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Center for Hydrometeorology and Remote Sensing

Improve the performance and reliability of f
estimate rainfall from satellite hydrologic, flood, and water supply forecasting ‘
observations at global scale and | = models, particularly those used by the National |
high spatial and temporal | Weather Service and other operational agencies. Improve California’s water supply
o management through:
* Forecast system (CaliForecast)
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global precipitation products:
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Prepare the next generation
of hydrologists and water
resources engineers
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http://hydis.eng.uci.edu/gwadi/
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Hydrologic Forecasting Needs: Flash Floods




Droughts: The Other hydrologic Extreme
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Increasing Population: Number of Mega Cities

Projected Global Population: 8.3 Billion by 2025
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Distribution of Fresh Water Use
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Global Climate: Past Decade and Prediction of End of 215t Centaury
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A Century of Water Resources Development:




Impact on Design and Operation of Global Infrastructure

More than 70,000 Daras in the U.S.
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Global Warming And Hydrologic Cycle Connection
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JFrom the Global-to Watershed-Scale

Water resources

CLIVAR . CoupledCLIC Water Resources management agenCies
Ocean-Atmosphere Al
Models
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Hydroclimate Science and Hydrologic/Water Resources Engineering
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Models Water Resources Models
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Water Resources Engineering
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River Basins and Watersheds

Continental Scale:

Different Scales
Different Issues

Watershed Scale:
Where hydrology happens
Where stakeholders exist
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Climate Model Downscaling to Regional/Watershed Scales
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Ensemble Approach

Generation of Future Precipitation Scenarios
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Downscaled Precipitation to Runoff Generation

Generation of Future Runoff Scenarios
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Alternative Approach to Climate Model Downscaling

Return Period (Years)
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Statistical Hydrology: “synthetic” stream flow Generation
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Fundamental Law

Change In Storage AS
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Nature’s Way =2 Terrain




The Watershed

Area km2 12.78

Perimeter km 19.344

Min Elevation m 478.00

Max Elevation m 1756.00
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Trace The Water Drop
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Evolution of Hydrologic R-R Models

API Model
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Hydrologlc Modelmg 3 Elements!

I the “World” of
& Watershed Hydrology
Was Perfect!
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Flow in Channels: How far can we go simplifying?

QOverbank areas

Water 1
T=50°F 2
——101—

n — Manning Coefficient
R — Hydraulic Radius
S — Energy Slope




Hydrologic Modeling

Will be Covéred By Professor Aghakouchak
y DATA 0




Model Calibration




The Identification Problem

1. Select a model structure (Input-State-Output equations)

2. Estimate values for the parameters

“The Truth”
U — Universal Set

B - Basin ‘

M,(0) — Selected
Model Structure

oooooooooooooooooooooo

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept of Model Calibration

Measured Measured
Inputs Outputs

B Real/ World 1N

MODEL (9) Computed

Outputs

\4

Optimization
Procedure

__ 'calibration: constraining the model to be consistent with observations”

& Center for Hydrometeorology and Remote Sensing, University of California, Irvine



- . The Automatic
© Calibration Approach




Calibration components

Objective Function
Search Algorithm

Sensitivity Analysis

Problems with identifiability

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Calibration Criterion

[General Exponential Power Density]
(Posterior Parameter Probability Distribution Function)
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Objective function Parameter Space
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Parameter Sensitivity

Parmeter Space

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Parameter Sensitivity
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The Ideal case: Convex Optimization
e

Objective Function

Parameter X Created By G-H Park




Difficulties in Global Optimization

Objective Function

e

' [Ue Para

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Objective Function

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Global Optig

Objective Function

Parameter X Created By G-H Park




Data information content

Cmax

“Bucket Model”
Simple two parameter Model

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Data information content

P * 1 No spills

Cmax

Multiple

spills //

C

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Difficulties in Optimization

1.- Regions of More than one main
: convergence reqio
Attraction J gion

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Difficulties in Optimization

2.- Local Many sm_aII "pits" in
Optima each region

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Difficulties in Optimization

3.- Roughness Rough surface with

discontinuous
derivatives
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Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Optimization
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5.- Shape Long and curved
ridges

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Optimization Strategy — Local Direct Search

Calibration of the Sacramento Model
Downhill Simplex Method, Nelder & Mead, 1965

Parameter Value .
Parameter Value

1500 2000 1000 1500 - 2000
Function Evaluations ‘ Function Evaluations

Duan, Gupta, and Sorooshian, 1992, WRR
Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The SCE-UA Algorithm ...
(1992)

Duan, Gupta, and Sorooshian, 1992, WRR

Y Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Concept Behind SCE Method

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept Behind SCE Method




The Concept Behind SCE Method




The Concept Behind SCE Method




SCE Method — How it works ...




