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Overview 
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Ranging Using Time-Of-Arrival 

•  Time-of-arrival (TOA) is one method that can be used to perform 
positioning 

•  Basic concept 
–  You must know 

•  When a signal was transmitted 
•  How fast the signal travels 
•  Time that the signal was received 

–  Then you can determine how far away you are from the signal emitter 
•  Foghorn example 

–  Assume there is a foghorn that goes off at exactly 12:00:00 noon 
every day 

–  You know that the velocity of sound around the foghorn is 330 m/sec 
–  You have a device that measures the time when the foghorn blast is 

received, and it says it heard a foghorn blast at 12:00:03 
–  What is the distance between the foghorn and the foghorn “receiver”? 
–  Now that you know how far you are from the foghorn, the question is, 

“Where are you?” 

John F. Raquet, 2012 4 

Two-Dimensional Positioning 
Using Single Range Measurement 

•  Range between you and the foghorn (we’ll call it foghorn #1) is 
990m 

•  Unable to determine exact position in this case 

Foghorn 
1 
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Two-Dimensional Ranging Using Two 
Measurements 

•  Now, you take a 
measurement from 
foghorn #2 at 
12:00:01.5 (for a 
range of 495 m) 

•  Yields two potential 
solutions 
–  How would you 

determine the correct 
solution? 

Foghorn 
1 

Foghorn 
2 

Potential positions 
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Resolving Position Ambiguity Using Three 
Measurements 

•  You get a third 
measurement 
from foghorn #3 
at 12:00:01 
(Range = 330 m) 
–  Now there’s a 

unique solution  

Foghorn 
1 Foghorn 

3 

Foghorn 
2 

495 m 

You are here! 
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Receiver Clock Errors 

•  The foghorn example assumed that the foghorn 
“receiver” had a perfectly synchronized clock, so the 
measurements were perfect 

•  What happens if there is an unknown receiver clock 
error? 

•  Effect on range measurement 
–  Without clock error 

–  With clock error δt 

tvR soundΔ=
difference time eceivetransmit/r

sound ofvelocity 
range
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Receiver Clock Errors 
One-Dimensional Example (1/3) 

•  Now, we’ll look at the foghorn example, except in only one 
dimension 
–  The foghorn(s) and receiver are constrained to be along a line 
–  We want to determine the position of the receiver on that line 

•  If the receiver measured a signal at 12:00:10, where is it on the 
line? 

•  Now, assume an unknown clock bias δt in the clock used by the 
foghorn receiver 

•  Your foghorn receiver measures a foghorn blast at 12:00:10 
•  What can you say about where you are? 

Foghorn 
1 
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Receiver Clock Errors 
One-Dimensional Example (2/3) 

•  Clearly, more information is needed 
•  Assume that there is a second foghorn located 990 m 

away from the first 

•  You receive a signal from the second foghorn at 
12:00:09 

•  What can you tell about where you are at this point? 

Foghorn 
1 

Foghorn 
2 

0 500 1000 
990 
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Receiver Clock Errors 
One-Dimensional Example (3/3) 

•  Here are the measurements we have: 

•  From the pseudorange equation: 

•  Rearranging terms we get 

•  We can then solve for the two unknowns 
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Receiver Clock Errors 
Extending to Three Dimensions 

•  In the single-dimensional case 
–  We needed two measurements to solve for the two unknowns, x and δt. 
–  The quantities x and (990 - x) were the “distances” between the position of 

the receiver and the two foghorns. 
•  In three-dimensional case 

–  We need four measurements to solve for the four unknowns, x, y, z, and 
δt. 

–  The distances between receiver and satellite are not linear equations (as 
was case in single-dimensional case). 

–  The four equations need to be solved simultaneously, for pseudorange 
measurements R1’  R4’ and transmitter positions (x1,y1,z1) (x4,y4,z4): 
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GPS Measurements (Overview) 

•  Each separate tracking loop typically can give 4 
different measurement outputs 
–  Pseudorange measurement 
–  Carrier-phase measurement (sometimes called integrated 

Doppler) 
–  Doppler measurement 
–  Carrier-to-noise density C/N0 

•  Actual output varies depending upon receiver 
–  Ashtech Z-surveyor (or Z-12) gives them all 
–  RCVR-3A gives just C/N0 

•  Note: We’re talking here about raw measurements 
–  Almost all receivers generate navigation processor outputs 

(position, velocity, heading, etc.) 
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Measurement Rates and Timing 

•  Most receivers take measurements on all channels/
tracking loops simultaneously 
–  Measurements time-tagged with the receiver clock (receiver 

time) 
–  The time at which a set of measurements is made is called a 

data epoch. 

