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Density of Hyperbolicity

The simplest situation is when the attractors of f are all hyperbolic
periodic orbits: such f called hyperbolic (also called Axiom A).
It would be nice if every map can be approximated by a hyperbolic
map. This problem goes back in some form to

Fatou, who stated this as a conjecture in the 1920’s.

Smale gave this problem ‘naively’ as a thesis problem in the
1960’s, see [Sma80].

Jakobson proved that the set of hyperbolic maps is dense in
the C 1 topology, see [Jak71];

The quadratic case x !→ ax(1− x) was proved in a major
breakthrough in the the mid 90’s by Lyubich [Lyu97] and also
Graczyk and Swiatek [GŚ97].

Blokh and Misiurewicz [BM00] proved a partial result towards
the density of hyperbolic maps in the C 2 topology.

Shen [She04] then proved the C 2 density of hyperbolic maps.
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The general result is:

Theorem (Density of hyperbolicity for real polynomials, [KSvS07a])

Any real polynomial can be approximated by hyperbolic real
polynomials of the same degree.

The above theorem allows us to solve the 2nd part of Smale’s
eleventh problem for the 21st century. [Sma00]:

Theorem (Density of hyperbolicity for smooth one-dimensional
maps, [KSvS07b])

Hyperbolic maps are dense in the space of C k maps of the
compact interval or the circle, k = 1, 2, . . . ,∞,ω.
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For quadratic maps fa = ax(1− x), the above theorems assert that
the periodic windows are dense in the bifurcation diagram.

The quadratic case turns out to be special, because in this case
certain return maps become almost linear. This special behaviour
does not even hold for maps of the form x !→ x4 + c .
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Comments on the strategy of proof: local versus global

perturbations

It turns out that it is often not possible to perturb a map to a
hyperbolic map by local methods (in the C k topology, k ≥ 2).

Instead one shows that a non-hyperbolic map is essentially
uniquely determined by its conjugacy class: if f and g are
conjugate then show they are quasi-symmetrically conjugate.
This approach goes back to Sullivan.

In [KSvS07a] we showed that this rigidity holds for polynomials
with certain additional restrictions (e.g. all critical points real).

In fact, it holds in general:
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Quasi-symmetric rigidity

Theorem (SvS)

Assume that f , g : [0, 1] → [0, 1] are real analytic, topologically
conjugate and that the topologically conjugacy is a bijection
between

the set of critical points and the order of corresponding
critical points is the same;

the set of parabolic periodic points.

Then the conjugacy between f and g is quasi-symmetric.

A homeomorphism h : [0, 1] → [0, 1] is called quasi-symmetric if
there exists K < ∞ so that

1

K
≤

h(x + t)− h(x)

h(x)− h(x − t)
≤ K

for all x − t, x , x + t ∈ [0, 1].

Sebastian van Strien, Imperial College Real one-dimensional dynamics



Note that f and g can only have finitely many parabolic
periodic orbits (see [MdMvS92]

All conditions are necessary

Previous results:

Khanin and Teplinsky show this for critical circle maps
(building on earlier work of de Faria, de Melo and Yampolsky).
Levin + vS show that for covering maps with one inflection
point c , one can obtain a qs conjugacy restricted to ω(c),
provided ω(c) is either minimal or every periodic orbit in ω(c)
is repelling.
Kozlovski-Shen-vS for real polynomials with only real critical
points.

In our proof complex methods are essential.

Interestingly, the proof even goes through to the C 3 category
(Trevor Clark). Trevor and I decided to merge our results and
publish this in a joint paper.
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Quasi-symmetric rigidity =⇒ density of hyperbolicity?

Let’s explain this for the family z2 + c .

Assume, by contradiction, that there exists a non-trivial
interval of parameters [cl , cr ] so that the corresponding map
are all non-hyperbolic.

Hence, ∀c ∈ [cl , cr ] and for all n ≥ 0 one has f nc (0) *= 0.

So all maps fc with c ∈ [cl , cr ] are topologically conjugate.

Assume that [cl , cr ] is a maximal interval with this property
(that this interval is closed when f is non-hyperbolic follows
from kneading theory).

By qs-rigidity Thm, fc , fc ′ are qs-conjugate ∀c , c ′ ∈ [cl , cr ].

