Workshop on GNSS Data Application to Low Latitude Ionospheric Research

Dr. John F. Raquet
Air Force Institute of Technology
Advanced Navigation Technology (ANT) Center

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

1. Positioning Using Time-of-Arrival
2. GPS Receiver Measurements
3. Coordinate Frames
4. Calculation of Satellite Position
5. GPS Navigation Solution
6. Dilution of Precision

John F. Raquet, 2012
 Ranging Using Time-Of-Arrival

- Time-of-arrival (TOA) is one method that can be used to perform positioning
- Basic concept
- You must know
- When a signal was transmitted
- How fast the signal travels
- Time that the signal was received
- Then you can determine how far away you are from the signal emitter
- Foghorn example
- Assume there is a foghorn that goes off at exactly 12:00:00 noon every day
- You know that the velocity of sound around the foghorn is $330 \mathrm{~m} / \mathrm{sec}$
- You have a device that measures the time when the foghorn blast is received, and it says it heard a foghorn blast at 12:00:03
- What is the distance between the foghorn and the foghorn "receiver"?
- Now that you know how far you are from the foghorn, the question is, "Where are you?"

Two-Dimensional Positioning Using Single Range Measurement

- Range between you and the foghorn (we'll call it foghorn \#1) is 990m

- Unable to determine exact position in this case

Twom F Faquet, 2012

- Now, you take a measurement from foghorn \#2 at 12:00:01.5 (for a range of 495 m)
- Yields two potential solutions
- How would you determine the correct solution?

- The foghorn example assumed that the foghorn "receiver" had a perfectly synchronized clock, so the measurements were perfect
- What happens if there is an unknown receiver clock error?
- Effect on range measurement
- Without clock error

$$
\begin{aligned}
R=v_{\text {sound }} \Delta t \quad v_{\text {sound }} & =\text { velocity of sound } \\
\Delta t & =\text { transmit/receive time difference }
\end{aligned}
$$

- With clock error δt

$$
\begin{aligned}
& R^{\prime}=v_{\text {sound }}(\Delta t+\delta t) \\
& \text { where } \\
& R^{\prime}=\text { range with error (pseudo - range) }
\end{aligned}
$$

Receiver Clock Errors
One-Dimensional Example (1/3)

- Now, we'll look at the foghorn example, except in only one dimension
- The foghorn(s) and receiver are constrained to be along a line
- We want to determine the position of the receiver on that line

Foghorn
1

- If the receiver measured a signal at 12:00:10, where is it on the line?
- Now, assume an unknown clock bias $8 t$ in the clock used by the foghorn receiver
- Your foghorn receiver measures a foghorn blast at 12:00:10
- What can you say about where you are?

Jomp E Faquet, 2012
Receiver Clock Errors
One-Dimensional Example (2/3)

- Clearly, more information is needed
- Assume that there is a second foghorn located 990 m away from the first

- You receive a signal from the second foghorn at 12:00:09
- What can you tell about where you are at this point?

Receiver Clock Errors One-Dimensional Example (3/3)

- Here are the measurements we have:

$$
\begin{aligned}
& \text { Pseudorange } 1=330 \times 10=3300=R_{1}^{\prime} \\
& \text { Pseudorange } 2=330 \times 9=2970=R_{2}^{\prime}
\end{aligned}
$$

- From the pseudorange equation:

$$
\begin{aligned}
& R_{1}^{\prime}=v_{\text {sound }}\left(\Delta t_{1}+\delta t\right)=x \quad+v_{\text {sound }} \delta t=3300 \\
& R_{2}^{\prime}=v_{\text {sound }}\left(\Delta t_{2}+\delta t\right)=990-x+v_{\text {sound }} \delta t=2970
\end{aligned}
$$

- Rearranging terms we get

$$
\begin{aligned}
& x+v_{\text {sound }} \delta t=3300 \\
& x-v_{\text {sound }} \delta t=-1980
\end{aligned}
$$

- We can then solve for the two unknowns

$$
\begin{aligned}
& \delta t=8 \text { seconds } \quad \text { Does this work? } \\
& x=660 \mathrm{~m}
\end{aligned}
$$

Receiver Clock Errors
Extending F Raveut, 2012 to Three Dimensions

- In the single-dimensional case
- We needed two measurements to solve for the two unknowns, x and δt.
- The quantities x and ($990-\mathrm{x}$) were the "distances" between the position of the receiver and the two foghorns.
- In three-dimensional case
- We need four measurements to solve for the four unknowns, x, y, z, and ot.
- The distances between receiver and satellite are not linear equations (as was case in single-dimensional case).
- The four equations need to be solved simultaneously, for pseudorange measurements $\mathrm{R}_{1}{ }^{\prime} \ldots \mathrm{R}_{4}{ }^{\prime}$ and transmitter positions ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) \ldots\left(\mathrm{x}_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$:

$$
\begin{aligned}
& R_{1}^{\prime}=\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}}+c \delta t \\
& R_{2}^{\prime}=\sqrt{\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}+\left(z-z_{2}\right)^{2}}+c \delta t \\
& R_{3}^{\prime}=\sqrt{\left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}+\left(z-z_{3}\right)^{2}}+c \delta t \\
& R_{4}^{\prime}=\sqrt{\left(x-x_{4}\right)^{2}+\left(y-y_{4}\right)^{2}+\left(z-z_{4}\right)^{2}}+c \delta t
\end{aligned}
$$

Overview

1. Positioning Using Time-of-Arrival
2. GPS Receiver Measurements
3. Coordinate Frames
4. Calculation of Satellite Position
5. GPS Navigation Solution
6. Dilution of Precision

GPS Measurements (Overview)

- Each separate tracking loop typically can give 4 different measurement outputs
- Pseudorange measurement
- Carrier-phase measurement (sometimes called integrated Doppler)
- Doppler measurement
- Carrier-to-noise density $\mathrm{C} / \mathrm{N}_{0}$
- Actual output varies depending upon receiver
- Ashtech Z-surveyor (or Z-12) gives them all
- RCVR-3A gives just C/N N_{0}
- Note: We're talking here about raw measurements
- Almost all receivers generate navigation processor outputs (position, velocity, heading, etc.)

Measurement Rates and Timing

- Most receivers take measurements on all channels/ tracking loops simultaneously
- Measurements time-tagged with the receiver clock (receiver time)
- The time at which a set of measurements is made is called a data epoch.
- The data rate varies depending upon receiver/ application. Typical data rates:
- Static surveying: One measurement every 30 seconds (120 measurements per hour)
- Typical air, land, and marine navigation: 0.5-2 measurement per second (most common)
- Specialized high-dynamic applications: Up to 50 measurements per second (recent development)

GPS Pseudorange Measurement

- Pseudorange is a measure of the difference in time between signal transmission and reception

Effect of Clock Errors on Pseudorange

- Since pseudorange is based on time difference, any clock errors will fold directlv into pseudoranae

- Small clock errors can result in large pseudorange errors (since clock errors are multiplied by speed of light)
- Satellite clock errors ($\delta t_{s v}$) are very small
- Satellites have atomic time standards
- Satellite clock corrections transmitted in navigation message
- Receiver clock ($\delta t_{r c v r}$) is dominant error

Doppler Shift

- For electromagnetic waves (which travel at the speed of light), the received frequency f_{R} is approximated using the standard Doppler equation

$$
f_{R}=f_{T}\left(1-\frac{\left(\boldsymbol{v}_{\boldsymbol{v}} \cdot \boldsymbol{a}\right)}{c}\right)
$$