•  The data rate varies depending upon receiver/
application.  Typical data rates: 
–  Static surveying: One measurement every 30 seconds (120 

measurements per hour) 
–  Typical air, land, and marine navigation:   0.5-2 

measurement per second (most common) 
–  Specialized high-dynamic applications: Up to 50 

measurements per second (recent development)  
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GPS Pseudorange Measurement 
•  Pseudorange is a measure of the difference in time 

between signal transmission and reception 

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996 

John F. Raquet, 2012 16 

Effect of Clock Errors on Pseudorange 

•  Since pseudorange is based on time difference, any clock 
errors will fold directly into pseudorange 

•  Small clock errors can result in large pseudorange errors 
(since clock errors are multiplied by speed of light) 

•  Satellite clock errors (δ tsv) are very small 
–  Satellites have atomic time standards 
–  Satellite clock corrections transmitted in navigation message 

•  Receiver clock (δ trcvr) is dominant error 

δ tsv 

δ tsv 

δ trcvr 

δ trcvr 

Δ t + δ trcvr - δ tsv 

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996 
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Doppler Shift 

•  For electromagnetic waves (which travel at the speed of light), the 
received frequency fR is approximated using the standard Doppler 
equation 

–  Note that vr is the (vector) velocity difference 

•  The Doppler shift Δ f is then 

(m/s) light of speed 
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Doppler Measurement 

•  The GPS receiver locks onto the carrier of the GPS signal and 
measures the received signal frequency  
–  Relationship between true and measured received signal 

frequency: 

–  Doppler measurement formed by differencing the measured 
received frequency and the transmit frequency: 

–  Note: transmit frequency is calculated using information about SV 
clock drift rate given in navigation message 

measRf
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Doppler Measurement Sign Convention 

•  Sign convention based on Doppler definition 
–  A satellite moving away from the receiver (neglecting clock errors) 

will have a negative Doppler shift 

–  Sign convention used for NovAtel (and possibly other) receivers 
•  Sign convention based on relationship between Doppler and 

pseudorange 
–  Doppler is essentially a measurement of the rate of change of the 

pseudorange 
–  A satellite moving away from the receiver (neglecting clock errors) 

will have a positive Doppler measurement value 
–  More common sign convention for GPS receivers (Ashtech, 

Trimble, and others) 
•  Carrier-phase measurement follows same convention as 

Doppler measurement (normally) 
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TRmeas
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fff
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meas
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Carrier-Phase (Integrated Doppler) Measurement 

•  The carrier-phase measurement φmeas(t) is calculated by 
integrating the Doppler measurements 

•  The integer portion of the initial carrier-phase at the start 
of the integration (φinteger(t0)) is known as the “carrier-
phase integer ambiguity” 
–  Because of this ambiguity, the carrier-phase measurement is 

not an absolute measurement of position 
–  Advanced processing techniques can be used to resolve these 

carrier-phase ambiguites (carrier-phase ambiguity resolution) 
•  Alternative way of thinking: carrier-phase measurement 

is the “beat frequency” between the incoming carrier 
signal and receiver generated carrier. 

errors othererror clockrange

receiver)by  measured be (can
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Phase Tracking Example 
At Start of Phase Lock (Time = 0 seconds) 

 
)( 0tintegerφ

(integer 
ambiguity) 

)( 0tφ

Arbitrary, 
unknown 
point 

)0(measφ

Ignoring clock and other errors 

John F. Raquet, 2012 22 

Phase Tracking Example 
After Movement (for 1 Second) 

 
)( 0tintegerφ

(integer 
ambiguity) 

)( 0tφ

Arbitrary, 
unknown 
point 

Ignoring clock and other errors 

∫ Δ
1

)(
ot

meas dttf

)1(measφ
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Phase Tracking Example 
After Movement (for 2 Seconds) 

 
)( 0tintegerφ

(integer 
ambiguity) 

)( 0tφ

Arbitrary, 
unknown 
point 

Ignoring clock and other errors 
∫ Δ

2
)(

ot
meas dttf

)2(measφ
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Comparison Between Pseudorange and Carrier-
Phase Measurements 

Pseudorange Carrier-Phase 

Type of measurement Range (absolute) Range (ambiguous) 

Measurement precision ~1 m ~0.01 m 

Robustness More robust Less robust 
(cycle slips possible) 

Necessary for 
high precision 

GPS 
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Carrier-to-Noise Density (C/N0) 

•  The carrier-to-noise density is a measure of signal 
strength 
–  The higher the C/N0, the stronger the signal (and the better 

the measurements) 
–  Units are dB-Hz 
–  General rules-of-thumb: 

•   C/N0 > 40: Very strong signal  
•  32 < C/N0 < 40: Marginal signal 
•  C/N0 < 32: Probably losing lock 

•  C/N0 tends to be receiver-dependent 
–  Can be calculated many different ways 
–  Absolute comparisons between receivers not very 

meaningful 
–  Relative comparisons between measurements in a single 

receiver are very meaningful 
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Coordinate Frames 

•  Giving a set of three coordinates is not sufficient for 
specifying a position 

•  Examples: 
–  [-1485881.48699, -5152018.35300, 3444641.84728] 
–  [-1.85158430, 0.57408361, 1255.323] 
–  [-106.08796571, 32.89256771, 1255.323] 

