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Overview

• High precision GPS techniques
» Relative, differential, wide area differential
» Kinematic, surveying, attitude determination

• GPS code and carrier phase measurements
» Error sources: Clock and orbit errors, ionospheric and 

tropospheric propagation delays, multipath, noise, antenna 
phase and group delays

• Additional implementation considerations
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History

First Commercial GPS Receiver
• Installed in DC-3 (1986)
• Differential GPS project to analyze high-

accuracy Loran-C (m-level accuracy)
Receiver development (1979 – 1983)
• Hardware: Stanford Telecom, Inc.
• Software: Intermetrics, Inc.
• Integration/nav: MIT Lincoln Lab
• Stand-alone accuracy: 100 m (95%)
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Differential/Relative Positioning

• Differential Positioning:
» Place one or more reference receivers in known 

(surveyed) locations and measure the GPS errors
» Broadcast the error estimates for each satellite
» User applies corrections to its GPS measurements

• Relative Positioning:
» Same as differential, except that the corrections 

are relative to the reference receiver(s)
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Example Applications
• Relative GPS

» Aircraft carrier landing
» Formation flight
» Towed hydrographic array
» Construction site survey

• Differential GPS
» Aircraft navigation and precision approach
» Georeferencing
» Maritime navigation
» Surveying
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Differential GPS Configurations
• Local-Area DGPS

» One correction for each satellite
» Examples

• National Differential GPS (U.S. Coast Guard Network)
• FAA’s Local Area Augmentation System (internationally referred 

to as Ground Based Augmentation System or GBAS)
• DoD's Joint Precision Approach and Landing System

• Wide-Area DGPS
» Corrections are broken-out into components: orbit, clock, ionosphere, 

troposphere, so that corrections can be applied as a function of user 
location

» Examples of Space Based Augmentation Systems (SBAS)
• FAA’s Wide-Area Augmentation System (WAAS)
• EGNOS (Europe), MSAS (Japan), GAGAN (India)
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Local Area DGPS Concept

GPS
Receiver

Data
Broadcast

Data
Receiver

GPS
Receiver

GPS antenna in a
surveyed location

Broadcast:
• Time
• Satellite Identifiers
• Pseudorange Correction
• Range Rate Correction
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Differential GPS Techniques
• Code-phase: 1 - 2 meter ranging noise

» Used for commercial applications where sub-meter 
accuracy is not required

• Carrier-smoothed code-phase: 0.1 - 0.5 meter ranging noise
» Used for most existing high-accuracy systems

• Carrier-phase: less than 0.01 m ranging noise
» Most implementations require code-phase for 

initialization and robustness.  Also referred to as 
kinematic or interferometric GPS

» "Standard" for truth reference systems
» Involves ambiguity resolution for cm-level accuracy
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LAAS Performance Example (L1 and L1/L2)

Code Noise Multipath Algorithm
applied to both ground and airborne
solutions (L2 only used for carrier)

Differential GPS           p.9



Wide Area Concept

From: http://www.nstb.tc.faa.gov/
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WAAS Coverage for 200-ft Decision Height
Typical WAAS performance
Horizontal: 1 m (95%)
Vertical: 1.5 m (95%)

Spec: 7.6 m (95%)

Localizer Performance with Vertical 
Guidance:
LPV-200 Requirements:

95% Accuracy:
Horizontal: 16 m
Vertical: 4 m

Alert limits: 10-7 probability of 
exceeding

Horizontal (HAL): 40 m 
Vertical (VAL): 35 mFrom: http://www.nstb.tc.faa.gov/
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GBAS/SBAS
• Performance for GBAS is sub-meter, SBAS 1-2 m
• Key is integrity

» WAAS limited by ionospheric disturbances over 
hundreds of km, resulting in a VPL of 35 m

» LAAS limited by local (within 5-10 km range) 
ionospheric disturbances, resulting in a VPL of 10 m

• Many additional monitors are implemented: e.g. signal 
deformation, low received signal power, excessive 
acceleration, code-carrier divergence, interference, 
cycle slip, long-term noise, ephemeris
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Overview