$f_{R}=$ received frequency (Hz)
$f_{T}=$ transmitted frequency (Hz)
$\boldsymbol{v}_{r}=$ satellite-to-user relative velocity vector (m / s)
$a=$ unit vector pointing along
line- of - sight from user to SV
$c=$ speed of light (m / s)

- Note that v_{r} is the (vector) velocity difference

$$
\begin{aligned}
\boldsymbol{v}_{r} & =\boldsymbol{v}-\dot{\boldsymbol{u}} \\
\boldsymbol{v} & =\text { velocity vector for satellite }(\mathrm{m} / \mathrm{s}) \\
\dot{\boldsymbol{u}} & =\text { velocity vector for user }(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

- The Doppler shift Δf is then

$$
\Delta f=f_{R}-f_{T} \quad(\mathrm{~Hz})
$$

Doppler Measurement

- The GPS receiver locks onto the carrier of the GPS signal and measures the received signal frequency
- Relationship between true and measured received signal frequency: f_{R}

$$
f_{R}=f_{R_{\text {mass }}}\left(1+\delta \dot{t}_{r c u r}\right)
$$

$f_{R}=$ true received signal frequency (Hz)
$f_{R_{\text {mas }}}=$ measured received signal frequency (Hz)
$\delta \dot{t}_{\text {rcur }}=$ receiver clock drift rate ($\mathrm{sec} / \mathrm{sec}$)

- Doppler measurement formed by differencing the measured received frequency and the transmit frequency:

$$
\Delta f_{\text {meas }}=f_{R_{\text {meas }}}-f_{T}
$$

- Note: transmit frequency is calculated using information about SV clock drift rate given in navigation message

Doppler Measurement Sign Convention

- Sign convention based on Doppler definition
- A satellite moving away from the receiver (neglecting clock errors) will have a negative Doppler shift

$$
\begin{aligned}
& f_{R_{\text {mas }}}<f_{T} \\
& \Delta f_{\text {meas }}=f_{R_{\text {mas }}}-f_{T}<0
\end{aligned}
$$

- Sign convention used for NovAtel (and possibly other) receivers
- Sign convention based on relationship between Doppler and pseudorange
- Doppler is essentially a measurement of the rate of change of the pseudorange
- A satellite moving away from the receiver (neglecting clock errors) will have a positive Doppler measurement value
- More common sign convention for GPS receivers (Ashtech, Trimble, and others)
- Carrier-phase measurement follows same convention as Doppler measurement (normally)

Carrier-Phase (Integrated Doppler) Measurement

- The carrier-phase measurement $\phi_{\text {meas }}(t)$ is calculated by integrating the Doppler measurements

- The integer portion of the initial carrier-phase at the start of the integration $\left(\phi_{\text {integer }}\left(t_{0}\right)\right.$) is known as the "carrierphase integer ambiguity"
- Because of this ambiguity, the carrier-phase measurement is not an absolute measurement of position
- Advanced processing techniques can be used to resolve these carrier-phase ambiguites (carrier-phase ambiguity resolution)
- Alternative way of thinking: carrier-phase measurement is the "beat frequency" between the incoming carrier signal and receiver generated carrier.

Jonn F. Raquet, 2012 Comparison Between Pseudorange and Carrier- Phase Measurements24 Type of measurement Pseudorange Carrier-Phase Measurement precision (absolute) Range (ambiguous) Robustness $\sim 1 \mathrm{~m}$ $\sim 0.01 \mathrm{~m}$

Carrier-to-Noise Density ($\mathrm{C} / \mathrm{N}_{0}$)

- The carrier-to-noise density is a measure of signal strength
- The higher the $\mathrm{C} / \mathrm{N}_{0}$, the stronger the signal (and the better the measurements)
- Units are dB-Hz
- General rules-of-thumb:
- $\mathrm{C} / \mathrm{N}_{0}>40$: Very strong signal
- $32<\mathrm{C} / \mathrm{N}_{0}<40$: Marginal signal
- $\mathrm{C} / \mathrm{N}_{0}<32$: Probably losing lock
- $\mathrm{C} / \mathrm{N}_{0}$ tends to be receiver-dependent
- Can be calculated many different ways
- Absolute comparisons between receivers not very meaningful
- Relative comparisons between measurements in a single receiver are very meaningful

Overview

1. Positioning Using Time-of-Arrival
2. GPS Receiver Measurements
3. Coordinate Frames
4. Calculation of Satellite Position
5. GPS Navigation Solution
6. Dilution of Precision

Coordinate Frames

- Giving a set of three coordinates is not sufficient for specifying a position
- Examples:
- [-1485881.48699, -5152018.35300, 3444641.84728]
- [-1.85158430, 0.57408361, 1255.323]
- [-106.08796571, 32.89256771, 1255.323]
- The coordinate frame must also be specified
- Choice of a coordinate frame is dependent upon the application
- Most applications can use any defined coordinate frame, but usually one will be more straightforward than others
- Primary coordinate frames used for GPS
- Earth-Centered Earth-Fixed (ECEF)
- Geodetic (Longitude - Latitude - Altitude)

Earth-Centered Earth-Fixed (ECEF) Coordinate Frame

- ECEF frame is
- Cartesian (orthogonal) reference frame
- It is a rotating reference frame (w.r.t. inertial space), rotating at earth rate
- Advantages
- Easy to calculate distances and vectors between two points
- Usually computationally efficient
- Disadvantages
- Not geographically intuitive

Geodetic Coordinate Frame (WGS-84 Ellipsoid)
(Wom F Rasome:2012

- There are different ways to describe height (or altitude)
- Distance above the surface of the earth
- Definition based on gravity
- Geoid: surface of constant gravitational potential
- Geoid is a function of topography, earth density variations, and earth rotation rate
- Geodesy: study of the geoid
- Definition based upon geometry
- The geoid can be fit to an ellipsoid (a rotated ellipse)
- One particular ellipsoidal fit of the geoid is called the WGS-84 ellipsoid

John F. Raquet, 2012

Name

Semi-major axis
Semi-minor axis
Eccentricity
Earth rotation rate
Speed of light
Gravitational parameter
Flattening

Symbol
a
b $\quad 6356.7523142 \mathrm{~km}$
e $\quad 0.0818191908426$
$\Omega_{\varepsilon} \quad 7.2921151467 \mathrm{E}-5 \mathrm{rad} / \mathrm{s}$
C $\quad 299792458 \mathrm{~m} / \mathrm{s}$
$3.986005 \mathrm{E} 14 \mathrm{~m}^{3} / \mathrm{s}^{2}$
f $\quad 0.00335281066475$

Geodetic Coordinate Units

- Normally, ellipsoidal altitude (h) is expressed in meters (m).
- Latitude (ϕ) and Longitude (λ) can be expressed in different units
- Radians
- Least ambiguous, useful for programming
- Not as easily recognized geographically
- Decimal degrees
- To convert from radians to decimal degrees, multiply by $180 / \pi$
- Not very common
- Degrees and decimal minutes
- Integer number of degrees
- Decimal number of minutes (1 minute $=1 / 60$ degree)
- Example: 46.596 decimal degrees is $46^{\circ} 35.76^{\prime}$ (reads 46 degrees, 35.76 minutes)
- Degrees, minutes, and seconds
- Integer number of degrees
- Integer number of minutes
- Decimal number of seconds (1 second $=1 / 60$ minute)
- Example: 46.596 decimal degrees is $46^{\circ} 35^{\prime} 45.6^{\prime \prime}$

Overview

1. Positioning Using Time-of-Arrival
2. GPS Receiver Measurements
3. Coordinate Frames
4. Calculation of Satellite Position
5. GPS Navigation Solution
6. Dilution of Precision