Shuffled Complex Evolution (SCE-UA)




Global Optimization — The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR

Simplex
Method

Parameter Value .
Parameter Value
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Advances In Parameter Estimation
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Land-Surface Model

Reflected
and

Longwave
Radiation

Enerqy
Balance

Evaporation

Heat
™ o= Advection

A
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" Radiation

Percolation

Groundwater Runoff




Multi-Objective Approaches

Inputs Model Outputs

Radiation m

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Multi-Objective Optimization Problem

- Minimize F(0)={ F,(0),....F (0)}

wrt 0Q

Simultaneously finds
several Pareto Solutions
In a Single Optimization

F,(0)

"\ Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Observed

Single- & Multi-Flux Calibrations
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AGU Monograph — Now Available

Calibration of Watershed Models presents

a state-of-the-art analysis of mathematical
methods used in the identification of models
for hydrologic forecasting, design, and water
resources management. From reviewing
advances in calibration methodologies,

to describing autormated and interactive
strategies for parameter estimation, uncertainty
analysis, and probabilistic prediction, this
book addresses five questions essential ta
the discipline:

What constitutes best estimates for
watershed madel parameters?

What computational procedures ensure
proper model calibration and meaningful
evaluation of performance?

How are calibration methods developed
and applied to watershed models?

What calibration data are needed for
reliable parameter values?

How can watershed maodelers best
estimate model parameters and assess
related uncertainties?

For scientists, researchers and students of
watershed hydrology, practicing hydrologists,
civil and environmental engineers, and water
resource managers.

Qingyun Duan
Hoshin V. Gupta
Soroosh Sorooshian
Alain N. Rousseau
Richard Turcotte
Edttors

www.agu.org




IEnd' of Leciure § -
Thank You For Listening

;fﬁ;-River, NM Photo: J. Sorooshian 2005



Additional Slides

Backup Material

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



A look into the “heart” of R-R Models

v
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percolation
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Percolation Process Is the
Core element in Partitioning
the rain between the various

J

stores

é

Streangflow

1ol |

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



NWS Soil Moisture Accounting Model: SMA-NWSRFS

Evapotranepiration

Tension water / / r’f |
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Nonlinear structure with large number of parameters

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Parameter Uncertainty Methods

(1) First-order approximations near global optimum (Kuczera etal)

Limitations g5 _
Assumes Model is Linear T &3
Assumes Posterior Dist. Guassian \,&

i )
83333

ﬁ

(2) Generalized Likelihood Uncertainty Estimation (GLUE) 6,
method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods
(Vrugt and others)
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SCE-UA only solves for Mode of Distribution

Probability distribution
to be maximized

x = observations

- = simulated flowg

180 190 200 210 220 230 240 250 260 270 280
Hours

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Shuffled Complex Evolution Metropolis

Vrugt, Gupta, Bouten & Sorooshian
WRR 2003

’ Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Need estimates of the prediction uncertainty

p(6° 1)

Probability distribution
to be maximized

Uncertainty

associated
/ with parameters

{1 | Total Uncertainty

—| including structural
f errors

180 190 200 210 220 230 240 250 260 270 280
Hours

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Flow Ranges instead of point estimates

AP (m

Streamflow [mafsec]

Cleyiation
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1 1 1 1 1 1
a 50 100 150 200 250 300 a0
H2-03 Water year

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Multi-Criteria Calibration Concept

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Multi-Criteria Calibration Approach

j Gupta, Sorooshian, Yapo, WRR, 1998
4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




“Semi-distributed” Hydrologic Models

Combination