• High precision GPS techniques
» Relative, differential, wide area differential
» Kinematic, surveying, attitude determination

• GPS code and carrier phase measurements
» Error sources: Clock and orbit errors, ionospheric and 

tropospheric propagation delays, multipath, noise, antenna 
phase and group delays

• Additional implementation considerations
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Kinematic Techniques

• First reported by Dr. Richard Greenspan, et al. in 1982
» mm-level accuracy for baselines between 8 and 52 m

• First attitude application in 1983, Burget, Roemerman, Ward
• Speed up of ambiguity resolution in 1984 by Remondi
• Ship attitude determination, Krucynski, et al., 1989
• Post-processed aircraft attitude, Purcell, et al., 1989
• Real-time aircraft attitude and heading, 1991*
• Real-time kinematic autoland (Van Graas, et al.), 1993

* Van Graas, F., Braasch, M. S., "GPS Interferometric Attitude and Heading 
Determination: Flight Test Results," Proceedings of the 47th Annual Meeting of The 
Institute of Navigation, Williamsburg, VA, June 1991, pp. 183-191.
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Single Difference Geometry

To Satellite
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The Single Difference

• The Single Difference (SD) is taken as the difference between 
the measurements from two receivers for one satellite.

• The SD is the projection of the baseline vector, b, onto the 
line-of-sight to the satellite

» Can be written as the inner-product of the baseline vector 
with the unit vector to the satellite.

zeyexeeee
z
y
x

ebSD zyxzyx ,,

Differential GPS           p.16



Double Difference Geometry

To SV 1

A

B

To SV 2

GPS receiver
GPS receiver
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Single and Double Differences

• Two Accumulated Doppler Single Differences:

Ambiguity exists since the Doppler accumulation starts at an 
arbitrary value (zero, or close to the pseudorange) and the 
clock offset exists because the two receivers use different 
clocks.  Cannot tell them apart !

• Double Difference:
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Double Difference Equation

• The Double Difference Equation:

• Four satellites are used to form 3 DDs
• One satellite is the reference
• Solve for baseline vector (x,y,z)T and

three integer ambiguities: N1r, N2r, N3r
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Ambiguity Resolution
• Many mathematical ambiguity search techniques, e.g.:

» Exhaustive search with pruning
» Lambda method*

• Reliability of ambiguity resolution techniques is still not at 
the level required for aircraft precision approach:

» Handling of time-varying and spatial-varying error sources 
(e.g. ionospheric and tropospheric propagation delays)

» Carrier phase robustness and cycle slip detection/repair
» Operation in the presence of interference

• Additional satellites (more than 6) are very helpful
* Teunissen, P.J.G., De Jonge, P.J., Tiberius, C.C.J.M, "The Lambda-Method for Fast GPS 
Surveying," Proceedings of the International Symposium GPS Technology and Applications, 
Bucharest, Romania, September 26-29, 1995.
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Ambiguity Resolution Concept

Two wavefronts
One redundant

wavefront
One redundant

rotated wavefront

Potential position solutions are discarded
due to wavefront rotation

All crossings are potential
position solutions

Helpful: additional satellites, faster geometry changes, 
better initial position solution, better measurements
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Ambiguity Function Method

• First published method (developed in 1981)
• Select a trial position and calculate corresponding 

double differences
• Compare trial DDs with measured DDs using the 

ambiguity function (over all DDs and all epochs):

• At the correct location, the ambiguity function is a 
maximum (insensitive to cycle slips)
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Least Squares Ambiguity Search

• Developed for dynamic positioning
• Uses redundant measurements to constrain the 

ambiguity search
• Based on solution residuals using fault detection 

techniques
• Much effort was spent to reduce the computation 

time:
» If there are 5 DDs and each has an uncertainty of 
±5 , then a total of (11)5 = 161051 potential 
ambiguity sets exist
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Double Difference Kinematic Performance Example
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Fuselage Baseline Performance (In-Flight)
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Baseline vector magnitude vs. GPS Time

sustained turns

DC-3 multipath can
be several centimeters

During sustained turns:
multipath “oscillates”
and becomes zero-mean

baseline

Length: rms ≈ 0.7 cm
Lateral rms ≈ 0.7 cm

0.7 cm over 7.8 m
0.9 mrad noise

Dual-GPS Baseline Length (7.8 m)