Determining Satellite Position

- In order to determine user position, one must calculate satellite position
- Satellites orbits are primarily based on the Earth's gravity field
- Other forces acting on satellite
- Gravity from sun, moon, and other planets
- Atmospheric drag
- Solar pressure
- Torques due to Earth's magnetic field
- Orbits are highly predictable
- Prediction accuracy degrades with time
- Orbits can be described by using a set of "orbital parameters"
- Six classic orbital parameters
- Additional parameters to handle orbit variations over time

Classical Orbital Elements (1/2)

- Classical orbital elements describe
- Shape of the satellite's orbit (and where the satellite would be on that shape)
- Position of the orbit relative to inertial (or Earth-fixed) space
- Describing the orbit shape with a, e, and τ

- If given a specific time, you can calculate the position of the satellite on this ellipse

John F. Raquet, 2012
Relationship Between True, Eccentric, and Mean Anomaly (1/2)

- True anomaly v used to directly calculate satellite position on ellipse
- Geometrical relationship between v and eccentric anomaly E:

- Mean anomaly M varies linearly with time (unlike E or v), so it can be easily calculated

$$
\begin{aligned}
M(t) & =M_{0}+n\left(t-t_{0}\right) \\
M_{0} & =M\left(t_{0}\right) \\
n & =\sqrt{\frac{\mu}{a^{3}}}=\text { mean motion }
\end{aligned}
$$

- Eccentric anomaly and mean anomaly related through Kepler's equation

$$
M=E-e \sin E
$$

- Finally, true anomaly calculated from arctangent* function, using

$$
\sin v=\frac{\sqrt{1-e^{2}} \sin E}{1-e \cos E} \quad \cos v=\frac{\cos E-e}{1-e \cos E}
$$

*Be sure to use the 4-quadrant arctangent function (atan2 in MATLAB).

John F. Raquet, 2012
 Where Do We Get the Ephemeris Data? Legacy L1 and L2 Signal Breakdown

- Note: 50 bps navigation message modulated on all of the codes
- L1 signal
- $\mathrm{P}(\mathrm{Y})$-code
- C/A-code modulated on carrier that is 90° out of phase from P-code carrier

$$
\begin{aligned}
s_{L 1}(t) & =A_{P_{L 1}} Y(t) N(t) \cos \left(\omega_{1} t\right)+A_{C / A} C A(t) N(t) \sin \left(\omega_{1} t\right) \\
N(t) & =50 \text { bps navigation message } \\
A_{P_{L 1}} & =\text { Amplitude of L1P - code signal } \approx-163 \mathrm{dBW} \\
A_{C / A} & =\text { Amplitude of C/A }- \text { code signal } \approx-160 \mathrm{dBW} \\
\omega_{1} & =2 \pi f_{L 1}
\end{aligned}
$$

- L2 signal

P(Y)-Code

- P-code only $s_{L 2}(t)=A_{P_{L 2}} Y(t) N(t) \cos \left(\omega_{2} t\right)$
$A_{P_{L 2}}=$ Amplitude of L2P - code signal $\approx-166 \mathrm{dBW}$
$\omega_{2}=2 \pi f_{L 2}$

Data Format of Subframes 1, 2, 3, and 5

Obtained from SPS Signal Spec (http://www.spacecom.af.mil/usspace/gps_support/documents/SPSMAIN.pdf)

Vom F Rapent2012 GPS Ephemeris Data (From Navigation Message)

- For defining orbit shape and timing

$$
\begin{aligned}
t_{0_{e}} & =\text { Reference time of ephemeris }(\mathrm{sec}) \\
\sqrt{a} & =\text { Square root of semi - major axis }\left(\mathrm{m}^{1 / 2}\right) \\
e & =\text { Eccentricity } \\
M_{0} & =\text { Mean anomaly at time } t_{0_{e}}(\mathrm{rad})
\end{aligned}
$$

- For defining orientation/position of orbit
$i_{0}=$ inclination at time $t_{0_{e}}(\mathrm{rad})$
$\Omega_{0}=$ Longitude of ascending node at $t_{0}(\mathrm{rad})$
$\omega=$ Argument of perigee at $t_{0_{e}}(\mathrm{rad})$
- Correction Terms
$\dot{i}=$ Rate of change of inclination (rad/sec)
$\dot{\Omega}=$ Rate of change of $\Omega(\mathrm{rad} / \mathrm{sec})$
$\Delta n=$ Mean motion correction (rad/sec)
$C_{u c}, C_{u s}=$ Argument of latitude correction coefficients
$C_{r c}, C_{r s}=$ Orbital radius correction coefficients
$C_{i c}, C_{i s}=$ Inclination correction coefficients

John F. Raquet, 2012 Sample E (PRN 1	meris Values Jan 1999)	43
```prn: 10 week: 993 t0e: 266400 sqrt_a: 5.1537e+003 e: 0.0032 M0: -0.1952 i0: 0.9694 Omega0: -0.7958 omega: -0.2041 idot: -3.0894e-010 Omegadot: -8.4571e-009 delta_n: 4.6345e-009```		

p
qrt_a: 5.1537e+003
e: 0.0032
M0: -0. 1952
i0: 0.9694
Omega0: -0.7958
omega: -0.2041
idot: -3.0894e-010
Omegadot: -8.4571e-009
delta_n: 4.6345e-009

