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CHAPTER 0

Introduction

1. Preface

In the last quarter of 20th century the complex and real quadratic family

fc : z �→ z2 + c

was recongnized as a very rich and representative model of chaotic dynamics. In
the complex plane it exhibits fractal sets of amazing beauty. On the real line, it
contains regular and stochastic maps intertwined in an intricate fashion. It also has
remarkable universality properties: its small pieces (if to look at the right place)
look exactly the same as the whole family. Interplay between real and complex
dynamics provide us with deep insights into both. This interplay eventually led to
a complete picture of dynamics in the real quadratic family and a nearly compete
picture in the complex family. In this book we attempt to present this picture
beginning from scratch and supplying all needed background (beyond the basic
graduate education).

Part 1 of the book contains a necessary background in conformal and quasi-
conformal geometry with elements of the Teichmüller theory. The main analytical

Figure 1. Mandelbrot set. It encodes in one picture all beauty
and subtlety of the complex quadratic family.
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8 0. INTRODUCTION

Figure 2. Baby M-set.

tools of holomorphic dynamics are collected here in the form suitable for dynami-
cal applications: principles of hyperbolic metric and extremal length, the classical
Uniformization Theorem and Measurable Riemann Mapping, and various versions
of the λ-lemma.

Part 2 begins with the classical Fatou-Julia theory (adatpted to the quadratic
family): basic properties of Julia sets, classification of periodic motions, important
special classes of maps. Then Sullivan’s No Wandering Domains Theorem is proved,
which completes description of the dynamcis on the Fatou set. We proceed with
a discussion of remarkable functional equations associated with the local dynamics
(which were one of the original motivations for the classical theory).

In Chapter 2 we pass to the parameter plane, introducing the Mandelbrot set
and proving two fundamental theorem about it: Connectivity and the Multiplier
Theorem (by Douady and Hubbard). We proceed with the Structural Stability
theory (by Mané-Sad-Sullivan and the author). We conclude this chapter with a
proof of the Milnor-Thurston Entropy Monotonicity Conjecture that gives the first
illustration of the power of complex methods in real dynamics.

The next chapter (3) is dedicated to the combinatorial theory of the quadratic
family developed by Douady and Hubbard. It provides us with explicit combinato-
rial models for Julia sets and the Mandelbrot set. The problem of local connectivity
of Julia sets and the Mandelbrot set (MLC) arises naturally in this context.

In the final chapter of this part we introduce a powerful tool of contempo-
rary holomorphic dynamics: Yoccoz puzzle, – and prove local connectivity of non-
renormalizable quadratic polynomials.
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Figure 3. Real quadratic family as a model of chaos. This picture
presents how the limit set of the orbit {fnc (0)}∞n=0 bifurcates as the
parameter c changes from 1/4 on the right to −2 on the left. Two
types of regimes are intertwined in an intricate way. The gaps
correspond to the regular regimes. The black regions correspond
to the stochastic regimes (though of course there are many narrow
invisible gaps therein). In the beginning (on the right) you can see
the cascade of doubling bifurcations. This picture became symbolic
for one-dimensional dynamics.

One of the most fascinatining features of the Mandelbrot set, clearly observed
on computer pictures, is the presence of the little copies of itself (“baby M-sets”),
which look almost identically with the original set (except for possible absence of
the main cusp). The complex renormalization theory is designed to explain this
phenomenon. In part 3 we develop the the Douady-Hubbard theory of quadratic-
like maps and complex renormalization that justifies presence of the baby M-sets,
and classify them. (The geometric theory that explains why these babies have a
universal shape will be developed later.)

This will roughly constitute the 1st volume of the book.

In the 2nd volume we plan to prove the Feigenbaum-Coullet-Tresser Renormal-
ization Conjecture (by Sullivan, McMullen and the author), density of hyperbolic
maps in the real quadratic family, and the Regular and Stochastic Theorem assert-
ing that almost any real quadratic map is eitehr regular (i.e., has an attracting cycle
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that attracts almost all orbits) or stochastic (i.e., it has an absolutely continuous
invariant measure that governs behavior of almost all orbits)– by the author. These
results were obtained in 1990’s but recently new insights, particularly by Avila and
Kahn, led to much better understanding of the phenomena.

We plan to dedicate the 3d volume to recent advances in the MLC Conjecture
(based on the work of Kahn and the author).

The last volume (if ever written) will be devoted to the measure-theoretic theory
of Julia sets and the Mandelbrot set. We will discuss the measure of maximal
entropy and conformal measures, Hausdorff dimension and Lebesgue measure of
Julia sets and the Mandelbrot set. It would culminate with a construction of
examples of Julia sets of positive area, by Buff and Cheritat, and more recently, by
Avila and the author (not announced yet).

This book can be used in many ways:

• For a graduate class in conformal and quasiconformal geometry illustrated with
dynamical examples. This would cover Part I with selected pieces from Part 2.

• As the first introduction to the one-dimensional dynamics, complex and real.
Then the reader should begin with Part 2 consulting the background material from
Part 1 as needed.

• As an introduction to advanced themes of one-dimensional dynamics for the reader
who knows basics and intends to do research in this field. Such a reader can go
through selected chapters of Part 2 proceeding fairly fast to Part 3.

• Of course, the book can also be used as a monograph, for reference.

2. Background

In this section we collect some standing (usually, standard) notations, defini-
tions, and properties. It can be consulted as long as the corresponding objects and
properties appear in the text.

2.1. Complex plane and its affiliates. As usually, N = {0, 1, 2, . . . } stands
for the additive semigroup of natural numbers (with the French convention that
zero is natural);
Z is the group of integers,
Z+ and Z− are the sets of positive and negative integers respectively;
R stands for the real line;
C stands for the complex plane,
and Ĉ = C ∪ {∞} stands for the Riemann sphere;

S2 is a topological sphere, i.e., a topological manifold homeomorphic Ĉ;
We let CR ≈ R2 be the decomplexified C (i.e., C viewed as 2D real vector space).

For a ∈ C, r > 0, let

D(a, r) = {z ∈ C : |z − a| < r}; D̄(a, r) = {z ∈ C : |z − a| ≤ r}.
Dr ≡ D(0, r), and let D ≡ D1 denote the unit disk.
Let T(a, r) = ∂D(a, r), Tr ≡ T(0, r), and let T ≡ T1 denote the unit circle;
S1 is a topological circle;
C∗ = C� {0}, D∗ = D� {0}.
A(r,R) = {z : r < |z| < R} is an open round annulus; The notaions A[r,R] or
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A(r,R] for the closed or semi-closed annuli are self-explanatory.

The equator of A(r,R) is the curve |z| =
√
Rr.

H ≡ H+ = {z : Im z > 0} is the upper half plane,
Hh = {z : Im z > h},
H− = {z : Im z < 0} is the lower half plane;
P = {z : 0 < Im z < π};

A plane domain is a domain in C̄.

2.2. Point set topology.
2.2.1. Spaces and maps. In what follows, all topological spaces (except L∞ Ba-

nach spaces) are assumed to satisfy the Second Countability Axiom, i.e., they have
a countable base of neighborhoods. We also assume that all topological spaces in
question are metrizable, unless otherwise is explicitly said. (An important exception
will be the space of quadratic-like germs.) Recall hat a compact space is metrizable
iff it satisfies tha Second Countability Axiom (and iff it is separable), so in the
compact case our two conventions exactly match.

• X̄ denotes the closure of a set X; intX denotes its interior.
A neighborhood of a point x will mean an open neighborhood, unless otherwise is
explicitly said. For instance, a closed neighborhood P � x means a closed set such
that intP � x.
• • U � V means that U is compactly contained in V , i.e., Ū is a compact set
contained in V .
• We say that a sequence {zn} in a locally compact space X escapes to infinity,
zn → ∞, if for any compact subset K ⊂ X, only finitely many point zn belong to
K. In other words, zn →∞ in the one-point compactification X̂ = X ∪ {∞} of X.
• Similarly, a sequence of subsets En ⊂ X escapes to infinity, if for any compact
subset K ⊂ X, only finitely many sets En intersect K. In other words, En → ∞
uniformly in X̂.
• An embedding i : X ↪→ Y is a homeomorphism onto the image. An immersion
i : X → Y is a continuous (not necessarily injective) map which is locally an
embedding.
• A function f : X → R is called upper semicontinuous at z ∈ X if f(z) ≥
lim supζ→ f(ζ). It is called lower semicontinuous if f(z) ≤ lim infζ→ f(ζ).
• A continuous map f : X → Y between two locally compact spaces is called proper
if for any compact set K ⊂ Y , its full preimage f−1(K) is compact. Equivalently,
f(z) → ∞ in Y as z → ∞ in X, or in other words, f extends continuously to a

map f̂ : X̂ → Ŷ between the one-point compactifications of X and Y .
• Full preimages of points under a proper map will also be called its fibers. Note
that discrete fibers are finite.