2 cm
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Triple Difference

• Use Double Differences at two time intervals; this cancels the 
ambiguities:

• Triple Difference:

• Change in position:
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Triple Difference Propagation
• Triple Differences (from accumulated carrier phase) can be 

used to accurately propagate the receiver’s position with 
centimeter-level accuracy

• The term: (H2-H1)b1 corrects for the change in geometry from 
time 1 to time 2

» Without this term, a small error, on the order of
one centimeter, would be introduced

» This error would be systematic and would therefore 
accumulate over time; e.g. after 100 seconds, the error 
would grow to 1 meter

• By using the TD propagation, a dynamic user becomes 
essentially static from a processing point of view (will only 
vary position within centimeters)
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Triple Difference Flight Test Data
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Integrated Doppler DD Method

• Uses both redundant measurements and changing geometry to 
estimate the aircraft position in a Kalman filter with Triple 
Difference propagation

• Method also works in the absence of code phase 
measurements: Doppler positioning

• Convergence time is typically 2 minutes using 7 satellites
• Feasibility of this method was shown in a flight test with a 

Boeing 757 at Atlantic City Int’l Airport

Ref: Van Graas, F. and Shane-Woei Lee, “High-Accuracy Differential Positioning for Satellite-
Based Systems without Using Code-Phase Measurements,” NAVIGATION: Journal of The 
ION, Vol. 42, No. 4, Winter 1995-1996.
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Aircraft Flight Path
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Vertical IDM Performance
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Other Techniques

• Use multiple frequencies to obtain the so-called 
widelane (e.g. L1-L2  = 347.82 MHz, = 86.19 cm)
» Reduces the number of ambiguity sets
» Same can be done with L5

• Use ground-based pseudolites to provide for a fast 
geometry change

• Add satellites from other constellations: Glonass, 
Compass, Galileo

• Avoid ambiguity resolution, but perform extensive 
carrier phase smoothing instead
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Overview

• High precision GPS techniques
» Relative, differential, wide area differential
» Kinematic, surveying, attitude determination

• GPS code and carrier phase measurements
» Error sources: Clock and orbit errors, ionospheric and 

tropospheric propagation delays, multipath, noise, antenna 
phase and group delays

• Additional implementation considerations
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GPS Differential Error Sources
Range Error Sources Relative/Differential System

Baseline Up to 50 km Up to 200 km

Normal
operation 
condition 

(carrier phase)

Ionosphere (dual freq) < 0.5 cm < 3 cm

Troposphere < 1 cm 1-2 cm

SV orbit error < 1 cm 10 cm

SV clock error N/A N/A

Multipath < 0.5 cm < 0.5 cm

Receiver noise < 0.5 cm < 0.5 cm

Receiver antenna < 0.2 cm < 0.2 cm

Composite (RSS largest) 1.7 cm 10.7 cm

Performance
limitations

Ionosphere storm 1-3 cm 1-3 cm

Troposphere storm 1-30 cm 1-30 cm

SV anomalies 1 cm 30 cm

Composite (RSS largest) 30 cm 44 cm
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Errors Affecting Differential Applications

• Ionosphere, troposphere, satellite orbit, multipath, noise, 
antenna phase and group delays

• Other errors that need to be corrected: 
» Carrier phase wrap-up

• Stationary, dynamic
» Receiver dynamics-related errors
» Earth tides, ocean loading, plate tectonics, satellite antenna

• Errors that don't need to be corrected (are common and cancel 
between two receivers):

» Satellite clock
» Satellite inter-frequency and inter-code biases
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Ionosphere Delay/Advance
• Ionospheric delay is a function of:

» Total Electron Content (TEC)
• Solar cycle
• Diurnal effect
• Geomagnetic latitude

» Frequency
» Elevation angle: Mean ionospheric height

• Few ns at night to 100 ns during the day
• Product of group velocity and phase velocity = c2

• Phase Advance = - Group Delay
• Pseudorange travels at the group velocity and is delayed through the 

Ionosphere
• Carrier phase travels at the phase velocity and is advanced through the 

ionosphere.
• This phenomenon is referred to as Code-Carrier Divergence, which is on 

the order of 3 ns (or 1 m) per 10 minutes (elevation angle dependent).