```
 Cuc: -3.9022e-006
 Cus: 2.3618e-006
 Crc: 339.4063
 Crs: -73.9375
 Cic: 1.8626e-009
 Cis: -3.9116e-008
toc: 266400
af0: 3.1394e-005
af1: 5.6843e-013
 af2: 0
 tgd: -1.8626e-009
valid: 1
```


## Calculating Satellite Position

- Set of equations for calculating SV position from ephemeris is given in ICD-GPS-200C (Table 20-IV)
- IS-GPS-200D can be found at
www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf
- Comments
- Make sure that the correct quadrant is determined when calculating true anomaly (use "atan2" function or equivalent)
- Output $\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}$ are the ECEF coordinates of the SV antenna phase center at time t (in the ECEF coordinate frame at time t )

Variables obtained from navigation message highlighted with box: $\square$	
Table 20-IV. Elements of Coordinate Systems (sheet 1 of 2)	
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{c}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$A=(\sqrt{\mathrm{A}})^{2}$	Semi-major axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}^{3}}}$	Computed mean motion ( $\mathrm{rad} / \mathrm{sec}$ )
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{0 \text { os }}{ }^{\prime}$	Time from ephemeris reference epoch
* $\quad t$ is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, $t_{k}$ shall be the actual total time difference between the time $t$ and the epoch time $t_{o e}$, and must account for beginning or end of week crossovers. That is, if $t_{k}$ is greater than 302,400 seconds, subtract 604,800 seconds from $\mathrm{t}_{\mathrm{k}}$. If $\mathrm{t}_{\mathrm{k}}$ is less than $-302,400$ seconds, add 604,800 seconds to $\mathrm{t}_{\mathrm{k}}$.	

## IS-GPS-200D: Solving for Satellite Position (2 of 4)

Variables obtained from navigation message highlighted with box: $\square$		
Table 20-IV. Elements of Coordinate Systems (sheet 1 of 2) (continued)		
$\mathrm{n}=\mathrm{n}_{0}+\Delta \mathrm{n}$		Corrected mean
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{nt}_{\mathrm{k}}$		Mean anomaly
$M_{k}=E_{k}$ - 0 d $\sin E_{k}$	$\qquad$ See upcoming slide for how to solve for $\mathrm{E}_{\mathrm{k}}$	Kepler's Equatio by iteration) (rad
$v_{k}=\tan ^{-1}\left\{\frac{\sin v_{k}}{\cos v_{k}}\right.$	$\begin{aligned} & \text { For informational } \\ & \leftarrow \text { purposes only-not } \\ & \text { needed in calculations } \end{aligned}$	True Anomaly
$=\tan ^{-1}\left\{\frac{\sqrt{1-\left[0^{2}\right.}}{\left(\cos \mathrm{E}_{1}\right.}\right.$	$\left.\frac{\mathrm{E}_{\mathrm{k}} /\left(1-\left[\cos \mathrm{E}_{\mathrm{k}}\right)\right.}{\mathrm{c}) /\left(1-\left[\cos \mathrm{E}_{\mathrm{k}}\right)\right.}\right\} \leftarrow$	se four-quadrant ctan function atan2" in MATLAB)



## IS-GPS-200D: Solving for Satellite Position (4 of 4)

Variables obtained from navigation message highlighted with box: $\square$

Table 20-IV. Elements of Coordinate Systems (sheet 2 of 2) (continued)	
$\mathrm{i}_{\mathrm{k}}=\mathrm{i}_{0}+\mathrm{i}_{\mathrm{k}}+$ IDOT $\mathrm{t}_{\mathrm{k}}$	Corrected Inclination
$\left.\begin{array}{l} \mathrm{x}_{\mathrm{k}^{\prime}}=\mathrm{r}_{\mathrm{k}} \cos u_{\mathrm{k}} \\ \mathrm{y}_{\mathrm{k}}{ }^{\prime}=\mathrm{r}_{\mathrm{k}} \operatorname{sinu}_{\mathrm{k}} \end{array}\right\}$	Positions in orbital plane.
$\Omega_{\mathrm{k}}=\Omega_{0}+\left(\dot{\underline{\Omega}}-\dot{\Omega}_{e}\right) \mathrm{t}_{\mathrm{k}}-\dot{\Omega}_{\mathrm{e}} t_{\text {ce }}$	Corrected longitude of ascending node.
$\left.\begin{array}{l} x_{k}=x_{k}^{\prime} \cos \Omega_{k}-y_{k}^{\prime} \cos i_{k} \sin \Omega_{k} \\ y_{k}=x_{k} \sin \Omega_{k}+y_{k}{ }_{k}^{\prime} \cos i_{k} \cos \Omega_{k} \end{array}\right\}$	Earth-fixed coordinates.

## Solution to Kepler's Equation

- Kepler's equation, though simple in form, has no known closedform solution
- All solutions are iterative (or approximate)
- Newton's method

$$
\begin{aligned}
& E_{0}=M \\
& E_{j+1}=E_{j}+\frac{M-\left(E_{j}-e \sin E_{j}\right)}{1-e \cos E_{j}}
\end{aligned}
$$

- Method used in RCVR-3A software specification

$$
\begin{aligned}
& E_{0}=M+e \sin M \\
& E_{j+1}=\frac{e\left(\sin E_{j}-E_{j} \cos E_{j}\right)+M}{1-e \cos E_{j}}
\end{aligned}
$$

- RCVR-3A performs two iterations (i.e., stops calculating at $E_{2}$ )
- Don't confuse these subscripts with subscripts in ephemeris equations!


## Accounting for Signal Travel Time (1 of 3)

- Signal arrives at receiver after it is transmitted (due to signal travel time)
- Transmit time: Time the signal was transmitted
- Receive time: Time the signal was received
- Satellite position should be calculated based upon transmit time
- When measuring a signal, we don't really care what happened after that signal was transmitted
- Transmit time should be GPS system time (or as close to it as possible)
- Very good approximate value of transmit time obtained by subtracting pseudorange (expressed in seconds) from the receive time as indicated by the receiver clock
- Why?
- What other considerations do we need to make for signal travel time?


## Accounting for Signal Travel Time (2 of 3)

- Here's the situation, looking down at the North Pole
 transmit time, in ECEF coordinates at transmit time ( $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}$, and $z_{t}$ ) using ICD-GPS-200 equations
- Rotate into ECEF reference frame at the time of reception:

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{r} \\
y_{r} \\
z_{r}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right]} \\
\gamma=\dot{\Omega}_{e} t_{\text {prop }} \\
t_{\text {prop }}=\text { Signal propagation time }
\end{gathered}
$$

## Accounting for Signal Travel Time (3 of 3)

- Neglecting atmospheric delay, the signal propagation time is calculated by

$$
\begin{aligned}
t_{\text {prop }} & =\frac{\text { geometric range to satellite }}{\text { speed of light }} \\
& =\frac{\left|\boldsymbol{p}_{s v}-\boldsymbol{p}_{\text {revr }}\right|}{c} \\
\boldsymbol{p}_{s v} & =\text { satellite ECEF position vector } \\
\boldsymbol{p}_{\text {revr }} & =\text { receiver ECEF position vector }
\end{aligned}
$$

- Note that the satellite position is needed to calculate $t_{\text {prop }}$ (and vice-versa)
- Satellite position in ECEF coordinates at transmit time is sufficiently accurate ( $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}$, and $\mathrm{z}_{\mathrm{t}}$ )