Now assume that cl *= cr . Then we will use quasiconformal maps
to obtain an open neighbourhood O ⊃ [cl , cr ] so that for all
c , c ′ ∈ O the maps fc , fc ′ are also topologically conjugate.

This contradicts maximality of [cl , cr ]. Hence cl = cr , and density
follows.

So let’s go to the complex plane!
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Quasiconformal homeomorphisms

An orientation preserving homeomorphism h is called
K-quasiconformal if

there exists a constant K < ∞ such that for Lebesgue almost
all x ∈ C

lim sup
r→0

sup|y−x |=r |h(y)− h(x)|

inf |y−x |=r |h(y)− h(x)|
≤ K .

If K = 1 then h is conformal.

Such maps are, for example, Hölder and Lebesgue almost
everywhere differentiable (as maps from C = R

2 to C = R
2).

(In general, a conjugacy cannot be C 1, because then
multipliers at periodic points would be the same.)
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In this case qs-rigidity =⇒ qc-rigidity.

Assume first that f (z) = z2 + cl and f̃ (z) = z2 + cr are
qs-conjugate.

Fact: Any qs-homeomorphism h on R can be extended to a
K -quasiconformal-homeomorphism H on C.

Hence ∃ a qc map H so that H ◦ f = f̃ ◦H on R and near ∞.

Now define a sequence of lifts Hn inductively by H0 = H and
f̃ ◦ Hn+1 = Hn ◦ f . This can be done, see blackboard.

Hn is again K-qc for any n with the same K .

Hn+1 = Hn on ever larger sets.

Fact: The space of K -quasiconformal maps is compact.

Hence Hn converges to some K -qc homeomorphism H.

Therefore f̃ ◦ H = H ◦ f .
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f̃ = H ◦ f ◦ H−1 for some qc-homeo H . So what?

Now we use the Measurable Riemann Mapping Theorem:

DH(z) exists for a.e. z .

So DH(z) sends ellipse based at z to circle based at H(z).

One can associate to this ellipse some number
µ(z) ∈ D = {w ; |w | < 1} where |µ(z)| is the eccentricity of
the ellipse.

By this theorem, associated to tµ(z) there is another qc map
Ht with the same long and short axis and eccentricity t|µ(z)|.

Normalize so that Ht(0) = 0 and Ht(x)/x → 1 as x → ∞.

Since f̃ = H ◦ f ◦ H−1 is holomorphic, the map
ft = Ht ◦ f ◦ H

−1
t is again conformal, see blackboard.

f̃t has a unique critical point, is holomorphic and the
normalisation implies that ft(z) = z2 + c(t).
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What’s useful about ft = Ht ◦ f ◦ H
−1
t ?

Reminder: ft(z) = Ht ◦ f ◦ H
−1
t (z) = z2 + c(t)

H0 = id =⇒ f0 = H0 ◦ f ◦ H
−1

0
= f = z2 + cl =⇒

c(0) = cl ;

f1 = H ◦ f ◦ H−1 = f̃ = z2 + cr =⇒ c(1) = cr .

By the Measurable Riemann Mapping Theorem, t !→ ft(0) is
holomorphic. Hence t !→ c(t) is holomorphic.

By construction, t !→ c(t) is real and has no critical points.

Hence for t > 1, t ≈ 1 one has c(t) > cr and the map ft is
still conjugate to f .

=⇒ open neighbourhood of [cl , cr ] of conjugate maps.

Together this shows qs-rigidity =⇒ density of hyperbolicity.
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qs-rigidity =⇒ density of hyperbolicity for real

polynomials with real critical points

If the two qs-conjugate polynomials only have real critical points
then one can generalise this argument:

use an inductive dimension reduction:

restrict to algebraic varieties of the form {f ; f n(c1) = c2} of
lower and lower dimension.
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qs-rigidity =⇒ density of hyperbolicity for real

polynomials

If the two qs-conjugate polynomials f , f̃ have non-real critical
points then f , f̃ qs-conjugate *=⇒ f , f̃ are qc-conjugate.

Lifting f̃ ◦Hn+1 = Hn ◦ f not possible: one has no information
about the orbits of the complex critical points.