TEC: number of electrons
in a cylinder between the

satellite and the user.

1 m2

2cvv phasegroup
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Code-Carrier Divergence

• Code-minus-carrier analysis is often used for evaluating GPS 
pseudorange performance, or monitoring changes in the 
ionospheric delay:

• Most errors are common between the pseudorange and the 
integrated carrier phase, except for

» Multipath (much smaller on the carrier)
» Thermal noise (much smaller on the carrier)
» Ionospheric delay
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Code-Carrier Divergence Example
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Code-carrier divergence can be removed using
dual-frequency measurements.
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Ionosphere Errors

From: http://iono.jpl.nasa.gov/latest_rti_global.html

1 TECU = 1016 el/m2

Approx. delay:

1 TECU1 ≈ 16 cm 
(at GPS L1)

1 TECU2 ≈ 27 cm
(at GPS L2)
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Higher-Order Ionospheric Effects

• Example second-order error at Arecibo
»

Arecibo Incoherent Scattering Radar
» Over 14 years of radar data
» >2660 hours measurements
»

(amounts to approximately half of 
the GPS error – up to 600 km)
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Research performed with Miami Univ (Dr. Jade Morton)
supported by AFOSR (Dr. Jon Sjogren)
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Differential Ionosphere Errors
• For single frequency users

• Rely on correlated ionosphere errors over small baselines 
between receivers (< 5 km)

• Remaining error is small (less than 1 cm) when the 
ionosphere is quiet, but errors can grow quickly during 
ionospheric gradients

• For dual frequency users
• Measure both frequencies

• Increases noise
• Corrects approximately 99% of the delay
• Valid for larger baselines (limited by decorrelation of 

higher-order ionospheric corrections – few cm)
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Dual Frequency Ionosphere Correction

2
1

2
2

2
2

211

11,1

)()()(

)()()(

LL

L
LLL

LLcorrL

ff
fttt

tItt

2
1

2
2

2
2

121

11corrL1,

)()()(

)()()(

LL

L
LLL

LL

ff
fttt

tItt

ionosphere-free
pseudorange

ionosphere-free
carrier phase

• L1 and L2 carrier phase can be used to calculate changes
in  IL1(t), which, in turn can be used to smooth the L1 pseudorange
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Troposphere Delays

• Affects L1, L2, code and carrier equally
• Delay is a function of temperature, humidity, pressure, and 

path through the troposphere
» Dry delay (hydrostatic) 2-2.5 m in the zenith direction, 

highly predictable
» Wet delay (water vapor) up to 0.4 m in the zenith 

direction, difficult to model
• Zenith Delay:

h
dznmZD

0

6 )1(10)(

n is index of refraction

Zenith delays at sea level
Dry air: 250 cm
Water vapor: 40   cm
Hydrometeors: 1.5  cm
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Differential Troposphere Errors

• For single frequency users
• Rely on correlated troposphere errors over small baselines 

between receivers (< 5 km)
• Remaining error is small (less than 1 cm) when the 

troposphere is quiet, but errors can grow quickly during 
weather events

• Only correction for weather events is a detailed 
tropospheric model need knowledge of the conditions 
along the entire path through the troposphere