- Note that receiver position must be known
- Can be approximate


## Overview

1. Positioning Using Time-of-Arrival
2. GPS Receiver Measurements
3. Coordinate Frames
4. Calculation of Satellite Position
5. GPS Navigation Solution
6. Dilution of Precision

## Pseudorange Equation

- The pseudorange is the sum of the true range plus the receiver clock error
- We're assuming (for now) that the receiver clock error is the only remaining error
- SV clock error has been corrected for
- All other errors are deemed negligible (or have been corrected)

$$
\begin{aligned}
\rho_{j} & =\sqrt{\left(x_{j}-x_{u}\right)^{2}+\left(y_{j}-y_{u}\right)^{2}+\left(z_{j}-z_{u}\right)^{2}}+c \delta t_{u} \\
& =f\left(x_{u}, y_{u}, z_{u}, \delta t_{u}\right) \\
\rho_{j} & =\text { pseudorange measurement from satellite } j(\mathrm{~m}) \\
x_{j}, y_{j}, z_{j} & =\text { ECEF position of satellite } j(\mathrm{~m}) \\
x_{u}, y_{u}, z_{u} & =\text { ECEF position of user (m) } \\
\delta t_{u} & =\text { receiver clock error (sec) }
\end{aligned}
$$

- For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P)


## Statement of the Problem

- At a given measurement epoch, the GPS receiver generates $n$ pseudorange measurements (from $n$ different satellites)

$$
\begin{aligned}
& \rho_{1}=\sqrt{\left(x_{1}-x_{u}\right)^{2}+\left(y_{1}-y_{u}\right)^{2}+\left(z_{1}-z_{u}\right)^{2}}+c \delta t_{u} \\
& \rho_{2}=\sqrt{\left(x_{2}-x_{u}\right)^{2}+\left(y_{2}-y_{u}\right)^{2}+\left(z_{2}-z_{u}\right)^{2}}+c \delta t_{u} \\
& \rho_{3}=\sqrt{\left(x_{3}-x_{u}\right)^{2}+\left(y_{3}-y_{u}\right)^{2}+\left(z_{3}-z_{u}\right)^{2}}+c \delta t_{u} \\
& \quad \vdots \\
& \rho_{n}=\sqrt{\left(x_{n}-x_{u}\right)^{2}+\left(y_{n}-y_{u}\right)^{2}+\left(z_{n}-z_{u}\right)^{2}}+c \delta t_{u}
\end{aligned}
$$

- Goal: Determine user position and clock error, expressed in state-vector form as



## Solving the Pseudorange Equations

- The $n$ pseudorange equations are non-linear (so no easy solution)
- Ways to solve
- Closed form solutions
- Complicated
- May not give as much insight
- Iterative techniques based on linearization
- Often using least-squares estimation
- Arguably the simplest approach
- Approach covered in this course
- Kalman filtering
- Similar to least-squares approach, except with additional ability to handle measurements over a period of time
- Will discuss briefly
- What is linearization?
- Pick a nominal (or approximate) solution
- Linearize about that point, resulting in a set of linear equations
- Solve the linear equations
- Will use Taylor series expansion for linearization


## Taylor Series Expansion (1/2)

- Taylor series expansion (1 variable)

$$
f(a+\Delta a)=f(a)+\Delta a \frac{d f}{d a}+\frac{(\Delta a)^{2}}{2!} \frac{d^{2} f}{d a^{2}}+\frac{(\Delta a)^{3}}{3!} \frac{d^{3} f}{d a^{3}}+\ldots
$$

- This can be used to linearize about a certain value of the independent variable $a$.
- Example: the function $f(t)=2+3 t-6 t^{2}$ is a non-linear function in $t$
- Suppose we want to linearize about the point $\hat{t}=2$
- The complete Taylor series expression is

$$
\begin{aligned}
f(\hat{t}+\Delta t) & =f(\hat{t})+\Delta t \frac{d f}{d t}+\frac{(\Delta t)^{2}}{2!} \frac{d^{2} f}{d t^{2}} \\
& =2+3 \hat{t}-6 \hat{t}^{2}+\Delta t(3-12 \hat{t})+\frac{(\Delta t)^{2}}{2}(-12)
\end{aligned}
$$

- To linearize, we set $\hat{t}=2$ and neglect higher order (non-linear) terms of $\Delta t$
- Valid for perturbations (i.e., small values of $\Delta t$ )

Taylor Series Expansion (2/2)

- (Continued example) Linearized form

- First order Taylor series for function in two variables:

$$
f(\hat{a}+\Delta a, \hat{b}+\Delta b)=f(\hat{a}, \hat{b})+\left.\Delta a \frac{\partial f}{\partial a}\right|_{\hat{a}, \hat{b}}+\left.\Delta b \frac{\partial f}{\partial b}\right|_{\hat{a}, \hat{b}}+\text { h.o.t. }
$$

## Linearization of Pseudorange Equations (1/5)

- First, define a nominal state (position and clock error) as

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
\hat{x}_{u} \\
\hat{y}_{u} \\
\hat{z}_{u} \\
c \delta \hat{t}_{u}
\end{array}\right]=\text { nominal (approximate) state }
$$

- An approximate (or expected) pseudorange can then be calculated for satellite $j$

$$
\begin{aligned}
\hat{\rho}_{j} & =\sqrt{\left(x_{j}-\hat{x}_{u}\right)^{2}+\left(y_{j}-\hat{y}_{u}\right)^{2}+\left(z_{j}-\hat{z}_{u}\right)^{2}}+c \delta \hat{t}_{u} \\
& =f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right)
\end{aligned}
$$

- This approximate (expected) pseudorange is the pseudorange that we would expect to have if our position and clock error were actually $\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}$, and $c \delta \hat{t}_{u}$.


## Linearization of Pseudorange Equations (2/5)

- Relationship between true and approximate position and time

$$
\begin{aligned}
x_{u} & =\hat{x}_{u}+\Delta x_{u} \\
y_{u} & =\hat{y}_{u}+\Delta y_{u} \\
z_{u} & =\hat{z}_{u}+\Delta z_{u} \\
c \delta t_{u} & =c \delta \hat{t}_{u}+\Delta c \delta t_{u}
\end{aligned}
$$

- Vector form:

$$
\mathbf{x}_{u}=\hat{\mathbf{x}}_{u}+\Delta \mathbf{x}_{u}
$$

- Based on these relations, we can write

$$
f\left(x_{u}, y_{u}, z_{u}, c \delta t_{u}\right)=f\left(\hat{x}_{u}+\Delta x_{u}, \hat{y}_{u}+\Delta y_{u}, \hat{z}_{u}+\Delta z_{u}, c \delta \hat{t}_{u}+\Delta c \delta t_{u}\right)
$$

- To linearize, right-hand side of equation can be evaluated using a first order Taylor series expansion


## Linearization of Pseudorange Equations (3/5)

- First order Taylor series expansion of pseudorange function:

$$
\begin{aligned}
& f\left(\hat{x}_{u}+\right.\left.\Delta x_{u}, \hat{y}_{u}+\Delta y_{u}, \hat{z}_{u}+\Delta z_{u}, c \delta \hat{t}_{u}+\Delta c \delta t_{u}\right)=f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right) \\
&+\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right)}{\partial \hat{x}_{u}} \Delta x_{u}+\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right)}{\partial \hat{y}_{u}} \Delta y_{u} \\
&+ \frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right)}{\partial \hat{z}_{u}} \Delta z_{u}+\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, c \delta \hat{t}_{u}\right)}{\partial c \delta \hat{t}_{u}} \Delta c \delta t_{u} \\
&+ \text { h.o.t. }
\end{aligned}
$$

- The partial derivatives are

$$
\begin{gathered}
