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Improve California’s water supply 
management through:  

•  Forecast system (CaliForecast) 
 
•Improved decision optimization 

Prepare the next generation 
of hydrologists and water 
resources engineers  

Utilizing Information Technology to 
provide world-wide access to real-time 
global precipitation products:  
http://hydis.eng.uci.edu/gwadi/ 
 

Develop state-of-the-art systems to 
estimate rainfall from satellite 
observations at global scale and 
high spatial and temporal 
resolutions 

Improve the performance and reliability of 
hydrologic, flood, and water supply forecasting  
models, particularly those used by the National 
Weather Service and other operational agencies. 

Center for Hydrometeorology and Remote Sensing 

http://hydis.eng.uci.edu/gwadi/
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Two Primary Water Resources/Hydrology 

Challenges: 

 

• Hydrologic Hazards ( Floods and 

Droughts) 

 

• Water Supply Requirements ( Quantity 

and  Quality) 
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Hydrologic Forecasting Needs:   Flash Floods 
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Droughts:   The Other hydrologic Extreme  
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Two Primary Water Resources/Hydrology 

Challenges: 

 

• Hydrologic Hazards ( Floods and 

Droughts) 

 

• Water Supply Requirements ( Quantity 

and  Quality) 
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Increasing Population:  Number of Mega Cities   

Global Urban population 1970: ~37% 

                                          2010: ~53% 

Projected Global Population: 8.3 Billion by 2025 
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90.8 33.4% 

17.1% 

49.5% 

460 

7.0% 
6.0% 

87.0% 

36.47 

18.6% 

22.0% 
59.4% 

117 

60.0% 
17.0% 

23.0% 

467.34 

45.2% 

13.1% 

41.7% 

380 

4.0% 3.0% 

93.0% Agriculture 

Industry 

Domestic 

Fresh Water Use 

(109 Cubic Meters) 

Water Source 

Water Use 

USA China India 

Russia Japan Brazil 

92% 
6% 

2% 

70.3 
Iran 



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

Global Climate:  Past Decade  and Prediction of  End of 21st Centaury   
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  Primary Solution To Meet 

Hydrologic Extremes and 

Water Resources Needs   

Engineering Approach: 
Control, Store, Pump and Transfer 
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Hoover Dam 

A Century of Water Resources Development:   Engineering success 

Central Arizona Project Aqueduct 
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1800 
1900 

1950 

Impact on Design and Operation of Global Infrastructure 

2000 

More than 70,000 Dams in the U.S. 

Provided by: C. J. Vörösmarty  
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Short Range  Long Range  

hours days weeks months seasons years decades 

Required Hydrometeorologic Predictions   

Forecast Requirements 

Short-range Mid-range Long-range 
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Short Range  Long Range  

hours days weeks months seasons years decades 

Required Hydrometeorologic Predictions   

Forecast Requirements 

Mid-range Long-range 
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 A Key Consideration: 

The Link Between 

Climate and Hydrology 
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Global Warming And Hydrologic Cycle Connection 
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Hydroclimate Science and Hydrologic/Water Resources Engineering 

Hydrologic/Hydraulic Routing, 

Water Resources Models 

SCIENCE  ENGINEERING  
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River Basins and Watersheds 

Continental Scale:  

    

Watershed Scale:  

   Where hydrology happens 

   Where stakeholders exist 

Different Scales 

Different Issues 
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Short Range  Long Range  

hours days weeks months seasons years decades 

Climate-Scale  approaches to addressing hydrologic extremes     

Forecast Requirements 

Long-range 

•Use of climate models:   

down-scaling and ensemble 

schemes 

 

•Traditional statistical 

hydrology methods:  
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Climate Model Downscaling to Regional/Watershed Scales 

Generation of Future Precipitation  Scenarios  
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Ensemble  Approach   

Generation of Future Precipitation  Scenarios  
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Generation of Future Runoff  Scenarios  

Downscaled Precipitation to Runoff Generation    
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 traditional statistical hydrology methods 
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Probability density function 
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Brief Review of Rainfall 

Runoff modeling: 

   

Progress in Hydrologic 

Modeling      
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Fundamental Law 

Input 
Output 

Change In Storage 

I O 

DS 

I – O =DS  
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Nature’s Way  Terrain 
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The Watershed 

Area km2 12.78

Perimeter km 19.344

Min Elevation m 478.00

Max Elevation m 1756.00

Mean Elevation 930.34

Max Flow Length 8.878
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Ponce, 1989 
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Trace The Water Drop 
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Distributed 

Physically-based 

API Model A 

C 

D 

B 

Lumped 
Conceptual 

Distributed 
(Mike SHE)   

VIC  Model 

Evolution of Hydrologic R-R Models    
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MODEL 

PARAMETER 

ESTIMATION 

DATA 

If the “World” of 

Watershed Hydrology 

Was Perfect! 

Hydrologic Modeling:   3 Elements!   
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Flow in Channels: How far can we go simplifying?  