Exercise 0.1. An injective proper map i : X ↪→ Y is an embedding.

In this case we say that X is properly embedded into Y .
• A connected compact space is called continuum. (We hope it will not be confused
with the set-theoretical notion of continuum.) A singleton is a “trivial continuum”
.
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• A compact space is called perfect if it does not have isolated points. Perfect sets
are always uncountable. (In particular, non-trivial continua are uncountable.)

• A Cantor set is a totally disconnected perfect set. All Cantor sets are homeomor-
phic.

2.2.2. Paths and arcs. A path and a curve in X mean the same: a continuous
map γ of an interval (of any type) or a circle to X. In the latter case we also refer
to it as a closed curve or a loop. Abusing terminology, we often refer to the image
of γ as a path/curve as well.

An arc is an injective path parametrized by a closed interval. A simple closed
curve is the embedding of the circle into X, i.e., γ : S1 ↪→ X.

Lemma 0.2. Any path parametrizd by a closed interval contains an arc with the
same endpoints.

Proof. It can be done by the loop erasing procedure. Let γ : [0, 1] → X. A
subloop of γ is a restriction of γ to an interval [a, b] such that γ(a) = γ(b). Any
loop can be erased by “restricting” γ to the connected sum [0, a] �a=b [b, 1], and
rescaling the latter to the unit size.

More generally, if γ : �Ik → X is a disjoint union of loops, we can simultane-
ously erase all of them (the devil staircase). If ∪Ik is a maximal set such that all
γ| Ik are loops, then the loop erasing leads to an arc.

Note finally that such a maximal set exists by Zorn’s Lemma. �

Thus, path connectivity of a space X is equivalent to its arc connectivity.

2.2.3. Metrics. We use notation B(x, r) for a ball in a metric space of radius r
centered at x (recall that in C we also use notation D(x, r)).

For two sets X and Y in a metric space with metric d, let

dist(X,Y ) = inf
x∈X, y∈Y

d(x, y).

If one of these sets is a singleton, say X = {x}, then we use notation dist(x, Y ) for
the distance from X to Y .

diamX = sup
x,y∈X

d(x, y).

The Hausdorff distance between two subsets Y and Y is defined as follows:

(2.1) distH(Y, Z) = max(sup
y∈Y

d(y, Z), sup
z∈Z

d(Y, z))

Note that distH(Y, Z) < ε means that Z is contained in an ε-neighborhood of Y
and the other way around.

Exercise 0.3. Let Z be the space of closed subsets in a metric space Z.

(i) Show that that distH defines a metric on Z;
(ii) If Z is complete then Z is complete as well;
(iii) If Z is compact then Z is compact as well.

• Notation (X,Y ) stands for the pair of spaces such that X ⊃ Y . A pair (X, a) of
a space X and a “preferred point” a ∈ X is called a pointed space.
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Figure 4. A comb is a typical cause for non-local-connectivity. To
establish non-local-connectivity of a subset set in R2, it chercher
le peigne. Notice that this comb is path connected.

• Notation f : (X,Y )→ (X ′, Y ′) means a map f : X → X ′ such that f(Y ) ⊂ Y ′. In
the particular case of pointed spaces f : (X, a)→ (X ′, a′) we thus have: f(a) = a′.
Similar notations apply to triples, (X,Y, Z), where X ⊃ Y ⊃ Z, etc.

• For a manifold M , TxM stand for its tangent space at x, and TM stands for its
tangent bundle.
• If M is Riemannian and X is a path connected subset of M , then one can induce
the metric from M to X in two ways:

• The chordal metric is obtained by restricting to X the global metric on M .
The path metric is obtained by restricting to X the Riemannian metric on M and
then defining the path distance between x and y as the infimum of the length of
paths γ ⊂ X connecting x to y (which could be infinite). For instance, one can
induce the Euclidean metric on R2 to the circle T in these two ways leading to
the chordal and length metrics on T. A more interesting example is obtained by
inducing the Euclidean metric to a Jordan domain D ⊂ R2 with fractal boundary.

2.3. Local connectivity. This notion is crucial in Holomorphic Dynamics.
A topological space X is called locally connected (“lc”) at a point x ∈ X if x

has a local base of connected neighborhoods. A space X is called locally connected
if it is locally connected at every point.

Exercise 0.4. A space X is locally connected iff connected components of any
open subset U ⊂ X are open.

There is a convenient weaker notion of local connectivity: A space X is called
weakly locally connected at a point x ∈ X if any neighborhood U � x contains a
connected set P such that x ∈ intP .

Exercise 0.5. If a space is weakly locally connected (at every point) then it is
locally connected. However, a space can be weakly locally connected at some point
x without being locally connected at this point.

For a metric space X, a lc modulus at x ∈ X is a function ω : R+ → R+,
ω(ε) → 0 as ε → 0, such that if d(x, y) < ε then there exist a connected set Y
containing both x and y such that diamY < ω(ε). If h works for all points x ∈ X
then it is called lc modulus for X.
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Exercise 0.6. Show that a space X is weakly lc at some point x iff it has an
lc modulus at this point. Conclude that a compact space X is locally connected if
and only if it has a lc modulus.

Exercise 0.7. a) Show that curves are locally connected.
b) More generally, the image of a lc continuum is an lc continuum.

Exercise 0.8. Lc continuum K ⊂ Rn is arc connected.

A space X is called a path/arc locallly connected at a point x ∈ X if there exists
a modulus of continuity ω(ε) such that any point y ∈ X which is ε-close to x can
be connected to x with a path/arc of diameter less than ω(ε). As ususal, path/arc
lc of the whole space means path/arc lc at every point.

Exercise 0.9. Properties of being path lc, arc lc, and locally connected are all
equivalent.

Exercise 0.10. Let K be a compact subset of Rn, and let J = ∂K. If J is
locally connected then so is K.

Quite remarkably, local connectivity gives a characterization of curves:

Theorem 0.11 (Hahn-Mazurkevich). Let X be a compact space. Then X is
a lc continuum if and only if there is a space-filling curve γ : [0, 1] → X (“Peano
curve”).

Exercise 0.12. Prove this theorem.

2.4. Plane topology. A Jordan curve γ is a simple closed curve in the 2-
sphere S2.

Jordan Theorem. The complement of a Jordan curve γ consists of two com-
ponents D1 and D2 with the common boundary γ.

These components are called (open) Jordan disks. Their closures D̄i = Di ∪ γ
are called closed Jordan disks.

Exercise 0.13. Show that any open Jordan disk is simply connected.

When S2 is realized as one-point compactification of R2, S2 = R2 ∪ {∞} and
a Jordan curve γ lies in R2, then one of the corresponding Jordan disks is bounded
in R2, while another contains ∞. They are called the inner and outer Jordan disks
respectively. If a point z belongs to the inner Jordan disk, we say that “γ goes
around z” or “γ surrounds z”.

A compact subset K in R2 is called full if R2 �K is connected. (Intuitively, K
“does not have holes”). A full non-trivial continuum is called a hull.

Exercise 0.14. a) If K is a hull, then any component of intK is simply con-
nected. b) Let J be a compact subset of R2, and let Ui be the bounded components
of R2 � J . Then K := J ∪⋃Ui is a hull.

This procedure is called filling in the holes of J .

Lemma 0.15. Let K ⊂ R2 be a lc hull, and let U be a component of intK.
Take a z ∈ K � Ū and connect it with an arc α ⊂ K to some point in Ū . Let
πα(z) ≡ πU,α(z) be the the first point of intersection of α with Ū . Then πα(z) is
independent of α.
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Proof. Assume we have two arcs α1 and α2 in K connecting z to Ū such that
ζ1 := πα1

(z) �= πα2
(z) =: ζ2. Without loss of generality we can assume that the αi

end at ζi. Let (u, ζ1] be the maximal subarc of α1 that contains ζ1 and does not
cross α2, and let α′

i = [u, ζi] be the closed subarcs of the αi bounded by u and ζi
(i = 1, 2). Then u is the only common point of these arcs.