\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \delta \hat{t}_{u}\right)}{\partial \hat{x}_{u}}=-\frac{x_{j}-\hat{x}_{u}}{\hat{r}_{j}}
\end{gathered} \quad \frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \delta \hat{t}_{u}\right)}{\partial \hat{y}_{u}}=-\frac{y_{j}-\hat{y}_{u}}{\hat{r}_{j}}, \begin{gathered}
\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \delta \hat{t}_{u}\right)}{\partial \hat{z}_{u}}=-\frac{z_{j}-\hat{z}_{u}}{\hat{r}_{j}} \\
\frac{\partial f\left(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \delta \hat{t}_{u}\right)}{\partial c \delta \hat{t}_{u}}=1 \\
\hat{r}_{j}=\sqrt{\left(x_{j}-\hat{x}_{u}\right)^{2}+\left(y_{j}-\hat{y}_{u}\right)^{2}+\left(z_{j}-\hat{z}_{u}\right)^{2}}
\end{gathered}
$$

## Linearization of Pseudorange Equations (4/5)

- Using above results, linearized pseudorange equation is

$$
\rho_{j}=\hat{\rho}_{j}-\frac{x_{j}-\hat{x}_{u}}{\hat{r}_{j}} \Delta x_{u}-\frac{y_{j}-\hat{y}_{u}}{\hat{r}_{j}} \Delta y_{u}-\frac{z_{j}-\hat{z}_{u}}{\hat{r}_{j}} \Delta z_{u}+\Delta c \delta t_{u}
$$

- This can be simplified to $\Delta \rho_{j}=a_{x j} \Delta x_{u}+a_{y j} \Delta y_{u}+a_{z j} \Delta z_{u}-\Delta c \delta t_{u}$ where

$$
\begin{aligned}
& \Delta \rho_{j}=\hat{\rho}_{j}-\rho_{j} \\
& a_{x j}=\frac{x_{j}-\hat{x}_{u}}{\hat{r}_{j}}, \quad a_{y j}=\frac{y_{j}-\hat{y}_{u}}{\hat{r}_{j}}, \quad a_{z j}=\frac{z_{j}-\hat{z}_{u}}{\hat{r}_{j}}
\end{aligned}
$$

## Linearization of Pseudorange Equations (5/5)

- Original (nonlinear) equations for $n$ measurements

$$
\begin{aligned}
\rho_{1} & =\sqrt{\left(x_{1}-x_{u}\right)^{2}+\left(y_{1}-y_{u}\right)^{2}+\left(z_{1}-z_{u}\right)^{2}}+c \delta t_{u} \\
\rho_{2} & =\sqrt{\left(x_{2}-x_{u}\right)^{2}+\left(y_{1}-y_{u}\right)^{2}+\left(z_{1}-z_{u}\right)^{2}}+c \delta t_{u} \\
\rho_{3} & =\sqrt{\left(x_{3}-x_{u}\right)^{2}+\left(y_{3}-y_{u}\right)^{2}+\left(z_{3}-z_{u}\right)^{2}}+c \delta t_{u} \\
\quad & \vdots \\
\rho_{n} & =\sqrt{\left(x_{n}-x_{u}\right)^{2}+\left(y_{n}-y_{u}\right)^{2}+\left(z_{n}-z_{u}\right)^{2}}+c \delta t_{u}
\end{aligned}
$$

- Linearized (error) equations for the same $n$ measurements

$$
\begin{aligned}
\Delta \rho_{1} & =a_{x 1} \Delta x_{u}+a_{y 1} \Delta y_{u}+a_{z 1} \Delta z_{u}-\Delta c \delta t_{u} \\
\Delta \rho_{2} & =a_{x 2} \Delta x_{u}+a_{y 2} \Delta y_{u}+a_{z 2} \Delta z_{u}-\Delta c \delta t_{u} \\
\Delta \rho_{3} & =a_{x 3} \Delta x_{u}+a_{y 3} \Delta y_{u}+a_{z 3} \Delta z_{u}-\Delta c \delta t_{u} \\
& \vdots \\
\Delta \rho_{n} & =a_{x n} \Delta x_{u}+a_{y n} \Delta y_{u}+a_{z n} \Delta z_{u}-\Delta c \delta t_{u}
\end{aligned}
$$

## Solving the Linearized Pseudorange Equations Using Least-Squares (1/2)

- We can express the set of pseudorange equations in matrix form $\Delta \rho=\mathbf{H} \Delta x$

$$
\Delta \boldsymbol{\rho}=\left[\begin{array}{c}
\Delta \rho_{1} \\
\Delta \rho_{2} \\
\Delta \rho_{3} \\
\vdots \\
\Delta \rho_{n}
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{cccc}
a_{x 1} & a_{y 1} & a_{z 1} & -1 \\
a_{x 2} & a_{y 2} & a_{z 2} & -1 \\
a_{x 3} & a_{y 3} & a_{z 3} & -1 \\
\vdots & \vdots & \vdots & \vdots \\
a_{x n} & a_{y n} & a_{z n} & -1
\end{array}\right] \quad \Delta \mathbf{x}=\left[\begin{array}{c}
\Delta x_{u} \\
\Delta y_{u} \\
\Delta z_{u} \\
\Delta c \delta t_{u}
\end{array}\right]
$$

- Three possible cases
- $n<4$ : Underdetermined case
- Cannot solve for $\Delta \mathbf{x}$
- Is there still useable information?
- $n=4$ : Uniquely determined case
- One valid solution for $\Delta \mathbf{x}$ (generally)
- Solved by calculating $\mathbf{H}^{-1}\left(\Delta x=H^{-1} \Delta \rho\right)$
- $n>4$ : Overdetermined case
- No solution that perfectly solves equation (generally)
- Can use least-squares techniques (which pick solution that minimizes the square of the error)


## Solving the Linearized Pseudorange Equations

 Using Least-Squares (2/2)- Basic least-squares solution (no measurement weighting)

$$
\Delta \mathbf{x}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \Delta \boldsymbol{\rho}
$$

- Reasonable approach for single-point positioning in presence of SA
- Solution with measurement weighting (weighted least-squares)
- Useful when
- Measurements have different error statistics
- Measurement errors are correlated
- Measurement error covariance matrix $\mathbf{C}_{\rho}$
- Diagonal terms are measurement error variances
- Off-diagonal terms show cross-correlation between measurement errors

$$
\Delta \mathbf{x}=\left(\mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \Delta \boldsymbol{\rho}
$$

- Note that this is identical to unweighted case if $\mathbf{C}_{\rho}=\mathbf{I}$ (identity matrix)


## Measurement Residuals

- For overdetermined system, generally no valid solution for $\Delta \mathbf{x}$ that solves measurement equation, so

$$
\Delta \rho \neq \mathbf{H} \Delta \mathbf{x}
$$

- Measurement residuals (v)
- Corrections that, when applied to measurements, would result in solution of above equation
- Least-squares minimizes the sum of squares of these residuals

$$
\begin{aligned}
& v=\Delta \rho-H \Delta x \\
& \Delta \rho=\mathbf{H} \Delta x+v
\end{aligned}
$$

## Iterating the Nominal State

- Linearized equations (and resulting $\mathbf{H}$ matrix) calculated using nominal state $\hat{\mathbf{x}}_{u}$
- Linearization valid when
- Nominal state is close to true state
- $\Delta \mathbf{x}$ is "small"
- If $\hat{\mathbf{x}}_{u}$ is not very accurate (i.e., $\Delta \mathbf{x}$ is large), iteration is required
- For each iteration, a new value of $\hat{\mathbf{x}}_{u}$ is calculated based upon the old value and the corrections $\Delta \mathbf{x}$

$$
\hat{\mathbf{x}}_{u_{\text {new }}}=\hat{\mathbf{x}}_{u_{\text {old }}}+\Delta \mathbf{x}
$$

- This new value of $\hat{\mathbf{x}}_{u}$ is then used to recalculate the corrections $\Delta \mathbf{x}$ (which should be smaller this time)
- Solution must converge
- For standard GPS positioning, not much of a problem (will generally converge with an initial guess at the center of the Earth)
- For more non-linear situations (e.g., using pseudolites), this can be more of a problem


## Correcting for Satellite Clock Error

- Single point positioning only estimates receiver clock error
- Assumes all other errors are negligible
- Requires correction of satellite clock error
- Clock correction (from $\rho_{\text {corr }}=\rho+c \Delta t_{s v}$

IS-GPS-200D)
