

2458-7

Workshop on GNSS Data Application to Low Latitude Ionospheric Research

6 - 17 May 2013

GNSS Measurements and Error Sources

HEGARTY Christopher *The MITRE Corporation* 202 Burlington Rd. / Rte 62 Bedford MA 01730-1420 U.S.A.

GNSS Measurements and Error Sources

Chris Hegarty May 2013

© 2013 The MITRE Corporation. All rights reserved.

GNSS Measurements and Error Sources

Measurements

- Pseudorange
- Carrier phase
- Error sources
 - Satellite ephemeris errors
 - Satellite clock errors
 - Selective availability (GPS only; discontinued in 2000)
 - Ionospheric and tropospheric delay
 - Multipath
 - Receiver noise, interference, and biases
- Measurement combinations
 - Carrier smoothing
 - Single and double differences
 - Dual-frequency

GPS C/A-code and P(Y)-code Signal Components (not to scale)

modulated spread spectrum signal

 $R_c = 1/T_c$ = chipping rate (chips/s) = 1.023 MHz (C/A), 10.23 MHz (P/Y)

```
R_d = 1/T_d = data rate (bits/s)
= 50 bps
```

 $f_0 = 1/T_0 = carrier frequency (Hz)$

= 1575.42 MHz (L1), 1227.6 MHz (L2)

GNSS Pseudorange Measurement

- With a perfect user clock, signal transit time can be multiplied by the speed of light to yield a range measurement
- With an imperfect user clock, measured transit time for each satellite's signals are biased by a common user clock error – measurements are referred to as pseudorange.

Pseudorange Model

MITRE

Carrier Phase Model

Phase observable (in meters):

$$\varphi_{u}^{s}(t) = r_{u}^{s} + N\lambda + c(\delta t_{u} - \delta t^{s}) - I + T + \varepsilon_{\varphi}$$

$$\uparrow$$

Integer ambiguity

measurement errors

6

Understanding Carrier Phase Measurements

- Receiver tracks phase difference between recovered carrier component of received signal and an internally generated carrier at 1575.42 MHz
- Rope analogy: grab rope tied to satellite and count knots let in/out
- If you initially hold a knot, you know that distance to satellite is 19 cm × N
- Counting knots passing through your hand provides precise measurement of change in distance to satellite with time (velocity)

GPS SV2 Observables - One Pass

Key features: Code pseudorange provides unambiguous absolute range. Carrier phase has ambiguity, suffers cycle slips, but is much less noisy.

8

Getting Familiar with GNSS Data

- Raw GNSS measurement data available for free on the Internet from a wide variety of sources
- One example: International GNSS Service (IGS)
 - Logs raw measurement data from a global network with over 350 active stations
 - Wide variety of other products (GNSS clock/orbit estimates, ionospheric/tropospheric delay data, etc)
- Common file format for data exchange is Receiver Independent Exchange Format (RINEX)
 - Simple ASCII file types
 - Description available at: <u>http://igscb.jpl.nasa.gov/igscb/data/format/rinex301.pdf</u>

IGS Network

GM7 2013 May 05 16:45:28

Source: http://www.igs.org

Raw GPS Data in RINEX Format from Ferrara, Italy (UNFE0010.090)