Let us take some points w1, w2 ∈ U that are ε-close to ζ1, ζ2 respectively. By
Lemma 0.2, wi can be connected to the respective point ζi by an arc γi ⊂ K with
diam γi < ω(ε). So, for ε small enough, γ1 is disjoint from δ′2 := α′

2 ∪ γ2 and γ2 is
disjoint from δ′1 := α′

1 ∪ γ1.
Applying Lemma 0.2 again, we can straighten the curves δ′i to arcs δi ⊂ δ′i

connecting u to wi. Then u is the only one common point of these arcs as well.
Let us now connect w1 to w2 with an arc σ ⊂ U disjoint from δ1 ∪ δ2 (except

for the endpoints).
The union of three arcs, δ1, δ2 and σ, form a Jordan curve in K. Let D be

the open Jordan disk bounded by this curve. Since K is full, D ⊂ K. Moreover,
D intersects U , and hence U ∪D is contained in a component of intK, so D ⊂ U .
On the other hand D also intersects R2 � Ū since u �∈ Ū – contradiction. �

So, under the above circumstances we have a well defined projection:

(2.2) πU : K → Ū .

Exercise 0.16. The projection πU is continuous and locally constant on K�Ū .

Together with Exercise 0.7 b), this implies:

Corollary 0.17. If K ⊂ R2 is a lc hull and U is a component of intK then
Ū is a hull as well.

Exercise 0.18. Let K be a lc hull in R2 whose complement has infinitely many
components Ui. Then diamUi → 0.

Further study of plane hulls will require analytic methods (see §6).
An external neighborhood of a hull K ⊂ C is a set U �K where U is a neigh-

borhood of K.

2.5. Group actions. SL(2, R) is the group of 2 × 2 matrices over a ring R
with determinant 1 (we will deal with R = C, R, or Z);
PSL(2, R) = SL(2, R)/{±I}, where I is the unit matrix;
SO(2) ≈ T is the group of plane rotations;
PSO(2) = SO(2)/{±I} (this group is actually isomorphic to SO(2), but it is nat-
urally embedded into PSL(2,R) rather than SL(2,R)). Sim(2) is the group of
similarites of R2, i.e., compositions of rotations and scalar operators.
CR is naturally embedded into C2 by z �→ (z, z̄) (as the reflector for the anti-
holomorphic involution (z, ζ) �→ (ζ̄, z̄)). Linear operators of C2 preserving CR and
the area therein have the form(

α β
β̄ ᾱ

)
, α, β ∈ C, |α|2 − |β|2 = 1

We let SL#(2,R) be the group of these operators (it is another representation of
SL(2,R) in SL(2,C)). Note that it acts on CR ⊂ C2 by transformations z �→ αz+βz̄.

An action of a discrete group Γ on a locally compact space X is said to be properly
discontinuous if any two points x, y ∈ X have neighborhoods U � x, V � y such
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that γ(U)∩V = ∅ for all but finitely many γ ∈ Γ. The quotient of X by a properly
discontinuous group action is a Hausdorff locally compact space.

The stabilizer (or, the isotropy group) Stab(X) of a subset Y ⊂ X is the
subgroup {γ ∈ Γ : γ(Y ) = Y }. A set Y called completely invariant under some
subgroup G ⊂ Γ if G = Stab(Y ) and γ(Y ) ∩ Y = ∅ for any γ ∈ Γ�G.

A group element γ is called primitive if it generates a maximal cyclic group.
Isometries of a metric space are also called motions (e.g., Euclidean motions,

hyperbolic motions etc.).

2.6. Coverings. In this section we summarize for reader’s convenience neces-
sary background in the theory of covering spaces.

Let E and B be topological manifolds (maybe with boundary), where B is
connected. A continuous map p : E → B is called a covering of degree d ∈ N∪{∞}
(with base B and covering space E) if any point b ∈ B has a neighborhood V such
that

p−1(V ) =

d⊔
i=1

Ui,

where each Ui is mapped homeomorphically onto V . The preimages p−1(b) are
called fibers of the covering. The inverse maps p−1

i : V → Ui are called the local
branches of p−1. Let us make a coupe of simple obesrvations:

• A covering of degree one is a homeomorphism;

• Restriction of a covering p : E → B to any connected component of E is also a
covering.

• If V is a domain in B, U = p−1(V ) then the restriction p : U → V is also a
covering.

Coverings p : E → B and p′ : E′ → B′ are called equivalent if there exist
homeomorphisms φ : E → E′ and ψ : B → B′ such that ψ ◦ p = p′ ◦ φ. Similarly,
one defines a lift of a homotopy.

Given a continuous map f : X → B, a continuous map f̃ : X → E is called a
lift of f if p◦f̃ = f . Theory of covering spaces is based on the following fundamental
property:

Path Lifting Property. Let γ be a path in B that begins at b ∈ B, and let
e ∈ p−1(b). Then there is a unique lift γ̃ of γ (i.e., p ◦ γ̃ = γ) that begins at e. If
γ is homotopic to γ′ (rel the endpoints) then the corresponding lifts γ̃ and γ̃′ are
also homotopic rel the endpoints.

It implies, in particular, that the induced homomorphism

p∗ : π1(E, e)→ π1(B, b)

is injective; let G = Gp ⊂ π1(B, b) be its image If E is connected then replacing e
with another point in the fiber replaces G by a conjugate subgroup. In this way,
to any covering p (with connected E) we associate a subgroup of the fundamental
group, up to conjugacy.

The Path Lifting Property implies a general

Lifiting Criterion. A continuous map f : (X,x) → (B, b) admits a lift f̃ :
(X,x)→ (E, e), where e ∈ p−1(b)), if and only if f∗(π1(X,x) ⊂ p∗(π1(E, e)).

In particular, if E is simply connected, then all maps f : X → B are liftable.
In what follows we assume that E is also connected.
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A covering is called Galois if there is a group G acting freely and properly
discontinuously on E whose orbits are fibers of the covering. In this case B ≈ E/G.
The group G is called the group of deck transformations, or the covering group for
p.

Vice versa, if a group G acts freely and properly discontinuous on a manifold E
then the quotient B := E/G is a manifold, and the natural projection f : E → B
is a covering.

A covering u : U → B is called Universal if the space E is connected and
simply connected. This covering is Galois, with the fundamental group π1(T ) acting
by deck transformations. Any manifold has a unique Universal Covering up to
equivalence.

Remark 0.1. We supress the base point in the notation for the fundamental
group, unless it can lead to confusion. (On most occasions, our statements are
invariant under conjugacies (inner automorphisms) in the fundamental group, and
hence are base point independent.)

The Universal Covering allows us to recover any covering p from the a subgroup
Γ ⊂ π1(B) as p : U/Γ → B. Moreover, the universal covering factors through p
since q ◦ p = u, where q : U → U/Γ. This provides us with a natural one-to-
one correspondence between classes of conjugate subgroups of π1(T ) and classes of
equivalent coverings p : E → B. Moreover, the covering p is Galois if and only if the
corresponding subgroup Γ is normal. In this case, the group of deck transformations
of p is π1(T )/Γ.

In particular, a simply connected manifold T does not admit any non-trivial
coverings: any covering p : S → T with connected S is a homeomorphism. Putting
this together with the above observations, we obtain an important statement which
is often refereed in anlysis as the Monodromy Theorem:

If p : E → B is a covering and V ⊂ B is a simply connected domain, then
p−1(V ) is a disjoint union of domains Ui, i = 1, . . . , d, such that each restriction
p : Ui → V is a homeomorphim. Thus, on any simply connected domain there exist
d well defined inverse branches p−1

i : V → Ui.
Given a base point b ∈ B, there exists a natural monodromy action of the

fundamental group G = π−1
1 (B, b) on the fiber F := π−1(b). Namely, let an element

A ∈ G is represented by a loop α in T based at b. Lift α to a path α̃ in E based
at some e ∈ F . Then A(e) is defined as the endpoint of α̃. The stabilizer G of this
action is the subgoup Γ corresponding to p (well defined up to conjugacy), which
gives yet another viepoint on the relation between coverings over B and subgoups
of G.