$\Delta t_{s v}=a_{f_{0}}+a_{f_{1}}\left(t-t_{0_{c}}\right)+a_{f_{2}}\left(t-t_{0_{c}}\right)^{2}+\Delta t_{r}$ $\Delta t_{r}=F e \sqrt{a} \sin E_{k}$
$\rho_{\text {corr }}=$ pseudorange corrected for SV clock error
$\rho=$ original (raw) pseudorange measurement
$\Delta t_{s v}=$ SV clock correction
$a_{f_{0}}, a_{f_{1}}, a_{f_{2}}, t_{0_{c}}=$ SV clock correction parameters from nav message
$\Delta t_{r}=$ relativity correction (since not circular orbit)
$F=$ constant $=-4.442807633 \times 10^{-10} \mathrm{sec} /(\text { meter })^{1 / 2}$
$e=$ eccentricity from nav message
$\sqrt{a}=$ square root of semi - major axis from nav message
$E_{k}=$ Eccentric anomaly (from SV position calculation)

## Determining Signal Transmit Time (1/2)

- For satellite position calculation, need true GPS transmit time of the signal $\left(T_{s}\right)$
- Receiver provides time of reception according to the receiver clock ( $T_{u}+\delta t_{r c v r}$ )
- From diagram below, if the pseudorange time equivalent is subtracted from the receive time, then the result is the true transmit time plus the satellite clock error


John F. Raquet, 2012

## Determining Signal Transmit Time (2/2)

- Effect of neglecting $\delta t_{s v}$ for SV positioning ${ }^{1}$
- Satellite clock error can grow to up to $\sim 1 \mathrm{msec}$ :
- Typical satellite velocity is 3900 m/s
- Worst-case position error from neglecting $\delta t_{s v}$
$3900 \mathrm{~m} / \mathrm{s} \times 0.001 \mathrm{~s}=3.9 \mathrm{~m}$
- Effect of neglecting $\delta t_{s v}$
- Single point positioning: Can be significant (but not with SA)

- Differential positioning: effectively cancelled out (acts like 3.9 m satellite position error)
${ }^{1}$ The SV clock error $\delta t_{s v}$ will have a significant effect on the actual pseudorange measurement. This page only describes the impact of $\delta t_{s v}$ on determining the position of the satellite


## Use of Dual Frequency Measurements to Calculate Ionospheric Delay

- L1 ionospheric delay calculated by

$$
\begin{aligned}
& \Delta S_{\text {iono, cor }}^{L 1} \\
&=\left(\frac{f_{2}^{2}}{f_{2}^{2}-f_{1}^{2}}\right)\left(\rho_{L 1}-\rho_{L 2}\right) \\
& \Delta S_{\text {iono }, \text { corr }_{L 1}}=\mathrm{L} 1 \text { ionospheric delay }(\mathrm{m}) \\
& f_{1}, f_{2}=\mathrm{L} 1 \text { and } \mathrm{L} 2 \text { carrier frequencies } \\
& \rho_{L 1}, \rho_{L 2}=\mathrm{L} 1 \text { and } \mathrm{L} 2 \text { pseudorange measurements }
\end{aligned}
$$

- L2 ionospheric delay can be calculated by

$$
\Delta S_{\text {iono,cor } L_{L 2}}=\left(\frac{f_{1}}{f_{2}}\right)^{2} \Delta S_{\text {iono,cor }{ }_{L 1}}
$$

- Ionospheric-free pseudorange:

$$
\rho_{I F}=\frac{\rho_{L 2}-\gamma \rho_{L 1}}{1-\gamma}, \quad \gamma=\left(\frac{f_{L 1}}{f_{L 2}}\right)^{2}=\left(\frac{77}{60}\right)^{2}
$$

- Multipath and measurement noise will corrupt this measurement of ionosphere


## Correcting for Satellite Group Delay

- Each satellite has a slight time bias between the L1 and the L2 signals
- Not desired, but it's there nonetheless
- Will affect dual-frequency users, unless it's accounted for
- Can be measured and/or calibrated out
- This calibration is accounted for when the control segment generates the satellite clock correction terms from broadcast nav message: $a_{f_{0}}, a_{f_{1}}, a_{f_{2}}$, and $t_{0_{c}}$
- However, this is all designed for the dual-frequency user! Single frequency users need to remove the effect of this dual-frequency correction on their $\Delta t_{s v}$ value
- Single frequency users must apply the group delay term (TGD) from the nav message to their SV clock correction term (from p. 90 of ICD-GPS-200C)

$$
\begin{aligned}
& \left(\Delta t_{s v}\right)_{L 1}=\Delta t_{s v}-T_{G D} \\
& \left(\Delta t_{s v}\right)_{L 2}=\Delta t_{s v}-\left(\frac{77}{60}\right)^{2} T_{G D}
\end{aligned}
$$




Example: Calculation of Transmit Time











## Convergence

- Practically speaking, getting the system to converge with GNSS is easy
- Example showed case where initial guess was 50 km in error
- Can start with the center of the Earth as a guess, and it would only add an iteration or two
- Normally, a receiver will use its last solution as a starting point, so only a single iteration is necessary
- Nonlinearities (which drive the need for iteration) are more severe when dealing with pseudolites
- Much closer to receiver than satellite
- H matrix varies more quickly as a function of position

Overview
1. Positioning Using Time-of-Arrival   2. GPS Receiver Measurements   3. Coordinate Frames   4. Calculation of Satellite Position   5. GPS Navigation Solution   6. Dilution of Precision

1. Positioning Using Time-of-Arrival

GPS Receiver Measurements
3. Coordinate Frames
5. GPS Navigation Solution
6. Dilution of Precision

## Measurement Domain vs. Position Domain

- Pseudorange errors are errors in "measurement domain"
- Errors in the measurements themselves
- UERE is one example
- Ultimately, we'd like to know errors in "position domain"
- The position errors that result when using the measurements
- Errors in position domain are different than measurement errors!
- Can be larger
- Can be smaller
- Dependent on measurement geometry
- Mathematical representation
- We have covariance matrix of measurements ( $\mathbf{C}_{\rho}$ ).
- We want covariance matrix of calculated position and clock error ( $\mathrm{C}_{\mathrm{x}}$ )
- In GPS applications, this problem is approached using concept called Dilution of Precision (DOP)


Consider the foghorn example, except allow for a measurement error

Good Geometry Example


Poor Geometry Example


Obtaining $\mathrm{C}_{\mathrm{x}}$ from Least-Squares Analysis (1/2)

- Definition of $\mathbf{C}_{\mathbf{x}}$

$$
\boldsymbol{C}_{\boldsymbol{x}}=\left[\begin{array}{cccc}
\sigma_{x_{u}}^{2} & \sigma_{x_{u} y_{u}} & \sigma_{x_{u} z_{u}} & \sigma_{x_{u} \delta t_{u}} \\
\sigma_{x_{u} y_{u}} & \sigma_{y_{u}} & \sigma_{y_{u} z_{u}} & \sigma_{y_{u} \delta t_{u}} \\
\sigma_{x_{u} z_{u}} & \sigma_{y_{u} z_{u}} & \sigma_{z_{u}}^{2} & \sigma_{z_{u} \delta t_{u}} \\
\sigma_{x_{u} \delta t_{u}} & \sigma_{y_{u} \delta t_{u}} & \sigma_{z_{u} \delta t_{u}} & \sigma_{\delta t_{u}}^{2}
\end{array}\right]
$$

where, for example,

$$
\begin{aligned}
\sigma_{x_{u}}^{2} & =E\left[\left(x_{u}-E\left[x_{u}\right]\right)^{2}\right\rfloor \\
& =\text { variance of } x_{u} \\
