b2

swapping	
 swapping	


bm

a1

a2

✏it = ⇡/2



Simple quantum wave length conversion scheme 

2	
 3	

3’	
2’	


a

b1

b2

swapping	
 swapping	


bm

a1

a2

1	

1’	


pre-cooling	


Tian, Wang, PRA 82, 053806 (2010) 

•  Swapping via mechanical mode, thermal noise degrades conversion fidelity 
•  Cavity damping degrades conversion fidelity 
•  Fidelity for gaussian states reduces as:  
              T = time of operation, nth=thermal number 

Pre-cooling pulse ‘1’:  swap a1 (ground state) and bm  (thermal state)  
Transient cooling: partially remove thermal noise, improve state transfer 

Pre-cooling pulse: 
•  Effective temperature for 
      mechanical mode 
•  Improve fidelity of state 

transfer 
•  Cooling pulse is affected 

by noise itself ! 



Simple entanglement generation 

Blue sideband driving – parametric amplification 
 
 
Generate two-mode squeezing – between cavity and mechanical mode 
 
 
 
Combine this with swap pulse between other cavity and mechanical mode 
Continuous variable entanglement between cavities 

Heff = i✏i

⇣
a†i b

†
m � bmai

⌘

bm(t) = cosh(✏it)bm(0) + i sinh(✏it)a
†
i (0)

ai(t) = cosh(✏it)ai(0) + i sinh(✏it)b
†
m(0)

a

b1

b2

2	

2’	


two-mode squeezing	


3	

3’	


swapping	


bm

a1

a2

•  Also subject to 
mechanical noise 

•  Noise propagates to all 
modes after two pulses 

•  Stability issue 
•  … 



Simple entanglement generation 
Previous work: design parametrically coupled mechanical/electrical resonators 
for two-mode squeezing, then squeezing 
 
Generate parametric amplifier interaction, followed by beam-splitter operation 
 
 
 
 
 
 
 
 
 
 
 
Can be extended to two cavity entanglement 
by swap gate on mechanical mode and 2nd cavity 
 
Tian, Allman, Simmonds, NJP 10, 115001 (2008) 



Various approaches and system setups: (photons, photon-phonon) 
-  Stationary state schemes – e.g. Vitali et al, PRL (2007), Wipf et al, NJP 

(2008), Barzenjeh et al, PRL (2012)  
-  Pulsed scheme – Hofer et al, PRA 2011, Vanner et al, PNAS (2011) 
-  Measurement schemes/reservoir engineering – Muschik et al, PRA 

(2011), Wang&Clerk, PRL (2013), Tan&Meystre, PRA (2013) 
 
Potential issues: 
-   Instability under the blue-detuned drive and nonlinearity 
-   Entanglement/couplings constrained by stability conditions 
-   Thermal noise in mechanical mode 
 
Why want entanglement: 
-    Key resource for quantum network, quantum teleportation … 
-  Quantum feature in macroscopic system,  quantum-classical boundary 
-  Hybrid quantum systems: bridging very different frequency scales 

Previous work 



Overcome Mechanical Noise?! 
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Red-detuned – Red-detuned 
- quantum wavelength conversion 
- discrete state entanglement 
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Red-detuned – Blue-detuned 
- continuous variable entanglement 

Optomechanical Quantum Interface 
•  For simplicity, detunings in resonance with mechanical frequency 
•  Simultaneous driving on two cavities 



Mechanical dark mode  
 
 
Dark mode energy separated from  
other modes 
 
 
 
Remains in dark mode when adjusting 
coupling g1,2 adiabatically  
(Landau-Zener condition) 
 
 

�1 = 0, �2,3 = ±
q
g21 + g22

g0 =
q

g21 + g22

 1 = (�g2a1 + g1a2)/g0g1 g2

â1 â2

b̂m

0

q
g21 + g22

�
q

g21 + g22

 3

 2

 1

Eigenmodes at	  ��i = !m

Red-Red detuned driving – Mechanical dark mode 



g2
a1 a2

bm

g1 = 0
 1 = a1

t = 0

g2 = 0
 1 = a2

g1
a1 a2

bm

t = T

 1 = (�g2a1 + g1a2)/g0

Adiabatic quantum wave length conversion of cavity state 

time t=0,  g1=0, g2=-g0, dark mode a1(0) 
time t=T, g1=g0, g2=0, dark mode a2(T)  
Initial state in mode a1 is transferred to mode a2 
 
Finite damping, solve Langevin equation 
 
 
 
 

a2(T ) = a1(0)

Not totally dark!	  