•  The coordinate frame must also be specified 
–  Choice of a coordinate frame is dependent upon the 

application 
–  Most applications can use any defined coordinate frame, but 

usually one will be more straightforward than others 
•  Primary coordinate frames used for GPS 

–  Earth-Centered Earth-Fixed (ECEF) 
–  Geodetic (Longitude - Latitude - Altitude) 
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Earth-Centered Earth-Fixed (ECEF) 
Coordinate Frame 

•  ECEF frame is 
–  Cartesian (orthogonal) reference frame  
–  It is a rotating reference frame (w.r.t. inertial space), rotating at 

earth rate 
–  Advantages 

•  Easy to calculate distances and vectors  
 between two points 

•  Usually computationally efficient 

–  Disadvantages 
•  Not geographically intuitive 

X 
Y 

Z 
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Geodetic Coordinate Frame 
(WGS-84 Ellipsoid) 

•  There are different ways to describe height (or 
altitude) 
–  Distance above the surface of the earth 
–  Definition based on gravity 

•  Geoid: surface of constant gravitational potential 
•  Geoid is a function of topography, earth density variations, and earth 

rotation rate 
•  Geodesy: study of the geoid 

–  Definition based upon geometry 
•  The geoid can be fit to an  

 ellipsoid (a rotated ellipse) 
•  One particular ellipsoidal fit  

 of the geoid is called the  
 WGS-84 ellipsoid 

a 
b 

Equatorial Plane 
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Geoid Separation 

•  There is a separation between the Geoid (based on 
gravity) and the WGS-84 ellipsoid (based on a 
mathematical model) 
–  Varies with user position 
–  Only critical if interfacing with geoid-based reference 

systems (such as MSL altitude) 

Map of Geoid Separation 
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Key WGS-84 Parameters 

Name                        Symbol    Quantity 
Semi-major axis  a  6378.137 km 
Semi-minor axis  b  6356.7523142 km 
Eccentricity   e  0.0818191908426 
Earth rotation rate  Ωε  7.2921151467E-5 rad/s 
Speed of light   c  299792458 m/s 
Gravitational parameter μ  3.986005E14 m3/s2 

Flattening   f  0.00335281066475 

. 
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Definition of Geodetic Coordinates  
(Longitude, Latitude, and Altitude) 

•  Definition of ellipsoidal height h and latitude φ (cross 
section of earth as viewed from equatorial plane) 

•  Definition of longitude λ  
 (view from above the  
 north pole) 

a b 
φ (latitude) 

h (height) 

Equatorial Plane 

λ Greenwich Meridian 
(0 degrees longitude) 
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Geodetic Coordinate Units 

•  Normally, ellipsoidal altitude (h) is expressed in meters (m). 
•  Latitude (φ) and Longitude (λ) can be expressed in different units 

–  Radians 
•  Least ambiguous, useful for programming 
•  Not as easily recognized geographically 

–  Decimal degrees 
•  To convert from radians to decimal degrees, multiply by 180/π 
•  Not very common 

–  Degrees and decimal minutes 
•  Integer number of degrees 
•  Decimal number of minutes (1 minute = 1/60 degree) 
•  Example: 46.596 decimal degrees is 46° 35.76’ (reads 46 degrees, 35.76 minutes) 

–  Degrees, minutes, and seconds 
•  Integer number of degrees 
•  Integer number of minutes 
•  Decimal number of seconds (1 second = 1/60 minute) 
•  Example: 46.596 decimal degrees is 46° 35’ 45.6’’ 
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Determining Satellite Position 

•  In order to determine user position, one must calculate satellite 
position 

•  Satellites orbits are primarily based on the Earth’s gravity field 
•  Other forces acting on satellite 

–  Gravity from sun, moon, and other planets 
–  Atmospheric drag 
–  Solar pressure 
–  Torques due to Earth’s magnetic field 

•  Orbits are highly predictable 
–  Prediction accuracy degrades with time 

•  Orbits can be described by using a set of “orbital parameters” 
–  Six classic orbital parameters 
–  Additional parameters to handle orbit variations over time 
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Classical Orbital Elements (1/2) 

•  Classical orbital elements describe 
–  Shape of the satellite’s orbit (and where the satellite would be on 

that shape) 
–  Position of the orbit relative to inertial (or Earth-fixed) space 

•  Describing the orbit shape with a, e, and τ

•  If given a specific time, you can calculate the position of the 
satellite on this ellipse  

a 
t = τ 

Perigee 

Earth at 
focal point 

)1( 22 eab −=
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Classical Orbital Elements 
(2/2) 

•  Describing the 
position and 
orientation of the 
orbit using Ω, ω, and 
i 

Bate, Mueller, and White, “Fundamentals of Astrodynamics,”  Dover Publications, 1971 
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Relationship Between True, Eccentric, and Mean 
Anomaly (1/2) 

•  True anomaly ν used to directly calculate satellite 
position on ellipse 

•  Geometrical relationship between ν and eccentric 
anomaly E: 