2.00 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE teqc 2000Feb29 20090101 23:05:10UTCPGM / RUN BY / DATE UNFE MARKER NAME **RINEX** header with: 12756M001 MARKER NUMBER Marco Gatti University of Ferrara - Italy OBSERVER / AGENCY Station information 12128 Ashtech Z18 ZT17 REC # / TYPE / VERS 0065 10401 ASH701941.B ANT # / TYPE • Types of measurements 4438219.7300 910967.3706 4474248.9608 APPROX POSITION XYZ 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N Date/time of 1st measurement 1 1 WAVELENGTH FACT L1/2 7 т.1 T.2 С1 Ρ1 Р2 D1 D2 # / TYPES OF OBSERV 30.0000 INTERVAL 0 LEAP SECONDS 2009 0.000000 GPS TIME OF FIRST OBS 9 0 END OF HEADER 0.0000000 0 10G31G30G18G24G16G21G29R 6R 7R23 09 9 0 -17155756.848 9 -13368122.035 7 22550586.505 22550586.505 22550587.553 -2614.069-2036.928-2498026.027 7 -1946514.208 4 23400100.190 23400100.190 23400103.027 -3546.647 -2763.634-3136315.532 7 -2443877.227 2 24723584.578 24723584.578 24723587.121 First data record with: 3131.241 2439.917 Date/time of measurements -3919173.767 8 -3053900.030 6 21441677.839 21441677.839 21441680.733 -2068.477 -1611.793 List of satellites -5872549.652 9 -4576012.646 7 21555128.309 21555128.309 21555129.449 2264.219 1764.342 Raw data (for this file, L1 phase, -18530496.051 9 -14439344.591 7 20828216.730 20828216.730 20828217.680 1086.477 846.615 L2 phase, C/A pseudorange, L1 -17158968.306 8 -13370621.401 6 21820347.325 21820347.325 21820348.760 P pseudorange, L2 P -2145.233-1671.595 -12783419.939 7 -9942654.090 7 21684821.176 21684821.176 21684816.339 pseudorange, L1 doppler, and 899.959 699.957 -9328997.785 7 -7255883.174 6 22691019.446 22691019.446 22691019.457 L2 doppler) 3841.262 2987.630 -11113637.034 8 -8643937.987 6 22585160.757 22585160.757 22585163.188

2868.101

2230.743

11

Satellite Ephemeris Errors

- Ephemeris errors are differences between true satellite position and position computed using GNSS navigation message
- Sources:
 - Selective Availability (SA) epsilon (GPS only; this error was never observed - SA now discontinued)
 - Control Segment estimation errors
 - Age of navigation message data

Typical GPS Ephemeris Errors

Variation of Ephemeris Errors with Location

Ionospheric Delay Errors

GNSS signals are delayed as they traverse through the ionized layer of the Earth's atmosphere

L1 vertical delays range from 3 - 30 m (depending on time of day, phase of 11-year solar cycle, and solar activity), delays for signals along oblique paths may be greater by a factor of 3 for low elevation angles (L2 delays are ~1.6 times larger than L1 delays)

Variation of lonosphere with Time of Day and Latitude

11 Year Solar Cycle

Next solar maximum expected ~Fall 2013. Ionospheric delays, on average, are greatest during solar maximum (max/min average delay ratio ~2-3).

Typical Ionospheric Delay Errors

MITRE

Vertical Ionospheric Delays at Solar Maximum

Maximum monthly average L1 vertical lonospheric delays in nanoseconds (10 ns ~ 3 meters) for March 1990 at 2000 UTC.

Source: Klobuchar, GPS World, April 1991.

Correcting for Ionospheric Delay Errors

Dual-frequency user

- Ionospheric delay effects are dispersive delays are inversely proportional to carrier frequency squared
- With dual-frequency equipment, user equipment can nearly perfectly remove ionospheric delay errors
- Single-frequency user
 - Each GPS satellite broadcasts ionospheric delay model coefficients (Klobuchar model)
 - Model typically removes ~half of ionospheric delay range error
 - 90% of time, residual range error is < 10 m
 - Residual errors are highly correlated
 - Model tends to either overestimate or underestimate ionospheric delay on all satellites simultaneously
- Differential GNSS

Example Residual Ionospheric Delay Errors

Residual Errors after Klobuchar Model

Spatial Variability at Solar Maximum

MITRE

Spatial Variability of Ionospheric Delay

1992-1993 L1 data(daytime hours only), Solid lines = North-South station orientation, Asterisks = East-West station orientation, errors $\sim 2 \times$ larger during solar maximum

Ref: Klobuchar, Doherty, El-Arini, "Potential Ionospheric Limitations to Wide-Area DGPS," ION GPS-93