Fidelity for gaussian states at time T:  
 
 
 
 
F1, linear vs κ1,  F2, quadratic vs κ1 
Effect of mechanical noise reduces by significant ratio 
Special case of                    :  mechanical noise cancals 

0 0.02 0.04 

�F

1/g0

0 

4e-6 

8e-6 
coherent state r=0 
squeezed state r=0.4	  δF=F(0)-F(γm) at κ2=0,  

(effect of mechanical noise) 
 
Increases quadraticly with κ1 
Larger for finite squeezing r 

Adiabatic quantum wave length conversion of cavity state 

1 = 2

L. Tian, PRL 108, 153604 (2012). See also 
Y. D. Wang & A. A. Clerk, PRL 108, 153603 (2012) 

g1 = g0 sin(�t)
g2 = �g0 cos(�t)
t = ⇡/2�

�/g0 = 1/5



Could we achieve a two-way process for exchange of states? 
-  State from a1 to a2 
-  State from a2 to a1 
How to?  --- Destructive interference to cancel mechanical components 
Condition:        .    Numerical results for n=2: 

a2(T ) = a1(0) a1(T ) = a2(0)

�/g0 ⇡ 1/2n

High-fidelity swapping of cavity state 
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Initial states: a1 = coherent state α=1, a2=vacuum; two curves nth=0, 100; 
Target states: a1= vacuum, a2= coherent state α=1 
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Time window:  
5 – 10 nsec. 
 
More details see 
S. Huang & L. Tian, coming 
soon … 
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High-fidelity pulse transmission with impedance matching 

a1in a2in

a2
out

a1
out

b
out

bin

a1 a2

bm

Input a1
in(t) transferred to output a2

out(t) 
Noise operators a2

in(t) and bin(t) 

Langevin equation in frequency space 
Input-output relation 
Transmission matrix – unitary operator 

Output operator 
 
Condition for high fidelity 



Δω	  

!/g0

0.5 

1 

-0.4 -0.2 0.2 0.4 0 
0 

|T
31
(!

)|

•  Optimal transmission condition: impedance matching 
•  Half width ~ cavity bandwidth,  Δω ~ κi  
•  Fidelity drops with input pulse spectral width σω	


L. Tian, PRL 108, 153604 (2012). See also 
Y. D. Wang & A. A. Clerk, PRL 108, 153603 (2012); NJP (2012) 

High-fidelity pulse transmission with impedance matching 

g212 6= g221

Related work: A. H. Safavi-Naeini and O. Painter, NJP 13, 013017 (2011) 
C. A. Regal and K. W. Lehnert, J. of Phys. Conf. Series 264, 012025 (2011) 



Nature	  (2013)	  

Science	  (2013)	  

Nat.	  Comm.	  (2013)	  

UCSB work, see talk by Andrew Cleland, Monday 



g1 g2

â1
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Eigenmodes	  
g0

�g0

↵1

↵2
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1.  Coupling diagram, energy spectrum 
 
 
 
 
 
 
 
One “dark” mode and two bright modes separated by energy g0  
 
2.  Stability condition        
(strong coupling regime)  

Red-Blue detuned driving – Bogoliubov dark mode 

g0 =
q

g21 � g22



1. “Dark” mode, λ1=0 
 
2. Two bright modes 
 
 
 
3. Bogoliubov modes 
Two modes under parametric amplifier coupling 
System operators evolve in terms of Bogoliubov modes 
 
 
 
 
 
4. Relation to eigenmodes 
 
5. finite damping 
(eigenvalues modified too) 

�2,3 = ±g0

Red-Blue detuned driving – Bogoliubov dark mode 

r = gst

�i��i



•  Entanglement generated via mechanical mode – effect of noise 

•  Excitation of dark mode doesn’t involve mechanical mode => β2(r) 

•  Excitation of bright modes mix cavity and mechanical modes 

•  Quantum interference cancels mechanical modes => β1(r) 
 
•  Cavity/cavity output operators have forms of Bogoliubov operators  
      to leading order, mechanical noise suppressed 

Central idea 

Robust Entanglement Generation 



Solve Langevin equation in time domain for operator evolution 
Dark mode; bright modes with phase factors including mechanical component 
 
 
Bogoliubov modes for cavity at time t 
 
 
Cavity at time t includes bm(0) 
Choose time tn to cancel mechanical component, 
 
At tn,  
Couplings can have many choices of time dependence  

Entanglement in cavity state in time domain 



Solving Langevin equation at finite damping rates 
Cavity at time tn  
 
 
 
 
 
 
 
 
 
Effect of initial mechanical noise is eliminated to leading order! 
 