E ν 

Satellite position 

Earth at 
focal point 

Elliptical 

Orbit 
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Relationship Between True, Eccentric, and Mean 
Anomaly (2/2) 

•  Mean anomaly M varies linearly with time (unlike E or 
ν), so it can be easily calculated 

•  Eccentric anomaly and mean anomaly related 
through Kepler’s equation 

•  Finally, true anomaly calculated from arctangent* 
function, using 
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*Be sure to use the 4-quadrant arctangent function (atan2 in MATLAB). 
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•  Note: 50 bps navigation message modulated on all of the codes 
•  L1 signal 

–  P(Y)-code 
–  C/A-code modulated on carrier that is 90° out of phase from P-code 

carrier 

•  L2 signal 
–  P-code only 

Where Do We Get the Ephemeris Data? 
Legacy L1 and L2 Signal Breakdown 

1
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Data Format of Subframes 1, 2, 3, and 5 

Obtained from SPS Signal Spec (http://www.spacecom.af.mil/usspace/gps_support/documents/SPSMAIN.pdf) 

John F. Raquet, 2012 42 GPS Ephemeris Data 
(From Navigation Message) 

•  For defining orbit shape and timing 

•  For defining orientation/position of orbit 

•  Correction Terms  
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Sample Ephemeris Values 
(PRN 10 - 20 Jan 1999) 

         prn: 10 
        week: 993 
         t0e: 266400 
      sqrt_a: 5.1537e+003 
           e: 0.0032 
          M0: -0.1952 
          i0: 0.9694 
      Omega0: -0.7958 
       omega: -0.2041 
        idot: -3.0894e-010 
    Omegadot: -8.4571e-009 
     delta_n: 4.6345e-009 
          

    Cuc: -3.9022e-006 
         Cus: 2.3618e-006 
         Crc: 339.4063 
         Crs: -73.9375 
         Cic: 1.8626e-009 
         Cis: -3.9116e-008 
         toc: 266400 
         af0: 3.1394e-005 
         af1: 5.6843e-013 
         af2: 0 
         tgd: -1.8626e-009 
       valid: 1 

SV Clock 
Correction 
Terms 
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Calculating Satellite Position 

•  Set of equations for calculating SV position from 
ephemeris is given in ICD-GPS-200C (Table 20-IV) 
–  IS-GPS-200D can be found at  

   www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf 
–  Comments 

•  Make sure that the correct quadrant is determined when calculating 
true anomaly (use “atan2” function or equivalent) 

•  Output xk, yk, zk are the ECEF coordinates of the SV antenna phase 
center at time t (in the ECEF coordinate frame at time t) 
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IS-GPS-200D: Solving for Satellite Position (1 of 4) 
45 

IS-GPS-200D, 7 Dec 2004, p 97 

Variables obtained from navigation message highlighted with box:  
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IS-GPS-200D: Solving for Satellite Position (2 of 4) 
46 

IS-GPS-200D, 7 Dec 2004, p 97 

(continued) 

For informational 
purposes only—not 
needed in calculations 

See upcoming slide 
for how to solve for Ek 

Use four-quadrant 
arctan function 
(“atan2” in MATLAB) 

Variables obtained from navigation message highlighted with box:  
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IS-GPS-200D: Solving for Satellite Position (3 of 4) 
47 

IS-GPS-200D, 7 Dec 2004, p 98 

For informational 
purposes only—not 
needed in calculations 

Variables obtained from navigation message highlighted with box:  
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IS-GPS-200D: Solving for Satellite Position (4 of 4) 
48 

(continued) 

Variables obtained from navigation message highlighted with box:  
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Solution to Kepler’s Equation 

•  Kepler’s equation, though simple in form, has no known closed-
form solution 
–  All solutions are iterative (or approximate) 

•  Newton’s method 

•  Method used in RCVR-3A software specification 

–  RCVR-3A performs two iterations (i.e., stops calculating at E2) 
–  Don’t confuse these subscripts with subscripts in ephemeris 

equations! 
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Accounting for Signal Travel Time (1 of 3) 

•  Signal arrives at receiver after it is transmitted (due to signal 
travel time) 
–  Transmit time: Time the signal was transmitted 
–  Receive time: Time the signal was received 

•  Satellite position should be calculated based upon transmit time 
–  When measuring a signal, we don’t really care what happened after 

that signal was transmitted 
–  Transmit time should be GPS system time (or as close to it as 

possible) 
–  Very good approximate value of transmit time obtained by 

subtracting pseudorange (expressed in seconds) from the receive 
time as indicated by the receiver clock 

•  Why? 