MITRE

Ionospheric Divergence

- As the distance between the user and a GPS satellite grows:
 - the number of carrier wavelengths in between grows
 - the number of code chips in between grows
- When the number of free electrons in the ionosphere grows (with distance between the user and GPS satellite fixed):
 - the number of carrier wavelengths between the user and the GPS satellite decreases (phase velocity increases)
 - the number of code chips between the user and the GPS satellite increases (group velocity decreases)
- Care must be taken when aiding code pseudorange measurements with carrier phase measurements

Ionospheric Divergence (cont'd)

25

Tropospheric Delay

GNSS signals are delayed as they traverse through the dry gases and water vapor comprising the Earth's lower atmosphere

Vertical delays range from ~2 - 3 m (depending on altitude of user and local weather), delays for signals along oblique paths may be greater by a factor of 10 for low elevation angles

Correcting for Tropospheric Errors

- Many correction models exist
- Simplest:
 - Use global average weather conditions to determine vertical tropospheric error
 - Apply altitude correction and elevation angle scale factor
 - Residual errors ~25 cm for overhead satellite
- More complicated:
 - Use average local weather (e.g., pressure, temperature, humidity) determined from table lookup
 - Apply altitude correction and elevation angle scale factor
 - Residual errors ~5 cm for overhead satellite
- Most complicated:
 - Use meteorological sensors
 - Residual errors ~3 cm for overhead satellite

Variation of Tropospheric Delay with Altitude

MITRE

and pressure (correlated over 10's of km)

Satellite Clock Errors

- Prior to discontinuance on May 1, 2000, Selective Availability (SA) was dominant error for GPS civil users
 - Understanding SA still important influenced design of many operational differential systems
 - 20 30 m RMS ranging error, 2 5 min time constant
 - DGPS corrections effectively removed SA, small residual errors due to latency ~1/2at² (a \approx 2-4 mm/s²)
- Without SA, GPS satellite clock errors are typically ~0.5 1 m (one upload/day)
 - Satellite atomic clock stability <1 part in 10¹³
 - Virtually eliminated with differential

Simulated SA Pseudorange Errors

Multipath

With care, multipath errors can be kept below ~1 meter. Multipath seen by two receivers is NOT the same (need to root sum square errors for differential)

Typical C/A-code Multipath - One Satellite Pass

© 2013 The MITRE Corporation. All rights reserved.

Receiver Noise and Interference

with implementation. Values from 0.1 - 0.7 meters RMS are typical.

MITRE

Factors Influencing Noise and Interference Tracking Performance

Code tracking error in chips² where 1 C/A-code chip ~ 300 m, 1 P(Y)-code chip ~30 m:

$$\sigma_{\tau}^{2} = \frac{B_{L}d}{2S/N_{0}} \left[1 + \frac{1}{S/N_{0}T} \right]$$

 B_L = loop bandwidth (Hz) (typically1/400-1/20 Hz with carrier-aiding)

d = early-late correlator spacing (chips)

S = received signal power(W)

 N_0 = thermal noise and interference level (W/Hz)

T = predetection integration interval (s) (typically 20 ms)

Antenna Biases

- Antenna Reference Point (ARP) physical point on antenna (usually center of bottom)
- Apparent antenna location from measurements will reside at different points
 - May be within or outside of physical antenna package
 - Varies with direction of signal arrival and between carrier/code
 less so with well-designed antennas
 - Calibration employed for some applications

Receiver Biases

- All signals experience group and phase delay as they travel from antenna through digital tracking loops
 - Common delays drop out in estimate of user receiver clock error in navigation solution
 - Not consequential for most navigation users, but of great importance to timing users
- Errors affecting positioning can arise when non-common biases occur
 - Due to e.g., processing of different signal types or signals on different frequencies
 - Can be significant even if common front-end is utilized, because of variations in group/phase delay with frequency across the passband

Measurement Combinations

- Raw pseudorange and carrier phase measurements from one or more receivers are often combined
 - To reduce/eliminate errors, or
 - To observe errors
- Combinations include:
 - Code (pseudorange) minus carrier
 - Carrier-smoothed code
 - Single-, double-, and triple- differences
 - Ionospheric-free and geometry-free

Code Minus Carrier

Differencing code and carrier observables and removing the bias (for short data segments) is oft-used method for estimating code measurement noise.