• For dual frequency users
• Same as for single frequency – no dual-frequency 

correction possible
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Troposphere Delay Ray Tracing

s1

s2

r0

r1

r21

0

y1

z1

P0

P1

P2
z2

y2

z

y

P3

s3 r32

e2

1

y3

z3

n1

n2

n3

PN

rSVrN

nN
nN+1

Delay and refraction

N

i
iNSVSVgeo

geowshstropo

sd

dddd

1
0

,,

rrrr

Differential GPS           p.45



Simple Troposphere Model
• Removes approximately 90% of the tropospheric delay error:

where: EL is the elevation angle; H is the height (m)

(m)  
)sin(026.0

4224.2
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Local Horizon
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Modified Hopfield Model
• Removes approx. 98% of the nominal troposphere delay:
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i = 1: dry component
i = 2: wet component
T = surface temperature in (K)
p = atmospheric pressure (mbar)
e = water vapor partial pressure (mbar)
EL = elevation angle
ae = semi-major axis of earth ellipsoid
RH = relative humidity (percentage)
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Troposphere Anomalies Affecting DGPS

•

Stocker-UNI
SV 11
7/7/2003
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Weather Differentials

Parameter Nominal 
Value Span

Temperature °C 25 °C ± 5 °C

Relative Humidity RH 60% ± 40%

Pressure 1013.25 
mbar 0

Tropospheric differentials due to 
severe weather can be as large as 
±0.3 m over a 5-km distance
Zhu, Z., Van Graas, F., Tropospheric Delay Threats for the 
Ground Based Augmentation System, ION ITM 2011.
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GPS Clock and Orbit Error Statistics (m)

IIA IIR    IIR-M

June 2005-June 2008
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Spatial Decorrelation – Satellite Error
• Clock Error: Is the same in all directions and is therefore 

common between two receivers
• Orbit Error: Separated users observe different orbit errors

Differential
Range Error

User 1

User 2

Orbit error vector
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Satellite Orbit Errors

• Typical Satellite Orbit Errors
» Radial (RAD) 0.3 m
» Alongtrack (ATK) 1.5 m
» Crosstrack (XTK) 1.0 m

b is the separation distance
d is the satellite position error (ATK or XTK)
R is the satellite altitude ( 11,000 nmi)

R
d b   
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Differential Orbit Error Examples
• If ATK or XTK is 5 m, and the separation distance is 100 km, 

then:
» Differential range error = 0.005 × 5 = 2.5 cm

• Same ATK, but separation distance is 1000 nmi:
» Differential range error = 0.09 × 5 = 0.45 m

• Differential range error:
» Approximately 10% of ATK or XTK per 1000 nmi 

separation
» Less than 3% of RAD (at maximum separation distance of 

2000 nmi)
• Solution: (near) real-time orbit corrections (e.g. IGS)
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Multipath
• The phenomenon whereby a signal arrives at the 

receiving antenna via multiple paths due to reflection 
and diffraction.

• Effect: Distortion of code and carrier phase, causing 
measurement errors. 

GPSspecular

diffuse
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C/A Code Multipath

direct

multipath

Path delay or lag in chips
Use two parts:
• Path delay
• Phase delay for carrier
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Correlator Function

T-T 0 T-T 0

Lag in bit periods

Direct Signal in-phase
Multipath

T-T 0

Direct +
Multipath
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Discriminator Function

Tracking Point Tracking Error

No Multipath With In-Phase Multipath

A(t+T/2)

B(t-T/2)

A+B
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Multipath Error
• Assume that the direct signal is the strongest signal.
• Maximum code error is T/2, where T is the bit period 

( 293 m), is the relative multipath strength, and is the 
correlator spacing.  For = 1:

» C/A-Code (1-chip spacing): 150 m
» C/A-Code (0.1-chip spacing): 15 m
» P-Code (1-chip spacing): 15 m

• C/A-Code error is attenuated by approx. 20 dB for delays 
longer than 1.5T (1.0T for 0.1-chip spacing)

• Maximum phase error is 90 degrees, or approximately 4.8 cm 
at GPS L1.
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GPS Code Multipath Error Envelopes
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Carrier Phase Multipath Error Envelope
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Narrow Correlator Reduces Multipath Error

T-T 0

Direct + Multipath Correlation Function

0.1 chip error

1 chip error

Other techniques: double delta (or edge) correlator, new waveforms BOC
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Multipath Fading Frequency
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Expanded Scale Within Error Envelope

= 0.1 = 0.6

Error is not zero-mean !
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Carrier Multipath Error Example

Direct

Multipath

Direct +
Multipath

Phase Error

cos( t)

0.5cos( t+90o)

cos( t+ )
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Multipath Observations

• For short multipath delays (< 10 m), errors are approximately 
the same for GPS P-Code and C/A-Code (0.1 – 1.0 chip 
correlator spacing).

