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Kalman Filtering Overview 

•  Kalman filtering is an estimation approach that can be applied to 
navigation 
–  Many other application areas 

•  Concepts to be covered 
–  Information describing the system 

•  State vector 
•  Covariance matrix 

–  Propagating state and covariance forward in time 
–  Using measurements to update the state and covariance 

•  Assumptions/Limitations 
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Kalman Filtering: 
Information Describing the System (1/2) 

•  State vector 
–  Set of variables that 

•  Describe everything you want to know about the system 
•  Include all of the information needed to determine how the system changes over 

time 
•  Describe systematic errors in the measurements (anything that’s not “noise”) 

–  Example: Hot air baloon 

–  Does this describe what we want to know? 
–  Does this describe how the system changes over time? 
–  Would this be a good state vector for a fighter aircraft? 
–  Altitude estimation example 
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Kalman Filtering: 
Information Describing the System (2/2) 

•  Covariance matrix 
–  The covariance matrix basically describes how well the state is 

known 
•  If the system only gives a state output, it’s not that useful. 
•  If it outputs the state and tells how accurate it is, then you have information 

that you can confidently act upon. 
•  Hot air balloon example: the system state tells me that I’m 300 m above the 

ground descending at a rate of 10 m/sec. 
–  Need to know covariance matrix as well.   

»  Case 1: Position accuracy = 10 m 1- σ, velocity accuracy = 1 m/
sec 1-σ → probably not in danger until ~30 seconds 

»  Case 2: Position accuracy = 400 m 1- σ, velocity accuracy = 15 
m/sec 1- σ → you could hit the ground any second! 

–  How to interpret covariance matrix 
 

•  Diagonal terms are the error variances of the estimated states 
•  Off-diagonal terms are cross-covariances, describing the correlations of the 

errors between the states 

ˆ ˆ[( )( ) ]TP E= − −x x x x
Estimated state 

True state 
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Kalman Filtering: 
Propagating Covariance and State Forward in Time 

•  State vector and covariance matrix can be propagated forward 
in time 
–  If you know the current state estimate, you can determine the state 

estimate at a point in the future 
–  If you know the current covariance matrix, you can determine the 

covariance matrix at a point in the future 
–  Information about how the state and covariance changes over time 

is given in 
•  Dynamics matrix F: 

•  State transition matrix Φ: 

–  When propagating covariance forward in time, process noise is 
added to account for 

•  Unmodeled dynamics 
•  Unmodeled system inputs 
•  Anything else that decreases the ability to predict the future state using the 

current state 
–  Process noise increases uncertainty (i.e., larger covariance values) 

Fxx =
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Kalman Filtering: 
Measurement Updates 

•  A measurement  gives information about the state values 
–  Examples: GPS pseudorange (for position or clock bias) or Doppler (for 

velocity or clock drift) 
•  Effects of a measurement update 

–  State values are adjusted to reflect the measurement 
–  Covariance matrix is adjusted to reflect how well the state is known, now 

that the measurement is available 
•  Measurements always decrease uncertainty (i.e., smaller covariance values) 

•  Measurement noise 
–  Description of how precise the measurement is 
–  The effect of measurement on state and covariance determined by 

tradeoff between 
•  Measurement noise (how good the measurement is) 
•  Covariance matrix (how well the state is known at this point) 

•  Relationship between measurement and states given by H matrix 
(same as least-squares) 



The Kalman Filter Iteration 
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Measurement Model 
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Propagate

vHxz +=
measurement state 

meas noise 

sensitivity matrix 

Linear Measurement Model 
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Measurement noise is described by the 
measurement noise covariance matrix: 

•  Key assumptions (in semi-nontechnical language) 
–  Measurement errors v are Gaussian (follow a “bell curve”) 
–  Measurement errors v are “white” (completely random from measurement to 

measurement) 
–  Measurement model is linear  



What if Measurements are Non-Linear 

•  Example of non-linear measurements: a range 
(distance) measurement (such as with GPS) 