•  What other considerations do we need to make for signal travel 
time? 
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Accounting for Signal Travel Time (2 of 3) 

•  Here’s the situation, looking down at the North Pole 

xt 

xr 

yt 
yr 

γ 

•  Methodology: 
–  Solve for position of SV at 

transmit time, in ECEF 
coordinates at transmit time (xt, yt, 
and zt) using ICD-GPS-200 
equations 

–  Rotate into ECEF reference frame 
at the time of reception: 
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Accounting for Signal Travel Time (3 of 3) 

•  Neglecting atmospheric delay, the signal propagation 
time is calculated by 

•  Note that the satellite position is needed to calculate 
tprop (and vice-versa) 
–  Satellite position in ECEF coordinates at transmit time is 

sufficiently accurate (xt, yt, and zt) 
–  Note that receiver position must be known 

•  Can be approximate 

vector position ECEF receiver
vector position ECEF satellite

light of speed
satellite to rangegeometric 
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Overview 

1.  Positioning Using Time-of-Arrival 
2.  GPS Receiver Measurements 
3.  Coordinate Frames 
4.  Calculation of Satellite Position 
5. GPS Navigation Solution 
6.  Dilution of Precision 
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Pseudorange Equation 

•  The pseudorange is the sum of the true range plus the receiver 
clock error 
–  We’re assuming (for now) that the receiver clock error is the only 

remaining error 
•  SV clock error has been corrected for 
•  All other errors are deemed negligible (or have been corrected) 

•  For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P) 

( ) ( ) ( )

(sec) error clock receiver
(m) user of position ECEF

(m)  satellite of position ECEF
(m)  satellite from tmeasuremen epseudorang
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Statement of the Problem 

•  At a given measurement epoch, the GPS receiver 
generates n pseudorange measurements (from n 
different satellites) 

•  Goal: Determine user position and clock error, 
expressed in state-vector form as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) uunununn
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Solving the Pseudorange Equations  

•  The n pseudorange equations are non-linear (so no easy 
solution) 

•  Ways to solve 
–  Closed form solutions 

•  Complicated 
•  May not give as much insight 

–  Iterative techniques based on linearization 
•  Often using least-squares estimation 
•  Arguably the simplest approach 
•  Approach covered in this course 

–  Kalman filtering 
•  Similar to least-squares approach, except with additional ability to handle 

measurements over a period of time 
•  Will discuss briefly 

•  What is linearization? 
–  Pick a nominal (or approximate) solution 
–  Linearize about that point, resulting in a set of linear equations 
–  Solve the linear equations 
–  Will use Taylor series expansion for linearization 
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Taylor Series Expansion (1/2) 

•  Taylor series expansion (1 variable) 

•  This can be used to linearize about a certain value of the 
independent variable a. 
–  Example: the function                             is a non-linear function in t 
–  Suppose we want to linearize about the point 
–  The complete Taylor series expression is 

–  To linearize, we set          and neglect higher order (non-linear) 
terms of Δt 

•  Valid for perturbations (i.e., small values of Δt)  
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–  (Continued example) Linearized form 

•  First order Taylor series for function in two variables: 

Taylor Series Expansion (2/2) 
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Linearization of Pseudorange Equations (1/5) 

•  First, define a nominal state (position and clock error) as 

•  An approximate (or expected) pseudorange can then be 
calculated for satellite j  

–  This approximate (expected) pseudorange is the pseudorange that 
we would expect to have if our position and clock error were 
actually  

state te)(approxima nominal
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Linearization of Pseudorange Equations (2/5) 

•  Relationship between true and approximate position and time 

–  Vector form: 

•  Based on these relations, we can write 

•  To linearize, right-hand side of equation can be evaluated using 
a first order Taylor series expansion 
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Linearization of Pseudorange Equations (3/5) 

•  First order Taylor series expansion of pseudorange 
function: 

•  The partial derivatives are 

h.o.t. 
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Linearization of Pseudorange Equations (4/5) 

•  Using above results, linearized pseudorange 
equation is  

•  This can be simplified to 
where 
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Linearization of Pseudorange Equations (5/5) 

•  Original (nonlinear) equations for n measurements 

•  Linearized (error) equations for the same n 
measurements 
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Solving the Linearized Pseudorange Equations 
Using Least-Squares (1/2) 

•  We can express the set of pseudorange equations in matrix form 

•  Three possible cases 
–  n < 4: Underdetermined case 

•  Cannot solve for Δx 
•  Is there still useable information? 

–  n = 4: Uniquely determined case 
•  One valid solution for Δx (generally) 
•  Solved by calculating H-1  (Δx = H-1Δρρ) 

–  n > 4: Overdetermined case 
•  No solution that perfectly solves equation (generally) 
•  Can use least-squares techniques (which pick solution that minimizes the square of the error) 
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Solving the Linearized Pseudorange Equations 
Using Least-Squares (2/2) 

•  Basic least-squares solution (no measurement weighting) 

–  Reasonable approach for single-point positioning in presence of SA 
•  Solution with measurement weighting (weighted least-squares) 

–  Useful when 
•  Measurements have different error statistics 
•  Measurement errors are correlated 

–  Measurement error covariance matrix Cρ
•  Diagonal terms are measurement error variances 
•  Off-diagonal terms show cross-correlation between measurement errors 

–  Note that this is identical to unweighted case if Cρ = I (identity 
matrix) 

( ) ρρΔ=Δ
− TT HHHx 1

( ) ρρΔ=Δ −−− 111
ρρ CHHCHx TT
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Measurement Residuals 