 
 
Distinguish thermal number of initial state n0 and of bath nth   
 
Couplings are 

Ideal terms 
zero damping 

Eigenmode 
damping 

First-order mixing  
with mechanical mode 

Bath  
fluctuations 

O(�m/g0)nth

Entanglement in cavity state in time domain 



Numerical simulation of time evolution with 
Peaks appear for finite thermal number at 
•  Peak height slowly varies with nth   
•  Peak width depends on n0 

tn = n⇡/g0

Entanglement in cavity state in time domain 
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Entanglement at selected peak values 
•  solid: constant couplings 
•  dashed: adiabatic increase of couplings 
•  dotted: stationary scheme 
Sizable entanglement at large nth 
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Entanglement in cavity state in time domain 

L. Tian, PRL 110, 233602 (2013) 



Operators in input and output – x = in, out – g: profile function 
 
 
Eigenmode excitation at given frequency, crucial for the effect 
 
 
Strong excitation when ωn near eigenvalues 
At ωn=0, dark mode strongly excited ~1/δλ1, 

   bright modes weakly excited ~ 1/g0 
 
At ωn=g0, one bright mode strongly excited 1/δλ2, (similarly at –g0) 

   dark mode weakly excited ~ 1/g0 
   other bright mode weakly excited  ~ 1/2g0 

 
Entanglement can be strong at these frequencies 

Entanglement in cavity output in frequency domain 
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Top panels: 
(κ1, κ2) =(0.3, 0.2) 
 
 
Bottom panels: 
(κ1, κ2)=(0.2, 0.3) 
 
 
Dependence on 
damping rates due 
to effect on δλi  

nth=0, 10, 100, 1000 
Strong entanglement  at 0, g0, -g0  

At 0, strong & robust 
Side peaks, strong & non-robust 

Entanglement in cavity output in frequency domain 

See results in Barzanjeh et al, PRL 109, 130503 (2012) 
“Reversible Optical-to-Microwave Quantum Interface” 



At ωn=0, dark mode strongly excited ~ 1/δλ1, 
 
 
 
Bright modes weakly excited ~ 1/g0 
 
 
 
 
Symmetry in bright modes gives 
 
 
Again, in cavity modes, mechanical input ~ 1/g0 ; cavity inputs ~1/δλ1 
 
At ωn=g0, one bright mode strongly excited 1/δλ2, (similarly at –g0) 

   dark mode weakly excited ~ 1/g0 
   other bright mode weakly excited  ~ 1/2g0	  

Entanglement in cavity output in frequency domain 

↵1 ⇡ �†
2

L. Tian, PRL 110, 233602 (2013) 



•  Optomechanical quantum interface connects quantum states in different 
cavities – facilitate scalable quantum systems 

•  High fidelity quantum wave length conversion via dark mode 
•  Robust entanglement generation via excitation of dark mode and 

quantum interference of the mechanical mode 

ωc2ωd2ωd1 ωc1

−∆1 −∆2

ωc2 ωd2ωd1 ωc1

∆2−∆1

Optomechanical Quantum Interface 



Trapped Particle and Superconducting Circuits 

•  Hybrid system connects trapped particle and superconducting circuits 
•  Trapped motion: 10 – 500 MHz, Superconducting resonator: 10 GHz 
•  Parametric coupling that converts resonator state to motion state 
 
Previous work:  Heinzen and Wineland PRA (1990), Kielpinski et al  PRL (2012) 
 
Circuit approach and challenges – our initial thoughts 
 
 
 
 
 
 
 
 
 
Excess circuit noise kills quantum signal on pickup electrodes 



Trapped Particle and Superconducting Circuits 

Solution – driven electron motion in nonlinear potential, classical motion 
becomes the parametric source 
 

•  Solution – driven electron motion in nonlinear potential, classical motion 
becomes the parametric source (different from micromotion) 

Nonlinear potential 

Trapping potential 
Nonlinear potential 

Pickup electrode 

Pickup electrode 

Ueff = gx

2
'̇

Daniilidis, Gorman, Tian, Haeffner, New J. Phys. 15, 073017 (2013) 