Exercise 0.19. Let p : E → B be a covering of degree d. Then there exists a
Galois covering q : L→ B of degree at most d! that factors through p, i.e., q = p◦ r
(where r : L→ E is also (automatically) a Galois covering).

One says that a connected submanifold V ⊂ B (maybe with boundary) is
essential in T if the induced (by the emebdding) homomorphism π1(V ) → π1(B)
is injective. In other words, any non-trivial loop in V remains non-trivial in B.
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Proposition 0.20. Let u : U → B be the universal covering. If V ⊂ B is an
essential submanifold then any component V̂ of u−1(V ) is simply connected. More-

over, the stabilizer Γ of V̂ in the group G of deck transformations is the covering
group for the restriction p : V̂ → V (and thus, Γ is isomorphic to π1(V )).

Proof. By the above observations, restriction u : V̂ → V is a covering, so
we only need to show (for the first assertion) that V̂ is simply connected. But

otherwise, there would be a non-trivial loop α̃ in V̂ . Then the loop α = p∗(α̃)
would be non-trivial in V (since p∗ is injective) but trivial in B (since α̃ is trivial
in U).

Since p−1(V ) is invariant under G, each deck transformation γ : U → U per-

mutes the components of p−1(V ). Hence for any γ ∈ G, V̂ is either invaraint under

γ or else γ(V̂ )∩ V̂ = ∅. It follows that the stabilizer Γ of V̂ acts transitively on the

fibers of p| V̂ , and the conclusion follows. �

Corollary 0.21. Let γ be an essentail simple closed curve in B. Then each
lift γ̃ to the universal covering U is a topological line whose stabilizer is an infinite
cyclic group. Different lifts have conjugate stabilizers.

Thus, to each (oriented) simple closed curve in B we can associate a conjugacy
class in the fundamental group (the generators of the above stabilizers).

Exercise 0.22. There is a natural one-to-one correspondence between classes
of freely homotopic (oriented) closed curves (not necessarily simple) and conjugacy
classes in G = π1(B).

Lemma 0.23. Let V be an essential submanifold in B. Then there is a covering
q : E → B with π1(E) = π1(V ) and such that one of the components U of q−1(V )
projects homeomorphically onto V .

Proof. In the notation of Lemma 0.20, let E = U/Γ, U = V̂ /Γ. �

Informally speaking, we unwide all the loops in B except those that are essen-
tailly confined to V .

Corollary 0.24. Let γ ⊂ B be an essentail simple closed curve. Then there is
a covering space E with π1(E) ≈ Z containing a simple closed curve γ̂ that projects
homeomorphically onto γ.
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CHAPTER 1

Conformal geometry

1. Riemann surfaces

1.1. Topological surfaces.
1.1.1. Definitions and examples.

Definition 1.1. A (topological) surface S (without boundary) is a two-dimensional
topological manifold with countable base. It means that S is a topological space
with a countable base and any z ∈ S has a neighborhood U � z homeomorphic to
an open subset V of R2. The corresponding homeomorphism φ : U → V is called
a (topological) local chart on S. Such a local chart assigns to any point z ∈ U its
local coordinates (x, y) = φ(z) ∈ R2.

A family of local charts whose domains cover S is called a topological atlas on
S.

Given two local charts φ : U → V and φ̃ : Ũ → Ṽ , the composition

φ̃ ◦ φ−1 : φ(U ∩ Ũ)→ φ̃(U ∩ Ũ)

is called the transition map from one chart to the other.
A surface is called orientable if it admits an atlas with orientation preserving

transition maps. Such a surface can be oriented in exactly two ways. In what
follows we will only deal with orientable (and naturally oriented) surfaces.

Unless otherwise is explicitly said, we will assume that the surfaces under con-
sideration are connected. The simplest (and most important for us) surfaces are:

• The whole plane R2 (homeomorphic to the open unit disk D ⊂ R2).

• The unit sphere S2 in R3 (homeomorphic via the stereographic projection to the
one-point compactification of the plane); it is also called a “closed surface of genus
0” (in this context “closed” means “compact without boundary”).

• A cylinder or topological annulus C(a, b) = T× (a, b), where −∞ ≤ a < b ≤ +∞.
It can also be represented as the quotient of the strip P (a, b) = R × (a, b) modulo
the cyclic group of translations z �→ z + 2πn, n ∈ Z. All the cylinders C(a, b)
are homeomorphic to any annulus A(r,R), to the punctured disk D∗ and to the
punctured plane C∗).

• The torus T2 = T × T, also called a “closed surface of genus 1”. It can also
be represented as the quotient of R2 modulo the action of a rank 2 abelian group
z �→ z + αm+ βn, (m,n) ∈ Z2, where α and β is an arbitrary basis in R2.

It is intuitively obvious that (up to a homeomorphism) there are only two simply
connected surfaces: the plane and the sphere.

If we have a certain standard surface S (say, the unit disk or the unit sphere),
a “topological S” (say, a “topological disk” or a “topological sphere”) refers to a
surface homeomorphic to the standard one.

21
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One can also consider surfaces with boundary. The local model of a surface near
a boundary point is given by a relative neighborhood of a point (x, 0) in the closed
upper half-plane H̄. The orientation of a surface naturally induces an orientation
of its boundary (locally corresponding to the positively oriented real line).

For instance, we can consider cylinders with boundary: C[a, b] = T × [a, b]
or C[a, b) = T × [a, b). They will be still called “cylinders” or “topological an-
nuli”. Cylinders C(a, b) without boundary will be also called “open”, while cylin-
ders C[a, b] will be called “closed” (according to the type of the interval involved).

Cylinders (with or without boundary) are the only topological surfaces whose
fundamental group is Z.

1.1.2. Ends and ideal circles. A non-compact domain E ⊂ S bounded by a
simple closed curve γ in S is called end-region (and the same term is applied to
the closure of E). An end-nest {En} of S is a nest E0 ⊃ E1 ⊃ . . . of end-regions
escaping to infinity in S. Two end-nests, {En} and {E′

n}, are called equivalent if
any En is contained in some E′

m, and the other way around. An end e of S is a
class of equivalent end-nests. We let E(S) be the set of ends of S.

An end is called tame if eventually all the end-regions (in some and hence
in any end-nest) are cylinders. Any of these cylinders uniquely determines the
corresponding end.

We can compactify S by attaching one point ∞e to each end e ∈ E(S) and
declaring the representing nest-regions En the base of neighborhoods of ∞e. We
call it one-point-per-end compactification of S.

Exercise 1.2. Let D be a domain on the sphere S2 such that each component
of S2 �D is a full. Descibe the ends of D.

A tame end can be also compactified in a different way by attaching a topolog-
ical circle at infinity called the ideal circle at infinity.

Remark 1.1. On the topological (or smooth) level, attaching one point or
the ideal circle to a tame end have equal footing: the end does not have a prefer-
ence. However, a conformal end knows exactly what should be attached to it: see
Proposition 1.19.

We say that a map f : S → S′ properly maps an end e of S to an end e′ of
S′ if f(z) → ∞e′ as z → ∞e. Such a map extends continuously to the one-point
compactification of the ends by letting ∞e �→ ∞e′ .

1.1.3. New surfaces from old ones. There are two basic ways of building new
surfaces out of old ones: making holes and gluing their boundaries. Of course, any
open subset of a surface is also a surface. In particular, one can make a (closed)
hole in a surface, that is, remove a closed Jordan disk. A topologically equivalent
operation is to make a puncture in a surface. By removing an open Jordan disk
(open hole) we obtain a surface with boundary.

If we have two open holes (on a single surface or two different surfaces Si)
bounded by Jordan curves γi, we can glue these boundaries together by means
of an orientation reversing homeomorphism h : γ1 → γ2. (It can be also thought
as attaching a cylinder to these curves.) We denote this operation by S1 �h S2.
For instance, by gluing together two closed disks we obtain a topological sphere:
D �h D ≈ S2.

Combining the above operations, we obtain operations of taking connected sums
and attaching a handle. To take a connected sum of two surfaces S1 and S2, make
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an open hole in each of them and glue together the boundaris of these holes. To
attach a handle to a surface S, make two open holes in it and glue together their
boundaries.

If we attach a handle to a sphere, we obtain a topological torus. If we attach
g handles to a sphere, we obtain a closed surface of genus g’. A Fundamental
Theorem of Topology asserts that any closed orientable surface is homeomorphic to
one of those. Thus closed orientable surfaces are topologically classified by a single
number g ∈ N, its genus.

