

2458-1

Workshop on GNSS Data Application to Low Latitude Ionospheric Research

6 - 17 May 2013

Calculation of GPS PNT Solution

John F. Raquet Air Force Institute of Technology USA

Raquet, 2012	
Receive	er Clock Errors
One-Dimens	ional Example (3/3)
 Here are the measure 	ments we have:
Pseudorange?	$1 = 330 \times 10 = 3300 = R_1'$
Pseudorange	$2 = 330 \times 9 = 2970 = R_2'$
 From the pseudorange 	equation:
$R_1' = v_{sound} \left(\Delta t_1 + \delta t \right)$	$= x + v_{sound} \delta t = 3300$
$R_2' = v_{sound} \left(\Delta t_2 + \delta t \right)$	$) = 990 - x + v_{sound} \delta t = 2970$
 Rearranging terms we 	get
$x + v_{sour}$	$d_{d}\delta t = 3300$
$x - v_{sour}$	$d_{d}\delta t = -1980$
 We can then solve for 	the two unknowns
$\delta t =$	8 seconds Does this work?
x = 6	560 m

	Pseudorange	Carrier-Phase
Type of measurement	Range (absolute)	Range (ambiguous)
Measurement precision	~1 m	~0.01 m
Robustness	More robust	Less robust (cycle slips possible)
		Necessary for high precision GPS

39

Mean anomaly M varies linearly with time (unlike E or v), so it can be easily calculated

$$M(t) = M_0 + n(t - t_0)$$
$$M_0 = M(t_0)$$
$$\mu$$

 $n = \sqrt{\frac{\mu}{a^3}}$ = mean motion Eccentric anomaly and mean anomaly related through Kepler's equation

$$M = E - e\sin E$$

- Finally, true anomaly calculated from arctangent* function, using $\sin v = \frac{\sqrt{1 - e^2} \sin E}{1 - e \cos E}$ $\cos v = \frac{\cos E - e}{1 - e \cos E}$
 - *Be sure to use the 4-quadrant arctangent function (atan2 in MATLAB).

. Raquet, 2012	GPS Ephemeris Data	
(From Navigation Message)		
• For d	lefining orbit shape and timing	
	t_{0} = Reference time of ephemeris (sec)	
	\sqrt{a} = Square root of semi - major axis (m ^{1/2})	
	<i>e</i> = Eccentricity	
	M_0 = Mean anomaly at time t_{0_c} (rad)	
 For d 	lefining orientation/position of orbit <i>i</i> ₀ = inclination at time <i>t</i> ₀ (rad)	
	Ω_0 = Longitude of ascending node at t_0 (rad)	
	ω = Argument of perigee at t_{0_c} (rad)	
Corre	ection Terms	
	\dot{i} = Rate of change of inclination (rad/sec)	
	$\dot{\Omega}$ = Rate of change of Ω (rad/sec)	
	Δn = Mean motion correction (rad/sec)	
	C_{uc}, C_{us} = Argument of latitude correction coefficients	
	C_{rc}, C_{rs} = Orbital radius correction coefficients	
	C_{ic}, C_{is} = Inclination correction coefficients	

Pseudorange Equation	
•	The pseudorange is the sum of the true range plus the receiver
	clock error
	 We're assuming (for now) that the receiver clock error is the only remaining error
	SV clock error has been corrected for
	 All other errors are deemed negligible (or have been corrected)
	$\rho_{j} = \sqrt{(x_{j} - x_{u})^{2} + (y_{j} - y_{u})^{2} + (z_{j} - z_{u})^{2}} + c\delta t_{u}$
	$=f(x_u, y_u, z_u, \delta t_u)$
	ρ_{i} = pseudorange measurement from satellite j (m)
	$x_i, y_i, z_i = \text{ECEF}$ position of satellite j (m)
	$x_u, y_u, z_u = \text{ECEF position of user (m)}$
	δt_u = receiver clock error (sec)
•	For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P
	······································

71

• L1 ionospheric delay calculated by

$$\begin{split} \Delta S_{iono,corr_{L1}} &= \left(\frac{f_2^2}{f_2^2 - f_1^2}\right) \left(\rho_{L1} - \rho_{L2}\right) \\ \Delta S_{iono,corr_{L1}} &= \text{L1ionospheric delay (m)} \\ f_1, f_2 &= \text{L1and L2 carrier frequencies} \\ \rho_{L1}, \rho_{L2} &= \text{L1and L2 pseudorange measurements} \end{split}$$

$$\text{L2 ionospheric delay can be calculated by} \\ \Delta S_{iono,corr_{L2}} &= \left(\frac{f_1}{f_2}\right)^2 \Delta S_{iono,corr_{L1}} \\ \text{e lonospheric-free pseudorange:} \\ \rho_{IF} &= \frac{\rho_{L2} - \gamma \rho_{L1}}{1 - \gamma}, \qquad \gamma = \left(\frac{f_{L1}}{f_{L2}}\right)^2 = \left(\frac{77}{60}\right)^2 \end{split}$$

• Multipath and measurement noise will corrupt this measurement of ionosphere

F. Raquet, 2012	ositi	oning Exampl	e
_	rement 529 -/ Initia	Ase to give an exar time (GPS week second 4882278.667 4109624.5 al guess of position error by ~50 km) Pseudorange 25022759.323 22075351.532 21929350.580 22677087.545 21039894.608 24757444.127 24032696.422	nds): 220937