Carrier Smoothed Code

- Code pseudorange measurements are unambiguous, but noisy
- Carrier phase measurements are very precise, but include integer cycle ambiguity
 - Differenced phase measurements provide very precise delta-range, with no ambiguity
- Popular algorithm to reduce pseudorange noise:

$$\hat{\rho}_{u}^{s}(t_{k}) = (1 - \alpha) [\hat{\rho}_{u}^{s}(t_{k-1}) + \varphi(t_{k}) - \varphi(t_{k-1})] + \alpha \rho_{u}^{s}(t_{k})$$

Smoothing constant (when setting, be mindful of ionospheric divergence!)

Single-Difference

MITRE

Double-Difference

MITRE

Ionospheric-free and Ionospheric Combinations

Ionospheric delays are frequency dependent

$$I = \frac{40.3 \cdot TEC}{f^2} \longleftarrow$$

Total electron count (electons/m²) along lineof-sight from the user to the satellite

L1/L2 measurements can be combined to remove ionospheric delay or estimate it

$$\rho_{ionofree} = \frac{\rho_{L2} - \gamma \rho_{L1}}{1 - \gamma}$$
Note: noise is enhanced
$$= r + c(\delta t^{s} - \delta t_{u}) + T + \frac{\varepsilon_{L2} - \gamma \varepsilon_{L1}}{1 - \gamma}$$

$$\gamma = \frac{f_{L1}^{2}}{f_{L2}^{2}} \approx 1.65$$

Ionospheric-free and Ionospheric Combinations (continued)

$$\hat{I}_1 = \frac{(1+\gamma)\rho_{L1} - \rho_{L2}}{1-\gamma}$$
$$= I_1 + \frac{\varepsilon_1 - \varepsilon_2}{1-\gamma}$$

Estimate of ionospheric delay on L1 pseudorange.

$$\hat{I}_{2} = \gamma \left[\frac{(1+\gamma)\rho_{L1} - \rho_{L2}}{1-\gamma} \right]$$
$$= I_{2} + \gamma \frac{\varepsilon_{1} - \varepsilon_{2}}{1-\gamma}$$

Estimate of ionospheric delay on L2 pseudorange.

Ionospheric delay estimates are sometimes referred to as "geometry-free" since they are linear combinations of pseudoranges that no longer depend on the distance between the user and the satellite.

Widelane Observable

$$\phi_{w} \equiv \lambda_{w} \left(\frac{\phi_{L1}}{\lambda_{1}} - \frac{\phi_{L2}}{\lambda_{2}} \right)$$
(in meters)
$$= r_{u}^{s} + N_{w} \lambda_{w} + c \left[\delta t_{u} - \delta t^{s} \right] - I_{w} + T + \varepsilon_{w}$$

Where
$$\lambda_{w} = \left(\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)^{-1} \approx 86 \text{ cm}$$

is the wavelength of the beat frequency between L1 and L2.

This combination of L1 and L2 phase measurements appears as a carrier phase measurement made at the beat frequency of $f_{L1} - f_{L2}$. The much larger wavelength facilitates ambiguity resolution.

Relationship Between Range and Position Errors

Basic Idea: Position Error = "Dilution of Precision" × "Range Error"

Derivation:

$$\rho_{u}^{1} = \sqrt{(x_{u} - x^{1})^{2} + (y_{u} - y^{1})^{2} + (z_{u} - z^{1})^{2}} + c\delta t_{u} + \varepsilon_{u}^{1}$$

$$\vdots$$

$$\rho_{u}^{N} = \sqrt{(x_{u} - x^{N})^{2} + (y_{u} - y^{N})^{2} + (z_{u} - z^{N})^{2}} + c\delta t_{u} + \varepsilon_{u}^{N}$$