Want all critical points to be captured (in hyperbolic basin).

Step 1: Consider one-parameter families ft , t ∈ [−1, 1] of
regular maps: each neutral periodic orbit of ft has a critical
point in its basin.

Step 2: Moreover, assume that f0 and f1 are not conjugate,
and that captured critical points for f0 remain captured for ft .
Thm: ∃t ≈ 0 so that ft has new captured critical points. Here
use holomorphic motion and geometric control for certain
complex box mappings. (Not soft...)
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How to construct regular families?

Step 3: Approximate f by a polynomial f̃ of the same degree
without neutral periodic orbits and same captured critical pts.

Step 4: All maps C 3 near f̃ are regular.

Step 5: Locally perturb f̃ to a C 3 hyperbolic map g (here use
‘complex bounds’)!!! Note f̃ and g are not C∞ close at all.

Step 6: Approximate the smooth map g by a polynomial map
G of much higher degree.

Step 7: Consider the family ft = f̃ + tG . By Step 4 this a
regular family.

Step 8: Using Step 2: ∃t ≈ 0 so that ft is hyperbolic.
However, ft has much higher degree.

Step 9: ft and f̃ are C 0 close on a large disc DR . Hence, using
the so-called Straightening Theorem, ∃ a real polynomial f̂

of the same degree as f
conjugate to ft on DR/2

still close to f̃ .
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Density of families of entire families

Theorem (Hyperbolicity for entire maps (with Lasse Rempe))

Let f be an entire function with a finite number of critical values
and either

f is bounded is on the real axis.

some sector condition is satisfied.

Then there exist orientation preserving homeomorphisms φ,ψ
arbitrarily close to the identity such that g := ψ ◦ f ◦ φ−1 is entire
and hyperbolic.
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Application: trigonometric polynomials

Consider generalized trigonometric polynomial Fµ : R/Z → R/Z:

Fµ(t) = D·t+µ1+µ2m sin(2πmt)+
m−1
∑

j=1

(µ2j sin(2πjt)+µ2j+1 cos(2πjt)).

Note that if µ, µ′ ∈ R
2m with µ1 − µ′

1 ∈ Z, then fµ = fµ′ . So
choose µ = (µ1, . . . , µ2m) ∈ ∆, where

∆ := {µ ∈ R/Z×R
2m−1 : µ2m > 0 and fµ is 2m−multimodal }.

For example: the Arnol’d family x !→ x + α+ β sin(2πx). In this

case we have the following theorem:
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Theorem (Density of hyperbolicity and rigidity in the trigonometric
family, joint with Lasse Rempe)

Hyperbolic parameters in ∆ for which fµ are dense. Furthermore,

1 Consider the set [µ0] of parameters µ for which fµ is
topologically conjugate to fµ0

by an order-preserving
homeomorphism of the circle. Then [µ0] has at most m
components.

2 If fµ0
has no periodic attractors on the circle, then each

component of [µ0] is equal to a point.

This answers the conjectures posed by de Melo, Salomão and
Vargas.
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Here

we need to pay attention to points that go repeatedly to
infinity and back again and show absence of line fields on this
set.

We also need to show that f , f̃ are qs conjugate on the real
line.

In the polynomial case this was not fully needed, but now we
do not have a straightening theorem.
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Summary:

real method =⇒ real bounds =⇒

{

Koebe
complex bounds

complex method =⇒







quasiconformal maps
Measurable Riemann Mapping Theorem

Holomorphic Motion
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How to construct qs-symmetries?

One approach is to use Carleson box construction.

We shall use complex methods, namely a complex analogue of the
nice interval (puzzle pieces) and then to use our

QC-Criterion: For any ǫ > 0 there exists a constant K with the
following property.
Let φ : Ω → Ω̃ be a qc homeomorphism between two Jordan
domains. Let X ⊂ Ω consist of pairwise disjoint topological disks
(possibly infinitely many).
Assume that the following hold

the components of X are topological discs with ǫ-bounded
geometry each of which ǫ-well-inside Ω (and the same holds
for φ(X )).

φ is 1-qc on Ω− X .

Then there exists a new K-qc homeo ψ̃ : Ω → Ω̃ which agrees with
φ on ∂Ω.
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