V = n-1 R2/3 S1/2 

n – Manning Coefficient 

R – Hydraulic Radius 

S – Energy Slope 
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Hydrologic Modeling   

Will be Covered By Professor Aghakouchak  
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Model Calibration  
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The Identification Problem 

1. Select a model structure (Input-State-Output equations) 
 

2. Estimate values for the parameters 

U 

U – Universal Set M1() 

M2() 

Mi() – Selected 
 Model Structure 

D 

D 

O 

O 

B  - Basin 

“The Truth” 
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The Concept of Model Calibration 

Measured 

Outputs 

Yt 

t 

Real World  

Measured 

Inputs 

MODEL () 
Computed 

Outputs 

Prior 

Info  

Computed 

Outputs 

+ 
- 

Optimization 
Procedure  

“Calibration: constraining the model to be consistent with observations” 
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The Automatic  

Calibration Approach 
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Calibration components 

Objective Function 

Search Algorithm 

 Sensitivity Analysis 

 

Problems with identifiability 
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 [General Exponential Power Density] 
(Posterior Parameter Probability Distribution Function) 
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Objective function Parameter  Space  

θ1  

θ2  

F(θ) 

θ 

Parameter Space Objective Function Space 
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Parameter Sensitivity 

θ1  

θ2  

Parmeter Space 
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Parameter Sensitivity 

θ1  

θ2  

Parameter Space 
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True Parameter Set 

The Ideal case: Convex Optimization 

Created By  G-H Park 
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Difficulties in Global Optimization 

Created By  G-H Park 
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Parameter Estimation (non-convex, multi-optima) 

Created By  G-H Park 
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Global Optimum 

Created By  G-H Park 

Parameter Estimation (non-convex, multi-optima) 
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Data information content  

“Bucket Model”  

Simple two parameter Model 
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More than one main 
convergence region

1.- Regions of

     Attraction

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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More than one main 
convergence region

1.- Regions of

     Attraction

2.- Local

     Optima

Many small "pits" in 
each region

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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2.- Local

     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of

     Attraction

3.- Roughness Rough surface with 
discontinuous 
derivatives

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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3.- Roughness Rough surface with 
discontinuous 
derivatives

2.- Local

     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of

     Attraction

4.- Flatness Flat near optimum with 
significantly different 
parameter sensitivities

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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4.- Flatness Flat near optimum with 
significantly different 
parameter sensitivities

3.- Roughness Rough surface with 
discontinuous 
derivatives

2.- Local

     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of

     Attraction

Difficulties in Optimization 

5.- Shape Long and curved 
ridges

Duan, Gupta, and Sorooshian, 1992, WRR 
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Optimization Strategy – Local Direct Search 

Calibration of the Sacramento Model 

Downhill Simplex Method, Nelder & Mead, 1965 

Duan, Gupta, and Sorooshian, 1992, WRR 
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The SCE-UA Algorithm … 

(1992) 

Duan, Gupta, and Sorooshian, 1992, WRR 
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The SCE-UA Algorithm … 

Duan, Sorooshian, and Gupta 1992, WRR 

The Shuffled Complex Evolution Algorithm 
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The Concept Behind SCE Method 
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The Concept Behind SCE Method 
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The Concept Behind SCE Method 



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

The Concept Behind SCE Method 
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SCE Method – How it works … 
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Shuffled Complex Evolution (SCE-UA) 
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Global Optimization – The SCE-UA Algorithm 

Simplex 

Method 

Shuffled 

Complex 

Evolution 

(SCE-UA) 

Duan, Gupta & Sorooshian, 1992, WRR 
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Evolving Directions 

 Advances in Parameter Estimation 
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Land-Surface Model  
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 Multi-Objective  Approaches   

M() 

Model 

Radiation 

Inputs  Outputs  
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Multi-Objective Optimization Problem 

MOCOM Algorithm: 

Does NOT require conversion 

to a sequence of single optimization problems 

Simultaneously finds  

several Pareto Solutions  

in a Single Optimization 
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ARM-CART SGP Site 

100 km 

Grid: ~100,000 km2 

Luis A. Bastidas Z.  (lucho@hwr.arizona.edu)  
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AGU Monograph – Now Available 
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End of Lecture I   

Thank You For Listening  

The Rio Grande River,  NM   Photo:  J. Sorooshian  2005 
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 Additional Slides 

Backup Material  
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UCt 

UM 

LM 

Streamflow 

Rainfall 

percolation 

LCt 

UK 

LK 

PD = f(Z, X) 

A look into the “heart” of  R-R Models    

Percolation Process is the 

Core element in Partitioning 

the rain between the various 

stores  

PD = f(Z, X) 
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Free water 

Tension water 

Tension water 

Percolation 

RATE=PBASE(1+ZPERC*DEFR REXP) 

NWS Soil Moisture Accounting Model: SMA-NWSRFS 

Nonlinear structure with large number of parameters 
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Parameter Uncertainty Methods 

(1) First-order approximations near global optimum (Kuczera etal)  

 Limitations 

• Assumes Model is Linear 

• Assumes Posterior Dist. Guassian  

 

(2) Generalized Likelihood Uncertainty Estimation (GLUE) 
method (Beven and co-workers) 

  

 

 

(3) Markov Chain Monte Carlo (MCMC) methods 

 (Vrugt and others) 
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SCE-UA only solves for Mode of Distribution 

Probability distribution 

to be maximized  
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 Shuffled Complex Evolution Metropolis 

SCE SCEM Vrugt, Gupta, Bouten & Sorooshian 

WRR 2003 
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 Need estimates of the prediction uncertainty 

*
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Flow Ranges instead of point estimates  
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Multi-Criteria Calibration Concept 

θ1  

θ2  

F1(θ) 

F2(θ) 
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Multi-Criteria Calibration Approach 

X1 

X2 

X3 
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“Semi-distributed”  Hydrologic Models 