 $\Delta \rho = \mathbf{G} \Delta \mathbf{x} + \Delta \boldsymbol{\varepsilon}$

 $\Delta \mathbf{x} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \Delta \boldsymbol{\rho}$

pseudoranges from user, u, to N satellites

matrix version, linearized around user's estimated position and time

least-squares solution for error in user's a priori position/time estimate

Relationship Between Range and Position Errors (cont'd)

 $\operatorname{cov}(\Delta \mathbf{x}) = (\mathbf{G}^T \mathbf{G})^{-1} \sigma_{\rho}^2$

Covariance of "state" (position plus user clock offset), assuming pseudoranges to each satellite are independent with standard deviation σ_{ρ}

The "DOPs":

Vertical (VDOP) - relates 1- σ vertical position error to 1- σ pseudorange error Horizontal (HDOP) - relates 1- σ horizontal position error to 1- σ pseudorange error Position (PDOP) - relates 1- σ position error (3D) to 1- σ pseudorange error Time (TDOP) - relates 1- σ user clock error to 1- σ pseudorange error Geometric (GDOP) - relates RSS of East, North, Up, and Time errors to 1- σ pseudorange error

The same mathematics applies for code-based differential, except that the solution provides the *difference between the reference station and user clock error*.

Typical Pre-2000 SPS Error Budget (with Selective Availability)

Error Source	Bias	Random	Total
Ephemeris	1.0	0.0	1.0
Satellite clock	20.0	0.7	20.0
Ionosphere	4.0	0.5	4.0
Troposphere	0.5	0.0	0.5
Multipath	0.2	0.2	0.3
Receiver noise	0.0	0.1	0.1
User equivalent range error, rms	20.5	0.9	20.5
Filtered UERE, rms	<u>20.5</u>	<u>0.4</u>	<u>20.5</u>
Vertical one-sigma errors - VDOP = 1.7			
Horizontal one-sigma errors - HDOP = 1.0			20.5

One-sigma Error (meters)

Note: Chart format from Parkinson and Enge, 1996. Values reflect typical 2013 performance (except SA).

Typical Single-Frequency Error Budget (no SA)

One-sigma Error (meters)

		-	
Error Source	Bias	Random	Total
Ephemeris	0.8	0.0	0.8
Satellite clock	1.0	0.0	1.0
Ionosphere	7.0*	0.0	7.0
Troposphere	0.2	0.0	0.2
Multipath	0.2	0.2	0.3
Receiver noise	<u>0.0</u>	<u>0.1</u>	<u>0.1</u>
User equivalent range error, rms	7.1	0.2	7.1
Filtered UERE, rms	<u>7.1</u>	<u>0.1</u>	7.1
Vertical one-sigma errors - VDOP = 1.7			
Horizontal one-sigma errors - HDOP = 1.0			7.1*

Note: Chart format from Parkinson and Enge, 1996. Values reflect typical 2013 performance. *Note that residual ionospheric delay errors tend to be highly correlated among satellites, and thus observed position-domain errors tend to be less than predicted by DOP-UERE.

Typical Mid-Latitude SPS Positioning Accuracy

GPS position accuracy data from 28 sites distributed throughout North America for 3 month period (October – December 2012)

Typical Dual-Frequency Error Budget (no SA)

Error Source	Bias	Random	Total
Ephemeris	0.8	0.0	0.8
Satellite clock	1.0	0.0	1.0
Ionosphere	0.1	0.0	0.1
Troposphere	0.2	0.0	0.2
Multipath	0.2	0.2	0.3
Receiver noise	<u>0.0</u>	<u>0.1</u>	<u>0.1</u>
User equivalent range error, rms	1.3	0.2	1.3
Filtered UERE, rms	<u>1.3</u>	<u>0.1</u>	<u>1.3</u>
Vertical one-sigma errors - VDOP = 1.7			2.3
Horizontal one-sigma errors - HDOP = 1.0			1.3

One-sigma Error (meters)

Note: Chart format from Parkinson and Enge, 1996. Values reflect typical 2013 performance.