One says that a surface S (with or without boundary) has a finite topological
type if its fundamental group π(S) is finietly generated (e.g., any compact surface
is of finite type). It turns out that it is equivalent to saying that S is homeomorpic
to a closed surface with finitely many open or closed holes. Clearly such a surface
admits a decomposition

S = K �hi
Ci ,

where K is a compact surface and the Ci are cylinders. The set K = KS is called
the compact core of S. Note that it is obviously a deformation retract for S. The
cylinders Ci represent the ends of S: all of them are tame in this case.

1.1.4. Euler characteristic. Let S be a compact surface (with or without bound-
ary) Its Euler characteristic is defined as

χ(S) = f − e+ v,

where f , e and v are respectively the numbers of faces, edges and vertices in any
triangulation of S.

The Euler characteristic is obviously additive:

χ(S1 �h S2) = χ(S1) + χ(S2).

Since the cylinder T × [0, 1] has zero Euler characteristic, χ(Ŝ) = χ(KS) for a
surface S of finite type. We can use this as a definition of χ(S) in this case.

Making a hole in a surface drops its Euler characteristic by one; attaching a
handle does not change it. Hence χ(S) = 2 − 2g − n for a surface of genus g with
n holes.

Note that the above list of simplest surfaces is the full list of sufaces of finite
type without boundary with non-negative Euler characteristic:

χ(R2) = 1, χ(S2) = 2, χ(T× (0, 1)) = χ(T2) = 0.

1.1.5. Marking. A surface S can be marked with an extra topological data. It
can be either several marked points ai ∈ S, or several closed curves γi ⊂ S up to
homotopy (usually but not always they form a basis of π1(S)), or a parametrization
of several boundary components Γi ⊂ ∂S, φi : T→ Γi.

The marked objects may or may not be distinguished (for instance, two marked
points or the generators of π1 may be differently colored). Accordingly, the marking
is called colored or uncolored.

A homeomorphism h : S → S̃ between marked surfaces should respect the
marked data: marked points should go to the corresponding points (h(ai) = ãi),
marked curves γi should go to the corresponding curves γ̃i up to homotopy (h(γi) �
γ̃i), and the boundary parametrizations should be naturally related (h ◦ φi = φ̃i).
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1.2. Analytic and geometric structures on surfaces. Rough topological
structure can be refined by requiring that the transition maps belong to a certain
“structural pseudo-group”, which often means: “have certain regularity”. For ex-
ample, a smooth structure on S is given by a family of local charts φi : Ui → Vi such
that all the transition maps are smooth (with a prescribed order of smoothness).
A surface endowed with a smooth structure is naturally called a smooth surface. A
local chart φ : U → V smoothly related to the charts φi (i.e., with smooth transi-
tion maps) is referred to as a “smooth local chart”. A family of smooth local charts
covering S is called a “smooth atlas” on S. A smooth structure comes together
with affiliated notions of smooth functions, maps and diffeomorphisms.

There is a smooth version of the connected sum operation in which the bound-
ary curves are assumed to be smooth and the boundary gluing map h is assumed
to be an orientation reversing diffeomorphism. To get a feel for it, we suggest the
reader to do the following exercise:

Exercise 1.3. Consider two copies D1 and D2 of the closed unit disk D ⊂ R2.
Glue them together by means of a diffeomorphism h : ∂D1 → ∂D2 of the boundary
circles. You obtain a topological sphere S2. Show that it can be endowed with a
unique smooth structure compatible with the smooth structures on D1 and D2 (that
is, such that the tautological embeddings Di → S2 are smooth). The boundary
circles ∂Di become smooth Jordan curves on this smooth sphere. Show that this
sphere is diffeomorphic to the standard “round sphere” in R3.

Real analytic structures would be the next natural refinement of smooth struc-
tures.

If R2 is considered as the complex plane C with z = x + iy, then we can talk
about complex analytic ≡ holomorphic transition maps and corresponding complex
analytic structures and surfaces. Such surfaces are known under a special name of
Riemann surfaces. A holomorphic diffeomorphism between two Riemann surfaces
is often called an isomorphism. Accordingly a holomorphic diffeomorphism of a
Riemann surface onto itself is called its automorphism.

Connected sum operation still works in the category of Riemann surfaces. In
its simplest version the boundary curves and the gluing diffeomorphism should be
taken real analytic. Here is a representative statement:

Exercise 1.4. Assume that in Exercise 1.3 R2 ≡ C and the gluing diffeomor-
phism h is real analytic. Then S2 can be supplied with a unique complex analytic
structure compatible with the complex analytic structure on the disks Di ⊂ C. The
boundary circles ∂Di become real analytic Jordan curves on this “Riemann sphere”.

More generally, we can attach handles to the sphere by means of real analytic
boundary map, and obtain an example of a Riemann surface of genus g. It is
remarkable that, in fact, it can be done with only smooth gluing map, or even with
a singular map of a certain class. This operation (with a singular gluing map) has

very important applications in Teichml̈ler theory, theory of Kleinian groups and
dynamics (see ??).

If R2 is supplied with the standard Euclidean metric, then we can consider
conformal transition maps, i.e., diffeomorphisms preserving angles between curves.
The first thing students usually learn in complex analysis is that the class of ori-
entation preserving conformal maps coincides (in dimension 2!) with the class of
invertible complex analytic maps. Thus the notion of a conformal structure on an



1. RIEMANN SURFACES 25

oriented surface is equivalent to the notion of a complex analytic structure (though
it is worthwhile to keep in mind their conceptual difference: one comes from geom-
etry, the other comes from analysis).

One can go further to projective, affine, Euclidean/flat or hyperbolic structures.
We will specify this discussion in a due course.

One can also go in the opposite direction and consider rough structures on a
topological surface whose structural pseudo-group is bigger then the pseudo-group
of diffeomorphisms, e.g., “bi-Lipschitz structurs”. Even rougher, quasi-conformal,
structures will play an important role in our discussion.

To comfort a rigorously-minded reader, let us finish this brief excursion with a
definition of a pseudo-group on R2 (in the generality adequate to the above discus-
sion). It is a family of local homeomorphisms f : U → V between open subsets of
R2 (where the subsets depend on f) which is closed under taking inverse maps and
taking compositions (on the appropriately restricted domains). The above struc-
tures are related to the pseudo-groups of all local (orientation preserving) home-
omorphisms, local diffeomorphisms, locally biholomorphic maps, local isometries
(Euclidean or hyperbolic) etc.

1.3. Flat (affine) geometry. Consider the complex plane C. Holomorphic
automorphisms of C are complex affine maps A : z �→ az + b, a ∈ C∗, b ∈ C. They
form a group Aff(C) acting freely bi-transitively on the plane: any pair of points
can be moved in a unique way to any other pair of points. Moreover, it acts freely
transitively on the tangent bundle of C.

Thus the complex plane C is endowed with the affine structure canonically
affiliated with its complex analytic structure. Of course, the plane can be also
endowed with a Euclidean metric |z|2. However, this metric can be multiplied by
any scalar t > 0, and there is no way to normalize it in terms of the complex
structure only. All these Euclidean structures have the same group Euc(C) of
Euclidean motions A : z �→ az + b with |a| = 1. This group acts transitively on
the plane with the group of rotations z �→ e2πiθz, 0 ≤ θ < 1, stabilizing the origin.
Moreover, it acts freely transitively on the unit tangent bundle of C (corresponding
to any Euclidean structure).

The group Aff has very few discrete subgoups acting freely on C: rank 1 cyclic
group actions z �→ z + an, n ∈ Z, and rank 2 cyclic group actions z �→ an + bm,
(m,n) ∈ Z2, where (a, b) is an arbitrary basis in C over R. All rank 1 actions are
conjugate by an affine transformation, so that the quotients modulo these actions
are all isomorphic. Taking a = 1 we realize these quotients as the bi-infinite cylinder
C/Z. It is isomorphic to the puncured plane C∗ by means of the exponential map
C/Z→ C∗, z �→ e2πz. The quotients of rank 2 are all homeomorphic to the torus.
However, they may represent different Riemann surfaces (see below 1.6.2).