\sigma_{x_{u}, y_{u}} & =E\left[\left(x_{u}-E\left[x_{u}\right]\right)\left(y_{u}-E\left[y_{u}\right]\right)\right] \\
& =\text { covariance of } x_{u} \text { and } y_{u}
\end{aligned}
$$

- Definition of $\mathbf{C}_{\boldsymbol{\rho}} \quad \mathbf{C}_{\rho}=\left[\begin{array}{cccc}\sigma_{\rho_{1}}^{2} & \sigma_{\rho, \rho_{2}} & \cdots & \sigma_{\rho, \rho_{n}} \\ \sigma_{\rho, \rho_{2}} & \sigma_{\rho_{2}}^{2} & \cdots & \sigma_{\rho, \rho_{n}}^{2} \\ \vdots & \vdots & \ddots & \sigma_{\rho, \rho_{n}} \\ \sigma_{\rho, \rho_{n}} & \sigma_{\rho, \rho_{n}} & \sigma_{\rho, \rho_{n}} & \sigma_{\rho_{\rho_{n}}}\end{array}\right]$

Obtaining $\mathrm{C}_{\mathrm{x}}$ from Least-Squares Analysis (2/2)

- According to least-squares theory:

$$
\mathbf{C}_{\mathbf{x}}=\left(\mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \mathbf{H}\right)^{-1}
$$

- Basic assumptions
- Measurement errors are zero-mean
- Measurement errors have a Gaussian distribution
- Recall that the least-squares solution with measurement weighting was

$$
\begin{aligned}
\Delta \mathbf{x} & =\left(\mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \Delta \boldsymbol{\rho} \\
& =\mathbf{C}_{\mathbf{x}} \mathbf{H}^{T} \mathbf{C}_{\rho}^{-1} \Delta \boldsymbol{\rho}
\end{aligned}
$$

- Consider case where the nominal position and clock error (used to calculate $\Delta \rho$ ) are actually the true position and clock error
- The $\Delta \rho$ represents the measurement errors
- The $\Delta \mathbf{x}$ represents the position and clock errors
- The $\mathbf{C}_{\mathrm{x}}$ matrix is a multiplier for the measurement errors ( $\Delta \rho$ )
- "Large" $\mathbf{C}_{\mathbf{x}}$ values $\rightarrow$ large position errors
- "Small" $\mathbf{C}_{\mathbf{x}}$ values $\rightarrow$ small position errors


## Dilution of Precision (DOP)

- In GPS, the concept of Dilution of Precision (DOP) is used
- Based upon covariance matrix of position and clock errors ( $\mathbf{C}_{\mathbf{x}}$ )
- Additional assumptions
- All measurements have the same variance

$$
\sigma_{\rho_{1}}^{2}=\sigma_{\rho_{2}}^{2}=\ldots=\sigma_{\rho_{n}}^{2}=\sigma_{\rho}^{2}
$$

- Measurement errors are uncorrelated (i.e.,covariance values are zero)

$$
\sigma_{\rho_{j} \rho_{k}}=0, \quad j \neq k
$$

- Using these assumptions

$$
\mathbf{C}_{\boldsymbol{\rho}}=\mathbf{I} \sigma_{\rho}^{2}
$$

and

$$
\mathbf{C}_{\mathbf{x}}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \sigma_{\rho}^{2}
$$

- The matrix $\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1}$ is called the DOP matrix
- Directly relates measurement errors to position errors


## Use of Local-Level Coordinate Frame (1/2)

- Normally, DOPs describe errors in geodetic (local-level) coordinate frame (east, north, up), rather than the ECEF frame.
- Need to modify the H matrix so that the errors refer to the local-level frame
- Original H matrix (used to calculate position)

$$
\mathbf{H}^{E}=\left[\begin{array}{cc}
\mathbf{a}_{1}^{E^{T}} & 1 \\
\mathbf{a}_{2}^{E^{T}} & 1 \\
\vdots & \vdots \\
\mathbf{a}_{n}^{E^{T}} & 1
\end{array}\right]
$$

- "a" vectors are unit line-of-sight vectors between user and SV in ECEF frame
- This will give the $\mathbf{C}_{\mathbf{x}}$ matrix described previously
- New H matrix for DOP calculations

$$
\mathbf{H}^{G}=\left[\begin{array}{cc}
\mathbf{a}_{1}^{G^{T}} & 1 \\
\mathbf{a}_{2}^{G^{T}} & 1 \\
\vdots & \vdots \\
\mathbf{a}_{n}^{G^{T}} & 1
\end{array}\right]
$$

- "a" vectors are now unit line-of-sight vectors between user and SV in geodetic (ENU) frame


## Use of Local-Level Coordinate Frame (2/2)

- Local-level "a" vectors can be calculated using direction cosine matrix (DCM)

$$
\begin{gathered}
\mathbf{a}^{G}=\mathbf{C}_{E}^{G} \mathbf{a}^{E} \\
\mathbf{C}_{E}^{G}=\mathrm{DCM} \text { that rotates from ECEF to } \\
\text { geodetic }(\mathrm{E}, \mathrm{~N}, \mathrm{U}) \text { frame }
\end{gathered}
$$

$$
\mathbf{C}_{E}^{G}=\left(\mathbf{C}_{G}^{E}\right)^{-1}=\left(\mathbf{C}_{G}^{E}\right)^{T}
$$

- When $\mathbf{H}^{G}$ is used to calculate the covariance $\mathbf{C}_{\mathbf{x}}=\left(\mathbf{H}^{G^{T}} \mathbf{H}^{G}\right)^{-1} \sigma_{\rho}^{2}$, then $\mathbf{C}_{\mathbf{x}}$ is defined as

$$
\mathbf{C}_{\mathbf{x}}=\left[\begin{array}{cccc}
\sigma_{e}^{2} & \sigma_{e n} & \sigma_{e u} & \sigma_{e \delta t_{u}} \\
\sigma_{e n} & \sigma_{n}^{2} & \sigma_{n u} & \sigma_{n \delta t_{u}} \\
\sigma_{e u} & \sigma_{n u} & \sigma_{u}^{2} & \sigma_{u \delta t_{u}} \\
\sigma_{e \delta t_{u}} & \sigma_{n \delta t_{u}} & \sigma_{u \delta t_{u}} & \sigma_{\delta t_{u}}^{2}
\end{array}\right]
$$

- This is what we desire to describe using DOPs


## DOP Values

- Desirable to characterize the $\mathbf{C}_{\mathbf{x}}$ matrix using a single number
- For DOPs
- Cross-correlation terms ignored
- Root-Sum-Square (RSS) value of variables of interest, normalized by $\sigma_{\text {UERE }}$
- Example:

$$
G D O P=\frac{\sqrt{\sigma_{e}^{2}+\sigma_{n}^{2}+\sigma_{u}^{2}+\sigma_{\delta t_{u}}^{2}}}{\sigma_{U E R E}}
$$

- GDOP can be calculated directly from DOP matrix

$$
\left(\mathbf{H}^{G^{T}} \mathbf{H}^{G}\right)^{-1}=\left[\begin{array}{llll}
D_{11} & D_{12} & D_{13} & D_{14} \\
D_{21} & D_{22} & D_{23} & D_{24} \\
D_{31} & D_{32} & D_{33} & D_{34} \\
D_{41} & D_{42} & D_{43} & D_{44}
\end{array}\right] \quad G D O P=\sqrt{D_{11}+D_{22}+D_{33}+D_{44}}
$$

- Note that GDOP relates UERE with RSS of errors Key relationship! $\sqrt{\sigma_{e}^{2}+\sigma_{n}^{2}+\sigma_{u}^{2}+\sigma_{\delta t_{u}}^{2}}=G D O P \times \sigma_{U E R E}$


## Types of DOPs

- The "Big Three"
- GDOP (Geometric DOP)
$G D O P=\sqrt{D_{11}+D_{22}+D_{33}+D_{44}}$
$\sqrt{\sigma_{e}^{2}+\sigma_{n}^{2}+\sigma_{u}^{2}+\sigma_{\delta t_{u}}^{2}}=G D O P \times \sigma_{\text {UERE }}$
- PDOP (Position DOP)

PDOP $=\sqrt{D_{11}+D_{22}+D_{33}}$
$\sqrt{\sigma_{e}^{2}+\sigma_{n}^{2}+\sigma_{u}^{2}}=P D O P \times \sigma_{\text {UERE }}$

- HDOP (Horizontal DOP)
$H D O P=\sqrt{D_{11}+D_{22}}$
$\sqrt{\sigma_{e}^{2}+\sigma_{n}^{2}}=H D O P \times \sigma_{\text {UERE }}$
- Less common (for navigators, at least!)
- VDOP (Vertical DOP)
$V D O P=\sqrt{D_{33}}$
$\sqrt{\sigma_{u}^{2}}=V D O P \times \sigma_{\text {UERE }}$
- TDOP (Time DOP)
$T D O P=\sqrt{D_{44}}$
$\sqrt{\sigma_{\delta_{t_{u}}}^{2}}=T D O P \times \sigma_{U E R E}$
- Note: time is in units of meters