• Code errors go from maximum positive to maximum negative 
after 0.5 of path length difference between direct and 
multipath signals.

• Slow multipath fading can only occur if the reflection surface 
is large (reflection point must remain on the surface) and 
smooth relative to the GPS wavelength of 0.19 m

» Fading periods of 10 minutes are possible
» One (and only) large reflector is the ground
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Some Multipath Mitigation Techniques
• Pre-Receiver

» Siting
» Antenna Design

• Receiver Processing
» Correlator Spacing
» Multipath-Estimating Delay-Lock Loop
» Edge Correlators

• Post-Receiver
» Signal-to-Noise Ratio
» Multiple Antennas/Receivers
» Repeatability/Modeling
» Dual-frequency Code Noise Multi-Path (CNMP) algorithm
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Thermal Noise

L1 C/A-Code:
10-16 W

= -160 dBW

Thermal Noise = kTB
k = Boltzmann’s constant

T = Equivalent temperature

Tracking Loops

Carrier-to-Noise Ratio C/N0 = Signal-to-Noise Ratio in a 1-Hz
Bandwidth.  For GPS: C/N0 > 40 dB-Hz.

Differential GPS           p.67



Second-Order Tracking Loops
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Carrier Smoothing
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Code Noise and Multipath Mitigation
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CMC Processing

Thermal noise increase:

Multipath bound increase: 

1.355.155.2 22

1.455.155.2

Next step: reduce noise and multipath using Code 
Noise and Multi-Path (CNMP) algorithm
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CNMP Algorithm Bias Estimate
ionosphere-free CMC: noise and multipath

Estimated CMC bias:

Trade noise and multipath (blue curve) for a small bias

(t)B̂

B(t)-(t)B̂

True bias: B(t)

error in bias   
estimate
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For ionospheric application, see: Ugazio, S. Van Graas, F., Pelgrum, W., Total Electron Content  Measurements 
with Uncertainty Estimates, Proceedings of Navitec 2012, European Space Agency, 5-7 December 2012.



CNMP Algorithm
• Estimated bias (initial and after n seconds):

• Corrected pseudorange:

• Bias bound components:

» Peak-to-peak multipath over 1000 s

» Antenna phase and group delays

» Code phase noise; carrier phase noise and multipath
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CNMP Example Performance

Bound

Estimate

Differential GPS           p.74



CNMP Example Performance
•Satellite 28 at 
reference station 

•CMC raw and 
with averaging / 
filtering, relative 
to value at 
algorithm 
initialization 

•Lock reset 
occurs at t = 629 
seconds

• Bias bound 
shown (positive 
bound here; 
negative bound 
is mirror image)

Initial bias bound threat value

bias bound after 1000-s lock
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• GPS performance continues to improve
» Pseudorange noise at the 0.1-m level (carrier-smoothed)
» Carrier phase noise at the millimeter-level
» Zero-age-of-data (ZAOD) ephemeris products reduce satellite 

orbit and clock contributions to the 0.1-m level (Precise Point 
Positioning)

• Also available through Canadian Spatial Reference System 
CSRS (for on-line post-processing) and International GNSS 
Service (IGS) for near real-time processing

» Dual-frequency corrections with interfrequency bias 
compensation reduces ionospheric range delays to the 0.1-m level

» Tropospheric errors can be modeled to the cm-level (except 
during severe storm conditions – range delays of up to 1 m error, 
but not on all satellites)

» Antenna/receiver phase and group delays: phase delays can 
generally be calibrated to mm-level, group delays can be m-level