Note that the above discrete groups preserve the Euclidean structures on C.
Hence these structures can be pushed down to the quotient Riemann surface. More-
over, now they can be canonically normalized: in the case of the cylinder we can
normalize the lengths of the closed geodesics to be 1. In the case of the torus we
can normalize its total area. Thus, complex tori and the bi-infinite cylinder are
endowed with a canonical Euclidean structure. For this reason, they are called flat.
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1.4. Spherical (projective) geometry. Consider now the Riemann sphere
C̄ = C ∪ {∞}. Its bi-holomorphic automorphisms are Möbius transformations

φ : z �→ az + b

cz + d
; det

(
a b
c d

)
�= 0.

We will denote this Möbius group by Möb(Ĉ). It acts freely triply transitive on
the sphere: any (ordered) triple of points (a, b, c) on the sphere can be moved by a
unique Möbius transformation to any other triple (a′, b′, c′).

Exercise 1.5. Show that topology of PSL(2,R) and topology of uniform con-
vergence on the sphere coincide. Given an ε > 0, let us consider the set of Möbius
transformations φ such that the triple (φ−1(0, 1,∞) is ε-separated in the spherical
metric (i.e., the three points stay at least distance ε apart one from another). Show

that this set is compact in Möb(Ĉ).

Note that the Riemann sphere is isomorphic to the complex projective line
CP

1. For this reason Möbius transformations are also called projective. Alge-
braicly the Möbius group is isomorphic to the linear projective group PSL(2,C) =
SL(2,C)/{±I} of 2× 2 matrices M with detM = 1 modulo reflection M �→ −M .

Any Möbius transformation M has a fixed point α ∈ Ĉ, i.e. M(α) = α. Hence
there are no Riemann surfaces whose universal covering is C̄. In fact, any non-
identical Möbius transformations has either one or two fixed points, and can be
classified depending on their nature.

We would like to bring a Möbius transformation to a simplest normal form by
means of a conjugacy φ−1 ◦ f ◦ φ by some φ ∈ Möb(Ĉ). Since Möb(Ĉ) acts double
transitively, we can find some φ which sends one fixed point of f to ∞ and the
other (if exists) to 0. This leads to the following classification:

(i) A hyperbolic Möbius transformation has an attracting and repelling fixed
points with multipliers1 λ amd λ−1, where 0 < |λ| < 1. Its normal form is a global
linear contraction z → λz (with possible spiralling if λ is unreal2.)

(ii) An elliptic Möbius transformation has two fixed points with multipliers λ
and λ−1 where λ = e2πiθ, θ ∈ [0, 1). Its normal form is the rotation z → e2πiθz.

(iii) (ii) A parabolic Möbius transformation has a single fixed point with multi-
plier 1. Its normal form is a translation z �→ z + 1.

Exercise 1.6. Verify those of the above statements which look new to you.

1.5. Hyperbolic geometry.
1.5.1. Hyperbolic plane and its motions. Let us now consider a Riemann surface

S conformally equivalent to the unit disk D, or equivalently, to the upper half plane
H, or equivalently, to the strip P (we refer to such a Riemann surface as a “conformal
disk”). Using the isomorphism S ≈ D, S can be naturally compactified by adding
to it the ideal boundary ∂S ≈ T (see §1.1.3), also called the circle at infinity or the
absolute.

1The multiplier of a fixed point α is the derivative f ′(α) calculated in any local chart around

α, compare §22.
2Hyperbolic Möbius transformations with unreal λ are also called loxodromic
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The group Aut(S) of conformal automorphisms of S in the the upper half-plane
model consist of Möbius transformations with real coefficients:

M : z �→ az + b

cz + d
;

(
a b
c d

)
∈ SL(2,R).

Hence Aut(S) ≈ SL(2,R)/{±I} = PSL(2,R). In the unit disk model, it is realised

as the group PSL#(2,R):

M : z �→ αz + β

β̄z + ᾱ
= λ

z − a
1− āz ;

(
α β
β̄ ᾱ

)
∈ PSL(2,R),

where λ = α/ᾱ ∈ T, z = −β/α ∈ D.

The above classification of Möbius transformations M ∈ PSL(2,R) has a clear
meaning in terms of their action on S:

(i) A hyperbolic transformation M ∈ PSL(2,R) has two fixed points on the
ideal boundary ∂S (and does not have fixed points in S). Its normal form in the
H-model is a dialtion z �→ λz (0 < λ < 1), and is a translation z �→ z + a in the
P-model, where a = log λ.

(ii) A parabolic transformation has a single fixed point on ∂S (and does not
have fixed points in S). Its normal form in the H-model is a translation z �→ z+1.

(iii) An elliptic transformation M �= id has a single fixed point a ∈ S (and
does not have fixed points on ∂S). Its normal form in the D-model is a rotation
z �→ e2πiθz.

A remarkable discovery by Poincaré is that a conformal disk S is endowed with
the intrinsic hyperbolic structure, that is, there exists a Riemannian metric ρS on
S of constant curvature −1 invariant with respect PSL(2,R)-action. In the H-,
D- and P-models, the length element of ρS is given respectively by the following
expressions:

dρD =
2|dz|

1− |z|2 , dρH =
|dz|
y
, dρP =

|dz|
sin y

,

where z = x+ iy. This metric is called hyperbolic .

Exercise 1.7. Verify that the above three expressions correspond to the same
metric on S, which has curvature −1 and is invariant under PSL(2,R). Show that
the group of orientation preserving hyperbolic motions of S is equal to Aut(S) ≈
PSL(2,R).

A conformal disk S endowed with the hyperbolic metric is called the hyperbolic
plane. In this way, PSL(2,R) assumes the meaning of the group of (orientation
preserving) hyperbolic motions of the hyperbolic plane. It acts freely transitively
on the unit tangent bundle of H, so the latter can be identified with PSL(2,R). The
isotropy group of i ∈ H coincides with the group PSO(2) of hyperbolic rotations

z �→ z cos θ − sin θ

z sin θ + cos θ
, θ ∈ R/πZ.

Thus, the hyperbolic plane gets identified with the symmetric space

(1.1) PSL(2,R)/PSO(2) ≈ H.

From this point of view, the hyperbolic metric on H can be interpreted as
follows. Let us consider the Lie algebra sl(2,R) of trace free 2 × 2 real matrices.
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It is endowed with the inner product < a, b >= tr ab (the Killing form) which is
invariant under the adjoint action

a �→ gag−1, a ∈ sl(2,R), g ∈ SL(2,R),

of SL(2,R) on sl(2,R).
Viewed as the linear space, sl(2,R) is just the tangent space to SL(2,R) at the

identity. By the left action of SL(2,R) on itself, the Killing form can be promoted
to a left-invariant Riemannian metric on SL(2,R). In fact, since the Killing form
is invariant under the adjoint action, this metric will also be right invariant. Hence
it descends to a metric on the symmetric space SL(2,R)/SO(2) invariant under
SL(2,R)-action.

Exercise 1.8. Verify that this metric coincides (via the identification (1.1))
with the hyperbolic metric on H.

A Fuchsian group Γ is a discrete subgroup of PSL(2,R) acting on S.

Exercise 1.9. Show that any Fuchsian group acts properly dicontinuously on
S.

Hence the quotient X = S/Γ is a Hausdorff space. Moreover, if Γ acts freely on
S, then the complex structure and the hyperbolic metric naturally descend from S
to X, and we obtain a hyperbolic Riemann surface.

1.5.2. Hyperbolic geodesics and horocycles. Hyperbolic geodesics in the D-model
of the hyperbolic plane are Euclidean semicircles orthogonal to the absolute T. For
any hyperbolic unit tangent vector v ∈ TD, there exists a unique oriented hyper-
bolic geodesic tangent to v. For any two points x and y on the absolute, there
exists a unique hyperbolic geodesic with endpoints x and y. The group PSL(2,R)
acts freely and transitively on the space of oriented hyperbolic geodesics.

Exercise 1.10. Verify the above assertions if they are not familiar to you.

A horocycle in D centered at x ∈ T is a Euclidean circle γ ⊂ D tangent to T at x.
A horodisk D ⊂ D is the disk bounded by the horocycle. In purely hyperbolic terms,
horocycles centered at x form a foliations orthogonal to the foliation of geodesics
ending at x. The stabilizer of any horocycle (and the corresponding horoball) is
the parabolic group fixing its center.