John F. Raquet,	2012							82	
E	Example: Solution and Residuals (Iterations 1 and 2)								
lter	Iteration 1 $\Delta \mathbf{x} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \Delta \boldsymbol{\rho}$					ation 2	$\Delta \mathbf{x} = \left(\mathbf{H}^{T} \right)$	$(\mathbf{H})^{-1}\mathbf{H}^T\Delta\mathbf{\rho}$	
$\mathbf{\hat{x}}_{u_{new}}$	$\hat{\mathbf{x}}_{u_{new}} = \hat{\mathbf{x}}_{u_{old}} + \Delta \mathbf{x}$				$\mathbf{\hat{x}}_{u_{new}}$	$= \hat{\mathbf{X}}_{u_{old}} +$	$-\Delta \mathbf{x}$		
ź	ŝ,	Â,	Δ	x	ź	ŝ,	Â,	$\Delta \mathbf{x}$	
506	6068.143	506071.52	-3.3	386	5060	075.869	506068.143	7.726	
-4882	283.665	-4882278.66	57 -4.9	998	-48822	274.608 -	4882283.665	9.057	
4059	632.252	4109624.55	57 -49992.3	305	40590	622.275	4059632.252	-9.977	
	63.927	15.80	07 48.3	120		13.120	63.927	-50.807	
Residua	Residuals: $\mathbf{v} = \Delta \boldsymbol{\rho} - \mathbf{H} \Delta \mathbf{x}$				Residua	ls: v	$v = \Delta \rho - \mathbf{E}$	I∆x	
PRN	V	Δρ	HΔx		PRN	V	Δρ	HΔx	
12	9.162	28722.655	28713.493		12	-4.208	42.716	46.924	
2	1.699	-18123.179	-18124.878		2	0.220	50.771	50.551	
26	-6.800	10069.682	10076.482		26	-0.248	47.662	47.910	
15	-0.178	15435.335	15435.513		15	2.103	49.711	47.609	
29	4.853	-36060.657	-36065.510		29	-1.946	33.435	35.381	
21	-3.299	-19242.953	-19239.654		21	0.431	39.703	39.272	
30	-5.436	9091.990	9097.426		30	3.648	44.773	41.125	

Convergence	
Practically speaking, getting the system to conv with GNSS is easy	/erge
 Example showed case where initial guess was 50 km error 	ı in
 Can start with the center of the Earth as a guess, and would only add an iteration or two 	l it
 Normally, a receiver will use its last solution as a star point, so only a single iteration is necessary 	ting
Nonlinearities (which drive the need for iteration more severe when dealing with pseudolites – Much closer to receiver than satellite	ו) are
 H matrix varies more quickly as a function of position 	

 Measurement Domain vs. Position Domain Pseudorange errors are errors in "measurement domain" Errors in the measurements themselves UERE is one example Ultimately, we'd like to know errors in "position domain" The position errors that result when using the measurements Errors in position domain are different than measurement errors! Can be larger 	_
 Errors in the measurements themselves UERE is one example Ultimately, we'd like to know errors in "position domain" The position errors that result when using the measurements Errors in position domain are different than measurement errors! Can be larger 	
 Ultimately, we'd like to know errors in "position domain" The position errors that result when using the measurements Errors in position domain are different than measurement errors! Can be larger 	
 Can be smaller Dependent on measurement geometry 	
 Mathematical representation We have covariance matrix of measurements (C_ρ). We want covariance matrix of calculated position and clock error (C_x) In GPS applications, this problem is approached using concept called Dilution of Precision (DOP) 	

John F. Raquet, 2012 Obtaining C_x from Least-Squares Analysis (1	90 /2)
• Definition of $\mathbf{C}_{\mathbf{x}}$ $C_{\mathbf{x}} = \begin{bmatrix} \sigma_{x_u}^2 & \sigma_{x_u y_u} & \sigma_{x_u z_u} & \sigma_{x_u \delta t_u} \\ \sigma_{x_u y_u} & \sigma_{y_u}^2 & \sigma_{y_u z_u} & \sigma_{y_u \delta t_u} \\ \sigma_{x_u z_u} & \sigma_{y_u z_u} & \sigma_{z_u}^2 & \sigma_{z_u \delta t_u} \\ \sigma_{x_u \delta t_u} & \sigma_{y_u \delta t_u} & \sigma_{z_u \delta t_u} & \sigma_{\delta t_u}^2 \end{bmatrix}$	
where, for example,	
$\sigma_{x_u}^2 = E\left[\left(x_u - E[x_u]\right)^2\right]$	
= variance of x_u	
$\sigma_{x_u y_u} = E\left[\left(x_u - E[x_u]\right)\left(y_u - E[y_u]\right)\right]$	
= covariance of x_u and y_u	
• Definition of $\mathbf{C}_{\mathbf{p}} = \begin{bmatrix} \sigma_{\rho_1}^2 & \sigma_{\rho_1\rho_2} & \cdots & \sigma_{\rho_1\rho_n} \\ \sigma_{\rho_1\rho_2} & \sigma_{\rho_2}^2 & \cdots & \sigma_{\rho_2\rho_n} \\ \vdots & \vdots & \ddots & \sigma_{\rho_3\rho_n} \\ \sigma_{\rho_1\rho_n} & \sigma_{\rho_2\rho_n} & \sigma_{\rho_3\rho_n} & \sigma_{\rho_n}^2 \end{bmatrix}$	