Trapped Particle and Superconducting Circuits 

•  Effective coupling: beam-splitter operation, parametric amplifier operation 

 
 
Applications 
Transfer electron motion with superconducting LC oscillators or other electrons 
 
 
 
 
Electron-transmon coupling – with 3D transmon (long decoherence time) 
 
 
 
 
Electron spin-motion conversion – similar to ion trap 
Architecture for large scale quantum computer … 



Emulating Phonons with Circuit QED 
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•  Electron-phonon interaction – fundamental effect in condensed matter 
      BCS – electron pairing via phonons, Peierls instability and Jahn-Teller effect 
•  Small polaron formation: lattice distortion in small regime  
      L.D. Landau (1933) …  
•  Features: larger effective mass, lattice distortion, anomalous fluctuations 
•  Holstein model for local electron-phonon interaction, molecular crystals … 
     (vs SSH model)  
•  Coupled fermionic and bosonic degrees of freedom  
•  Can’t be exactly solved or numerically calculated, simple system with 

interesting many-body physics 



Cavity Photon 

Optical phonon 

Boson 

      Qubit 

Spinless Fermion 

Electron  

Emulating Phonons with Circuit QED 

•  Transmon qubit emulates electrons 
•  CPW resonator emulates optical phonons  
•  Tunable coupling (electron hopping) via SQUID loop 
•  Jordan-Wigner transformation on qubit spins 



Parameter regimes:         >1 (strong coupling)          >1 (adiabatic) 
Small polaron formation       >1 
 
Advantage of system: 
Can access all regimes of interest (adiabatic, anti-adiabatic, …) 
Real nearest neighbor coupling, dispersionless phonons   
We developed generic scheme for the preparing of polaron excitations by 
exploring translational symmetry – using pulses 

Emulating Phonons with Circuit QED 
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Previous work: 
Stojanovic, Shi, Bruder,Cirac, PRL 109, 250501 (2012) ion trap systems 
Mezzacapo et al, PRL 109, 200501 (2012) digital quantum  simulation 
Also, works on polar molecules, Rydberg atoms 

g/! t/!
� = g2/!t



How to calculate? – use Toyozawa-type variational Ansatz to test system behavior 

Phonon number 
N̄ph ⌘ h ̃=0|

X

i

a†iai | ̃=0i

Mei, Stojanovic, Siddiqi, Tian, arXiv:1307.0906 
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Variances of resonators based on  
measurement of qubit flip	  
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Squeezing 1.25 dB 

Emulating Phonons with Circuit QED 

t/2⇡ = 80MHz
gH = g/! / ✏



Emulating Phonons with Circuit QED 

•  Circuit QED gives a tunable platform to emulate e-ph physics in the  
     Holstein model in all interesting parameter regimes, without the restriction of  
     phonon dispersion and long-range coupling  

•  We develop a state preparation scheme which can be applied to other systems 

•  Squeezing in resonator can be generated during small polaron formation  



Optomechanical quantum interface:  
Group members: Dan Hu (graduate student),  Sumei Huang (postdoc) 
Collaborators: Hailin Wang and group (U Oregon) 
 
Trapped electron – resonator hybrid system 
Collaborators: Hartmut Haeffner, Nikos Daniilidis, Dylan Gorman (Berkeley) 
 
Emulator for electron-phonon physics 
Group member: Feng Mei (postdoc) 
Collaborators: Vladimir Stojanovic (U Basel), Irfan Siddiqi (Berkeley) 
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•  Strong coupling between light and mechanical modes 
      microwave:  Teufel et al Nature (2011) 
      
      optical experiment: Verhagen et al Nature (2012) 
       
 

!m/2⇡, 10MHz /2⇡, 100 kHz g/2⇡, 1MHz

g/2⇡, 10MHz/2⇡, 7MHz!m/2⇡, 100MHz

Optomechanical Quantum Interface 



Finite damping: we treat damping terms in M(t) as perturbation terms  
Dark mode contains small contribution from mechanical mode 
 
 
 
Eigenenergy is modified – causes damping 
 
 
 
Hence, adiabatic conversion can be affected by mechanical noise 
How to characterize these effects? 

Langevin eq. in interaction picture 

Not totally dark!	  

Adiabatic scheme via mechanical dark mode 

Quantum Wavelength Conversion 



Simple entanglement generation 
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