•  For overdetermined system, generally no valid 
solution for Δx that solves measurement equation, so  

•  Measurement residuals (v) 
–  Corrections that, when applied to measurements, would 

result in solution of above equation 
–  Least-squares minimizes the sum of squares of these 

residuals 

xHΔ≠Δρρ

vxH

xHv

+Δ=Δ

Δ−Δ=

ρρ

ρ
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Iterating the Nominal State 

•  Linearized equations (and resulting H matrix) calculated using 
nominal state 

•  Linearization valid when 
–  Nominal state is close to true state 
–   Δx is “small” 

•  If      is not very accurate (i.e., Δx is large), iteration is required 
–  For each iteration, a new value of      is calculated based upon the 

old value and the corrections Δx 

–  This new value of       is then used to recalculate the corrections Δx 
(which should be smaller this time) 

•  Solution must converge 
–  For standard GPS positioning, not much of a problem (will generally 

converge with an initial guess at the center of the Earth) 
–  For more non-linear situations (e.g., using pseudolites), this can be 

more of a problem  

ux̂

ux̂

xxx Δ+=
oldnew uu ˆˆ

ux̂

ux̂
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Correcting for Satellite Clock Error 

•  Single point positioning only estimates receiver clock 
error 
–  Assumes all other errors are negligible 
–  Requires correction of satellite clock error 

•  Clock correction (from 
     IS-GPS-200D) 
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Determining Signal Transmit Time (1/2) 

•  For satellite position calculation, need true GPS 
transmit time of the signal (Ts) 
–  Receiver provides time of reception according to the receiver 

clock (Tu + δ trcvr) 
–  From diagram below, if the pseudorange time equivalent is 

subtracted from the receive time, then the result is the true 
transmit time plus the satellite clock error 

δ tsv 

δ tsv 

δ trcvr 

δ trcvr 

Δ t + δ trcvr - δ tsv 

svsrcvru tT
c

PRtT   

time receive

δδ +=−+

(m)t measuremen epseudorang =PR

ssvrcvru Tt
c

PRtT =−−+   

 timereceive

δδ

slide previous the
 from  as same svtΔ
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•  Effect of neglecting δ tsv for 
SV positioning1 
–  Satellite clock error can  
     grow to up to ~1 msec: 
–  Typical satellite velocity is 

3900 m/s 
–  Worst-case position error 

from neglecting δ tsv 

–  Effect of neglecting δ tsv 
•  Single point positioning: Can 

be significant (but not with SA) 
•  Differential positioning: 

effectively cancelled out (acts 
like 3.9 m satellite position 
error) 

Determining Signal Transmit Time (2/2) 

1The SV clock error δ tsv will have a significant effect on the actual pseudorange measurement.  This 
page only describes the impact of δ tsv on determining the position of the satellite. 
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Use of Dual Frequency Measurements to Calculate 
Ionospheric Delay 

•  L1 ionospheric delay calculated by 

•  L2 ionospheric delay can be calculated by 

•  Ionospheric-free pseudorange: 

•  Multipath and measurement noise will corrupt this measurement 
of ionosphere 
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Correcting for Satellite Group Delay 

•  Each satellite has a slight time bias between the L1 and 
the L2 signals 
–  Not desired, but it’s there nonetheless 
–  Will affect dual-frequency users, unless it’s accounted for 
–  Can be measured and/or calibrated out 
–  This calibration is accounted for when the control segment 

generates the satellite clock correction terms from broadcast nav 
message: 

–  However, this is all designed for the dual-frequency user!  Single 
frequency users need to remove the effect of this dual-frequency 
correction on their Δtsv value 

•  Single frequency users must apply the group delay term 
(TGD) from the nav message to their SV clock correction 
term (from p. 90 of ICD-GPS-200C) 
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Single Point Positioning Algorithm 

Calculate 
transmit times 

Calculate approximate 
SV clock errors  

(no relativity correction) 

Correct pseudoranges 
for SV clock error* 

Calculate H, Δρ

Calculate Δx 

Is 
 | Δx | small 

(<10m)? 

Calculate 
 

is final solution 

Stop 

Use        
ne wux̂

no 

yes 

*include group delay correction, if a single-frequency user 

Start with 
Initial     

Calculate SV position 
and sv clock errors 

ux̂

xxx Δ+=
oldnew uu ˆˆ

ne wux̂
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GPS Positioning Example 

•  We’ll look at a single case to give an example 
•  Situation 

–  Receiver measurement time (GPS week seconds): 220937 
–  Initial     : 

[                                                                                ] 

–  Measurements: 
 

74 

ux̂

Initial clock error 
expressed in m 

Initial guess of position 
(in error by ~50 km) 
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Example: Calculation of Transmit Time 

Calculate 
transmit times 

Calculate approximate 
SV clock errors  

(no relativity correction) 