In fact, the H-model fits better for describing horocycles: in this model the
horocylces centered at x = ∞ are horizontal lines Lh = {Im z = h}, the corre-
sponding horoballs are the upper half-planes Hh, and their stabilizer is the group
of translations z �→ z + t, t ∈ R.

The quotient of a horoball Hh by a discrete cyclic group of parabolic trans-
formations Z =< z �→ z + n > is called a cusp. Conformally it is the punctured
disk D∗, hyperbolically it is the pseudosphere (see Figure ??). Simple closed curves
Lt/Z ⊂ Hh/Z, t > h, are also called horocycles (in the cusp).

Exercise 1.11. Any cusp Hh/Z has infinite hyperbolic diameter but a finite
hyperbolic area. The hyperbolic length of the horocylcle Lt/Z goes to zero as t→∞.

Let us now consider a Fuchsian group Γ and the corresponding hyperbolic
Riemann surface S = D/Γ. Hyperbolic geodesics on S are (obviously) projections
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of the hyperbolic geodesics on D; horocycles on S are (by definition) projections of
the horocycles on D.

Let γ be a non-trivial simple closed curve on S, and let [γ] be the class of
simple closed curves freely homotopic to γ. To this class corresponds a conjugacy
class A(γ) of deck transformations (see §2.6). Since deck transformations cannot be
elliptic, the elements of A(γ) are either all hyperbolic or all parabolic. Accordingly,
we say that the class [γ] itself is either hyperbolic or parabolic.

Proposition 1.12. a) If the class [γ] is hyperbolic then it is represented by a
unique closed hyperbolic geodesic δ ∈ [γ]. This geodesic minimizes the hyperbolic
length of the closed curves in [γ].

b) If the class [γ] is parabolic then S contains a neighborhood U isometric to a
cusp, and [γ] is represented by any horocycle in it. In this case, the class contains
arbitrary short curves.

Proof. Let us consider a lift γ̃ of γ, and let G =< φn >n∈Z be its stabilizer.

a) If φ is hyperbolic then it has two fixed points, x− and x+, on the absolute,
and then the closure of γ̃ in D̄ is a topological interval with endpoints x1 and x+.

Let us consider the hyperbolic geodesic δ̃ in D with endpoints x±. It is invariant
under the action of the cyclic group G. In fact, it is completely invariant. Indeed,
if ψ(δ̃) ∩ δ̃ �= ∅ for some ψ ∈ Γ�G, then ψ(γ̃) ∩ γ̃ �= ∅ as well, which is impossible

since γ does not have self-intersections. Hence the projection of δ̃ to S is equal to
δ̃/G, which is the desired simple closed geodesic representing [γ].

b) If φ is parabolic then it has a single fixed point x on the absolute, and the
closure of γ̃ in D̄ is a topological circle touching T at x (a “topological horocycle
centered at x”).

Let Ũ be the corresponding topological horoball bounded by γ̃. Let us show
that it is completely invariant under G. Indeed, for ψ ∈ Γ�G, ψ(Ũ) is a topological
horoball centered at β(x) �= x. But since γ is a simple curve, ψ(γ̃) ∩ γ̃ = ∅ for any
β ∈ Γ � G. Since two topological horoballs with disjoint boundaries are disjoint,
ψ(Ũ) ∩ Ũ = ∅.

It follows that Ũ/G is is isometrically embedded into D/Γ = S. But Ũ/G is
a conformal punctured disk containing some standard cusp Hh/Z. Thus, this cusp
isometrically embeds into S as well, and its horocycles give us desired representa-
tives of [γ]. �

We express part b) of the above statement by saying that the class [γ] (or, the
curve γ itself) is represented by a horocycle, or by a puncture, or by a cusp.

A simple closed curve on S is called peripheral if it is either trivial or is rep-
resented by a cusp. For instance, if S = Ĉ � {xi} is a sphere with finitely many

punctures then γ is non-peripheral iff each component of Ĉ � γ contains at least
two punctures.

Exercise 1.13. Show that there is one-to-one correspondence between conju-
gacy classes of primitive parabolic transformations in a Fuchsian group Γ and cusps
of the Riemann surface S = D/Γ.
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1.5.3. Limit set and ideal boundary. Let us formulate the dynamical structural
theorem for Fuchsian group actions:

Theorem 1.14. Let Γ be a Fuchsian group acting on D̄. There is a non-empty
closed Γ-invariant set Λ = Λ(Γ) ⊂ T equal to the limit set of any orb(z), z ∈ D̄.
Moreover, Λ is either a Cantor set or else, it consists of at most two points. The
action of Γ on the complementary set, Ω(Γ) = D̄�Λ(Γ), is properly discontinuous.

The set Λ(Γ) is naturally called the limit set of Γ. The complementary set
Ω(Γ) is called the set of discontinuity. A Fuchsian group is called elementary if
|Λ(Γ)| ≤ 2.

Exercise 1.15. Classify elementary Fuchsian groups.

Since Γ acts properly discontinuous on Ω, the quotient space ŜI := Ω/Γ is

Hausdorff. Its interior, S := D/Γ, is an orbifold Riemann surface. Thus, ŜI gives
a partial compactification of S called the ideal compactification. Accordingly,

∂IS := (T ∩ Ω)/Γ

is called the ideal boundary of S. (We will see momentarily that this notion is
consistent with the topological one introduced in §1.1.3.)

Proposition 1.16. Assume |Λ(Γ)| > 1. Let an interval C̃ ⊂ T be a component

of T∩Ω(Γ). Then the stabilizer of C̃ in Γ is a cyclic group generated by a hyperbolic
transformation M .

Corollary 1.17. Under the above circumstances, the quotient C := C̃/Γ is
a topological circle.

The hyperbolic transformation M from Proposition 1.16 fixes the endpoints of
C̃, and hence its axis γ̃ shares the endpoint with C̃. Let Ẽ ⊂ D be the topological
bigon bounded by I and J .

Lemma 1.18. The quotient E := Ẽ/Γ is a cylinder representing a tame end of

S with the ideal circle at infinity C = C̃/Γ.

Let us summarize our discussion:

Proposition 1.19. Let S be a hyperbolic Riemann surface H/Γ. Any tame end
of S is represented by either a cusp or by a hyperbolic geodesic. In the former case,
it admits a one-point compactification with complex structure extended through ∞.
In the latter case, it admits an ideal boundary compactification with an ideal circle
at infinity attached to the end. The type of compactification is totally determined
by the conformal type of the end.

1.5.4. Convex core. A subset X ⊂ D̄ is called (hyperbolically) convex if for
any two points x, y ∈ X, the hyperbolic geodesic arc connecting x and y is also
contained in X. The hyperbolic convex hull X̂ of a subset X ⊂ D̄ is the smallest
convex set containing X.

For instance, let X be a closed subset of T, and let ⊂ T be the complementary
intervals (“gaps”) of X. Let us consider open (in D̄) hyperbolic half-planes Hj ⊃ Ij
based on the Ij (they are bounded the hyperbolic geodesics Γj that share the
endpoints with Ij). Then

(1.2) X̂ = D̄ �
⊔
Hj .
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Note that X̂ is closed in D̄ and X̂ ∩ T = X.
In particular, let Λ = Λ(Γ) be the limit set of a Fuchsian group Γ of second

kind, and let π : D → S be the projection onto the quotient Riemann surface.
Since Λ is invariant under Γ, the convex hull Λ̂ is Γ-invariant as well. Hence it
covers a Riemann surface C = CS with boundary called the convex core of S.

Proposition 1.20. The natural embedding C → S is a homotpy equivalence.

Proposition 1.21. The group Γ is convex co-compact if and only if the convex
core C is compact.

1.5.5. Linking. Let X and Y be two disjoin closed non-sigleton subsets of the
unit circle T. We say that X and Y are unlinked if the geodesics connecting any
two poins of X are disjoint from the analogous geodesics for Y .

Proposition 1.22. For sets X and Y as above the following properties are
equivalent:

(i) X and Y are unlinked;

(ii The convex hulls X̂ and Ŷ are disjoint;

(iii) X is contained in a single gap of Y (and the other way around);

(iv) There exist disjoint continua X ′ ⊃ X and Y ′ ⊃ Y in D̄.

1.5.6. Geodesic laminations. A geodesic lamination in D is a closed set Z ⊂ D

that is the disjoint union of complete hyperbolic geodesics. In other words, there
is a unique complete geodesic3 γz ⊂ Z passing through any point z ∈ Z, and these
geodesics are either equal or disjoint. The set Z itself is called the support of the
lamination.