•  Can use non-linear measurement model 

•  Kalman filter is then modified to become an 
“Extended Kalman Filter” (EKF) 
–  Requires linearization about the estimated solution 
–  Because of this, an EKF is not, technically speaking, truly 

optimal like the KF 
–  In many cases it would be “nearly optimal”—depends on the 

nature of the linearization 
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vxhz += )( vHxz +=
Nonlinear Linear 

Dynamics Model 
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Process noise is described by the 
measurement noise covariance matrix: 

•  Key assumptions (in semi-nontechnical language) 
–  Process noise wd is Gaussian (follow a “bell curve”) 
–  Process noise wd is “white” (completely random from epoch to epoch) 
–  Dynamics model is perfectly known 



Initialization and “Time Constant” of a KF 

•  Things needed in order to initialize a filter 
–  Initial state estimate 
–  Initial covariance matrix 
–  Measurement model(s) 
–  Propagation model(s) 

•  Time constant (not meant in a precise, technical way) 
–  Defines how long a measurement will affect the filter 
–  In theory, every measurement will affect the filter for the rest 

of time 
–  In practice, this may not be the case so much  

•  Example: Case in which there is high propagation noise—old 
measurements are significantly “de-weighted” relative to new 
measurements 

–  Warning: Even in a case where a filter has a “short” time 
constant (i.e., measurements lose impact fairly quickly), a 
large measurement error (blunder) can have a devastating 
impact 
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Kalman Filter Example: Hot Air Balloon 

•  Scenario: Want to estimate height of a hot air balloon 
on a windy day, starting at 800 m 

•  What I have 
–  Radar altimeter to measure height above ground 

(assume ground height is known) 
•  Meas error modeled as Gaussian with 2m standard  

deviation 

–  Stochastic process model for how the wind affects the 
height of the balloon 

–  Initial uncertainty modeled as Gaussian with standard 
deviation of 10m (height) and 1m/s (vertical velocity) 

•  What I want to know 
–  Height estimate and standard deviation 
–  Vertical velocity estimate and standard deviation 

12 



Stochastic Process Model 

•  State vector: 

–  h: balloon height (m) 
–    : baloon vertical velocity (m/s) 

•  Continuous time process model: 

•  Discrete time process model: 
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Kalman Filter Propagation Equations 

•  Propagate state: 
•  Propagate covariance: 
•  Example 

–  Initial conditions: 

–  First time step: 
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Notice that this is higher (more 
uncertainty) than when we started! 



Propagation Example—No Measurements 
(Single Run) 
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Propagation Example—No Measurements 
(25 Runs) 
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Measurement Update at t=40 Sec 

•  At t=40 sec, a measurement of 820.97 m is taken 
(remember, meas error standard deviation is 2 m) 

•  Measurement model: 

–  In this case: 

•  Step 1: Propagate up to measurement time: 
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(Note that this is a scalar measurement) 

These are consistent with previous slides 

Measurement Update at t=40 Sec 
(continued) 

•  Step 2: Measurement update 

 
–  In this case, since                  : 
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Filter Propagation/Measurement Incorporation 
Example 
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Errors in Filter Estimate for Same Case 
as Previous Slide 

•  These plots show the DIFFERENCE between the 
estimated state (blue on previous slide) and the true 
state (green on previous slide) 
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Errors in Filter Estimate 
25 Monte Carlo Runs 
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Modeling Errors 

•  In the previous example, the filter had a perfect model 
•  What happens if there is a process noise modeling error? 
•  Example:  
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Another Modeling Error Example 
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Other Comments on Example 

•  This was a simple example, but more complex examples (more 
states, more complicated measurement model) work the same 
way 

•  For GNSS systems, the H matrix is the same as the H matrix 
used for least-squares solutions 
–  Measurement model is nonlinear, so Extended Kalman Filter (EKF) is 

used 
•  Kalman filter will give optimal results when all of its 

assumptions are met 
–  Measurement errors are zero mean, white, Gaussian noise 
–  Process noise (discrete-time) is zero mean, white, Gaussian noise 
–  Measurement model and process model are known and correct 
–  Measurements and process model are linear functions of the state 

•  If any of these are not met, it is not technically optical any more 
–  However, it still may give “good” results 

•  Often, the modeling aspects of the problem are a more 
significant challenge than the filter itself 
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One Final Thought  
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