Correct pseudoranges 
for SV clock error* 

Start with 
Initial     

Calculate SV position 
and sv clock errors 

ux̂ 0 1 2

2
0 0( ) ( )

approx c csv f f ft a a t t a t tΔ = + − + −

ssvrcvru Tt
c

PRtT =−−+   

 timereceive

δδ

(Receive time = 220937) 
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Example: SV Position and Clock Error and 
Pseudorange Correction 

Calculate 
transmit times 

Calculate approximate 
SV clock errors  

(no relativity correction) 

Correct pseudoranges 
for SV clock error* 

Start with 
Initial     

Calculate SV position 
and sv clock errors 

ux̂

0 1 2

2
0 0( ) ( )

c csv f f f rt a a t t a t t tΔ = + − + − +Δ

Orbital calculations 
+ time-of-transit 
rotation correction 

*include group delay correction, if a single-frequency user 

( )corr sv GDc t Tρ ρ= + Δ −
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Example: H Matrix (Iteration 1) 

Calculate H, Δρ

Calculate Δx 

Is 
 | Δx | small 

(<10m)? 

Calculate 
 

is final solution 

Stop 

yes 

xxx Δ+=
oldnew uu ˆˆ

ne wux̂
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Example: Δρ (Iteration 1) 

Calculate H, Δρ

Calculate Δx 

Is 
 | Δx | small 

(<10m)? 

Calculate 
 

is final solution 

Stop 

yes 

xxx Δ+=
oldnew uu ˆˆ

ne wux̂

ˆ corrρ ρ ρΔ = −

Calculated Measured 
(corrected) 
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Example: Solution and Residuals (Iteration 1) 

Calculate H, Δρ

Calculate Δx 

Is 
 | Δx | small 

(<10m)? 

Calculate 
 

is final solution 

Stop 

yes 

xxx Δ+=
oldnew uu ˆˆ

ne wux̂

( ) ρρΔ=Δ
− TT HHHx 1

= Δ − Δv H xρρ

xxx Δ+=
oldnew uu ˆˆ

ˆ
olduxˆ

newux Δx

Residuals: 

v Δρρ ΔH x
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Example: H Matrix (Iterations 1 and 2) 

H = 
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Iteration 1 Iteration 2 
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Example: Δρ (Iterations 1 and 2) 

ˆ corrρ ρ ρΔ = −

Calculated Measured 
(corrected) 

Iteration 1 Iteration 2 

ˆ corrρ ρ ρΔ = −

Calculated Measured 
(corrected) 
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( ) ρΔ=Δ
− TT HHHx 1

= Δ − Δv H xρ

xxx Δ+=
oldnew uu ˆˆ

ˆ
olduxˆ

newux Δx

Residuals: 

v Δρρ ΔH x

Example: Solution and Residuals (Iterations 1 and 2) 

( ) ρΔ=Δ
− TT HHHx 1

= Δ − Δv H xρ

xxx Δ+=
oldnew uu ˆˆ

ˆ
olduxˆ

newux Δx

Residuals: 

v Δρρ ΔH x

Iteration 1 Iteration 2 
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Example: H Matrix (Iterations 2 and 3) 

H = 
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0
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E
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E
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 Z

Iteration 2 Iteration 3 
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0.4
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ECEF XECEF Y

E
C

E
F

 Z
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Example: Δρ (Iterations 2 and 3) 

ˆ corrρ ρ ρΔ = −

Calculated Measured 
(corrected) 

Iteration 2 Iteration 3 

ˆ corrρ ρ ρΔ = −

Calculated Measured 
(corrected) 
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( ) ρρΔ=Δ
− TT HHHx 1

= Δ − Δv H xρρ

xxx Δ+=
oldnew uu ˆˆ

ˆ
olduxˆ

newux Δx

Residuals: 

v Δρρ ΔH x

Example: Solution and Residuals (Iterations 2 and 3) 

( ) ρΔ=Δ
− TT HHHx 1

= Δ − Δv H xρ

xxx Δ+=
oldnew uu ˆˆ

ˆ
olduxˆ

newux Δx

Residuals: 

v Δρρ ΔH x

Iteration 2 Iteration 3 

On order 
of 10-6 

John F. Raquet, 2012 

Convergence 

•  Practically speaking, getting the system to converge 
with GNSS is easy 
–  Example showed case where initial guess was 50 km in 

error 
–  Can start with the center of the Earth as a guess, and it 

would only add an iteration or two 
–  Normally, a receiver will use its last solution as a starting 

point, so only a single iteration is necessary 

•  Nonlinearities (which drive the need for iteration) are 
more severe when dealing with pseudolites 
–  Much closer to receiver than satellite 
–  H matrix varies more quickly as a function of position 

86 
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Overview 

1.  Positioning Using Time-of-Arrival 
2.  GPS Receiver Measurements 
3.  Coordinate Frames 
4.  Calculation of Satellite Position 
5.  GPS Navigation Solution 
6. Dilution of Precision 

87 
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Measurement Domain vs. Position Domain 

•  Pseudorange errors are errors in “measurement domain” 
–  Errors in the measurements themselves 
–  UERE is one example 

•  Ultimately, we’d like to know errors in “position domain” 
–  The position errors that result when using the measurements 
–  Errors in position domain are different than measurement errors! 