GPS Pseudorange and Carrier Phase
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Phase and Group Delays

• Phase delay in seconds: 

• Group delay in seconds: 

• If phase delay is not a function of frequency, then the group delay is zero
• Many antennas have known phase corrections (e.g. 

http://www.ngs.noaa.gov/ANTCAL/)
• Group delay corrections are more difficult to obtain:

» On the order of several ns for airborne antennas (azimuth and 
elevation angle-dependent)

» Time-varying for steered antennas
» Also introduced by receiver front-end filters (temperature sensitive, 

and different for each satellites and receiver)

)()(phase

d
d

group
)()(
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Phase Wrap-Up (known and can be corrected)

• A circularly-polarized antenna has a phase pattern 
that is a function of azimuth angle

• The measured phase increases by exactly 2 radians 
for each 360-degree rotation in azimuth (t):

• Phase increase is the same for all frequencies 
group delay is zero (pseudorange doesn't see this)
» Antenna rotation due to vehicle heading change: 

common for all satellites, creates a clock offset
» Satellite rotation around antenna due to orbit

(rad)  )()( ttupwrap
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High-Zenith Antenna Group Delays

Van Graas, F., Bartone, C., Arthur, T., "GPS Antenna Phase and Group Delay 
Corrections," Proceedings of the 2004 National Technical Meeting of The 
Institute of Navigation, San Diego, CA, January 2004, pp. 399-408.
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Receiver Dynamics

• Due to different code (1st-order) and carrier (3rd-order) 
tracking loop filters, response during dynamics is different

• Solutions
» Aid the code loop with the carrier loop
» Use same loop architectures for differential receivers

Code Loop 
1st ordert = 0

ramp input

t = 0

code loop
response

carrier loop
response

Carrier Loop 
3rd order
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Carrier-Aided Code Tracking Loop
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Overview

• High precision GPS techniques
» Relative, differential, wide area differential
» Kinematic, surveying, attitude determination

• GPS code and carrier phase measurements
» Error sources: Clock and orbit errors, ionospheric and 

tropospheric propagation delays, multipath, noise, antenna 
phase and group delays

• Additional implementation considerations
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Receiver Architectures

• If using a correction network for pseudorange corrections, 
user receiver should use the same receiver architecture as the 
reference receivers; avoid "fancy" techniques

• Reason: Nominal satellite signal "malformation," also 
referred to as "natural deformation"

» Each satellite has a natural deformation

• Typical GBAS satellite noise and
multipath: 0.1 m (1-sigma) 

• Signal Deformation Monitoring
allocation: 0.15 m (1 sigma)

ringing

asymmetry

ringing
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Actual Chip Shapes

PRN23
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From: S. Gunawardena and F. van Graas, "High Fidelity Chip Shape Analysis of GNSS Signals using a 
Wideband Software Receiver," ION GNSS 2012, Nashville TN, September 18-21, 2012
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Pseudorange Error wrt 0.1-chip E-L Spacing
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From: S. Gunawardena and F. van Graas, "Analysis of GPS Pseudorange Natural Biases using a Software 
Receiver," ION GNSS 2012, Nashville TN, September 18-21, 2012
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Biases wrt 0.1 E-L Spacing, BW ~20 MHz
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Implementation Considerations
• Receiver quality, tracking architecture, bandwidth (tracking loops: we do 

not only want to study the response of the tracking loops to the ionosphere, 
we want to study the ionosphere itself)

• Antenna installation (stability, multipath environment)
• Antenna phase (and group) delay corrections
• Local bad weather can have a significant impact on the tropospheric delays
• Differential/Relative: Source of correction data

» Error approaches zero as user approaches the reference site
• Initialization time (re-start time)

» Additional reliance on carrier phase reduces the robustness of the 
solution, but improves accuracy

• Integrity: so far only LAAS (GBAS) and WAAS (SBAS) are proven safe 
for aircraft precision approach

» Carrier-smoothed code architectures
• More satellites better carrier phase solution performance
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