•  Can be larger 
•  Can be smaller 

–  Dependent on measurement geometry 
•  Mathematical representation 

–  We have covariance matrix of measurements (Cρ). 
–  We want covariance matrix of calculated position and clock error 

(Cx) 
•  In GPS applications, this problem is approached using concept 

called Dilution of Precision (DOP) 
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Effect of Geometry on Positioning Accuracy 
(Foghorn Example) 

Good Geometry Example Poor Geometry Example 

Consider the foghorn example, except allow for a measurement error 
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Obtaining Cx from Least-Squares Analysis (1/2) 

•  Definition of Cx 

•  Definition of Cρ 

where, for example,  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσσσ

σσσσ

σσσσ

σσσσ

=

δδδδ

δ

δ

δ

2

2

2

2

uuuuuuu

uuuuuuu

uuuuuuu

uuuuuuu

ttztytx

tzzzyzx

tyzyyyx

txzxyxx

    

 

 

 

xC

( )[ ]

( )( )[ ]
uu

uuuuyx

u

uux

yx

yEyxExE
x

xExE

uu

u

 and  of covariance 

 of variance

=

−−=σ

=

−=σ

][][

][ 22

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσσσ

σ

σσσ

σσσ

=

ρρρρρρρ

ρρ

ρρρρρ

ρρρρρ

2

2

2

321

3

2221

1211

nnnn

n

n

n

ρρC



John F. Raquet, 2012 91 

Obtaining Cx from Least-Squares Analysis (2/2) 

•  According to least-squares theory: 

–  Basic assumptions 
•  Measurement errors are zero-mean 
•  Measurement errors have a Gaussian distribution 

•  Recall that the least-squares solution with measurement 
weighting was 

–  Consider case where the nominal position and clock error (used to 
calculate Δρρ) are actually the true position and clock error 

•  The Δρρ represents the measurement errors 
•  The Δx represents the position and clock errors 
•  The Cx matrix is a multiplier for the measurement errors (Δρρ) 

–  “Large” Cx values → large position errors 
–  “Small” Cx values → small position errors 

( ) 1−−= HCHCx
11
ρ

T

( )
ρρ

ρ

ρρ

ρρ

Δ=

Δ=Δ
−

−−−

1

111

CHC
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x
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Dilution of Precision (DOP) 

•  In GPS, the concept of Dilution of Precision (DOP) is used 
–  Based upon covariance matrix of position and clock errors (Cx) 
–  Additional assumptions 

•  All measurements have the same variance 

•  Measurement errors are uncorrelated (i.e.,covariance values are zero)  

–  Using these assumptions 

–  The matrix             is called the DOP matrix 
•  Directly relates measurement errors to position errors  

and 
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Use of Local-Level Coordinate Frame (1/2) 

•  Normally, DOPs describe errors in geodetic (local-level) coordinate 
frame (east, north, up), rather than the ECEF frame. 
–  Need to modify the H matrix so that the errors refer to the local-level frame 
–  Original H matrix (used to calculate position) 

•  “a” vectors are unit line-of-sight vectors between user and SV in ECEF frame 
•  This will give the Cx matrix described previously 

–  New H matrix for DOP calculations  

•  “a” vectors are now unit line-of-sight vectors between user and SV in geodetic (ENU) 
frame 
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Use of Local-Level Coordinate Frame (2/2) 

•  Local-level “a” vectors can be calculated using direction cosine 
matrix (DCM) 

•  When HG is used to calculate the covariance                              , 
then Cx is defined as 

–  This is what we desire to describe using DOPs 
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DOP Values 

•  Desirable to characterize the Cx matrix using a single 
number 
–  For DOPs 

•  Cross-correlation terms ignored 
•  Root-Sum-Square (RSS) value of variables of interest, normalized by σUERE 
•  Example: 

•  GDOP can be calculated directly from DOP matrix 

•  Note that GDOP relates UERE with RSS of errors 
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Key relationship! 
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Types of DOPs 

•  The “Big Three” 
–  GDOP (Geometric DOP) 

–  PDOP (Position DOP) 

–  HDOP (Horizontal DOP) 

 

•  Less common (for 
navigators, at least!) 
–  VDOP (Vertical DOP) 

–  TDOP (Time DOP) 

•  Note: time is in units of meters 

44332211 DDDDGDOP +++=

UEREtune GDOP
u

σσσσσ δ ×=+++ 2222
 

332211 DDDPDOP ++=

UEREune PDOP σσσσ ×=++ 222

2211 DDHDOP +=

UEREne HDOP σσσ ×=+ 22

33DVDOP =

UEREu VDOP σσ ×=2

44DTDOP=

UEREt TDOP
u

σ×=σδ
2
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Typical DOP Plot 

Dayton Ohio – 24 Apr 2003 – All Visible SVs (above 10° elevation)  