Lemma 1.23. For a geodesic lamination in D, the geodesic γz depends continu-
ously on z: If zn → z then γzn(t)→ γz(t), t ∈ R, uniformly on R in the Euclidean
metric of D. In particular, the endpoints at infinity of the γzn converge to the end-
point of γz. (Here γz(t) is the natural parametrization of a geodesic γz with the
origin at z.)

1.6. Annulus and torus.
1.6.1. Modulus of an annulus. Consider an open topological annulus A. Let us

endow it with a complex structure. Then A can be represented as the quotient of
either C or H modulo an action of a cyclic group < γ >. As we have seen above,
in the former case A is isomorphic to the flat cylider C/Z ≈ C∗. In the latter case,
we obtain either the punctured disk D∗ (if γ is parabolic) or an annulus A(r,R) (if
γ is hyperbolic). In the hyperbolic case we call A a conformal annulus.

Exercise 1.24. Write down explicitly the covering maps H → D∗ and H →
A(r,R).

Exercise 1.25. Prove that two round annuli A(r,R) and A(r′, R′) are confor-
mally equivalent if and only if R/r = R′/r′.

3i.e., γz fully extended to the ideal boundary in both directions
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Let

modA =
1

2π
log

R

r

for a round annulus A = A(r,R). For an arbitrary conformal annulus A, define
its modulus, mod(A), as the modulus of a round annulus A(r,R) isomorphic to A.
According to the above exercise, this definition is correct and, moreover, modA is
the only conformal invariant of a conformal annulus.

If A is isomorphic to C∗ or D∗ then we let modA =∞.

If A is a topological annulus with boundary whose interior is endowed with a
complex structure, then mod(A) is defined as the modulus of the int(A).

The equator of a conformal annulus A is the image of the equator of the round
annulus (see §2) under the uniformization A(r,R)→ A.

Exercise 1.26. (i) Write down the hyperbolic metric on a conformal annulus
represented as the quotient of the strip Sh = {0 < Im z < h} modulo the action
of the cyclic group generated by z �→ z + 2π. (What is the relation between h and
modA?)

(ii) Prove that the equator is the unique closed hypebolic geodesic of a conformal
annulus A in the homotopy class of the generator of π1(A).

(iii) Show that the hyperbolic length of the equator is equal to 1/mod(A). Relate
it to the multiplier of the deck transformation of H covering A.

Even if A is a hyperbolic annulus, it is possible to endow it with a flat, rather
than hyperbolic, metric. To this end realize A as the quotient of a strip Sh modulo
the cyclic group of translations (see the above exercise). Since the flat metric on
Sh is translation invariant, it descends to A. In this case we call A a flat cylinder.

1.6.2. Modulus of the torus. Let us take a closer look at the actions of the
group Γ ≈ Z2 on the (oriented) affine plane P ≈ C by translations (see §1.3).
We would like to classify these actions up to affine conjugacy, i.e., two actions T
and S are considered to be equivalent if there is an (orientation preserving) affine
automorphism A : P → P and an algebraic automorphism i : Γ→ Γ such that for
any γ ∈ Γ the following diagram is commutative:

(1.3)

P −→
Tγ

P

A ↓ ↓ A

P −→
Si(γ)

P

This is equivalent to classifying the quotient tori P/TΓ up to conformal equiva-
lence (since a conformal isomorphism between the quotient tori lifts to an affine
isomorphism between the universal covering spaces conjugating the actions of the
covering groups).

The conjugacy A in the above definition will also be called equivariant with
respect to the corresponding group actions.

The problem becomes easier if to require first that i = id in (11.2). Fix an
uncolored pair of generators α and β of Γ. Since T acts by translations and since
P is affine, the ratio

τ = τ(T ) =
T β(z)− z
Tα(z)− z
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makes sense and is independent of z ∈ P . Moreover, by switching the generators α
and β we replace τ with 1/τ . Thus, we can color the generators in such a way that
Im τ > 0. (With this choice, the basis of P corresponding to the generators {α, β}
is positively oriented.)

Exercise 1.27. Show that two actions T and S of Γ =< α, β > are affinely
equivalent with i = id if and only if τ(T ) = τ(T̃ ).

According to the discussion in §1.1.5, the choice of generators of Γ means (un-
colored) marking of the corresponding torus. Thus, the marked tori are classified
by a single complex modulus τ ∈ H.

Forgetting the marking amounts to replacement one basis {α, β} in Γ by an-

other, {α̃, β̃}. If both bases are positively oriented then there exists a matrix(
a b
c d

)
∈ SL(2,Z)

such that α̃ = aα+ b β, β̃ = c α+ d β. Hence

τ̃ =
aτ + b

cτ + d
.

Thus, the unmarked tori are parametrized by a point τ ∈ H modulo the action of
SL(2,Z) on H by Möbius transformations. The kernel of this action consists of two
matrices, ±I, so that the quotient group of Möbius transformations is isomorphic
to PSL(2,Z) = SL(2,Z)/mod{±I}. This group is called modular. (In what follows,
the modular group is identified with PSL(2,Z).)

Remark. Passing from SL(2,Z) to PSL(2,Z) has an underlying geometric rea-
son. All tori C/Γ have a conformal symmetry z �→ −z. It change marking {α, β}
by −I{α, β}. Thus, remarking by −I acts trivially on the space of marked tori.

The modular group has two generators, the translation z �→ z + 1 and the
second order rotation z �→ −1/z. The intersection of their fundamental domains
gives the standard fundamental domain Δ for this action.

Exercise 1.28. a) Verify the last statement.

b) Find all points in Δ that are fixed under some transformation of PSL(2,Z).
What are the orders of their stabilizers?

c) What is the special property of the tori corresponding to the fixed points?

d) Show that by identifying the sides of Δ according to the action of the generators
we obtain a topological plane Q ≈ R2.

e) Endow the above plane with the complex structure so that the natural projec-
tion H → Q is holomorphic. Show that Q ≈ C. (The corresponding holomorphic
function H→ C is called modular).

Thus, the unmarked tori are parametrized by a single modulus μ ∈ H/PSL(2,Z) ≈
C.

In the dynamical context we will be dealing with the intermadiate case of
partially marked tori, i.e., tori with one marked generator α of the fundamental
group. This space can be viewed as the quotient of the space of fully marked tori
by means of forgetting the second generator, β. If we have two bases {α, β} and

{α, β̃} in Γ with the same α, then β̃ = β + nα for some n ∈ Z. Hence τ̃ = τ + n.
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Thus, the space of partially marked tori is parametrized by H modulo action
of the cyclic group by translations τ �→ τ +n. The quotient space is identified with
the punctured disk D∗ by means of the exponential map H → D∗, τ �→ λ = e2πiτ .
So, the partially marked tori are parametrized by a single modulus λ ∈ D∗. We
will denote such a torus by T2

λ.
This modulus λ makes a good dynamical sense. Consider the covering p : S →

T2
λ of the partially marked torus corresponding to the marked cyclic group. Its

covering space S is obtained by taking the quotient of C by the action of the marked
cyclic group z �→ z + n, n ∈ Z. By means of the exponential map z �→ e2πiz, this
quotient is identified with C∗. Moreover, the action of the complementary cyclic
group z �→ z + nτ , n ∈ Z, descends to the action ζ �→ λnζ on C∗, where the
multiplier λ = e2πiτ is exactly the modulus of the torus!

Thus, the partially marked torus T2
λ with modulus λ ∈ D∗ can be realized as

the quotient of C∗ modulo the cyclic action generated by the hyperbolic Möbius
transformation ζ �→ λζ with multiplier λ.

1.7. Geometry of quadratic differentials.
1.7.1. Flat structures with cone singularities and boundary corners. Recall that

a Euclidean, or flat, structure on a surface S is an atlas of local charts related
by Euclidean motions. However, for topological reasons, many surfaces do not
admit any flat structure: the Gauss-Bonnet Theorem bans such a structure on any
compact surface except the torus (see below). On the other hand, if we allow some
simple singularities, then these obstruction disappears.

Everybody is familiar with a Euclidean cone of angle α ∈ (0, 2π). To give a
formal definition, just take a standard Euclidean wedge of angle α and glue its
sides by the isometry. It is harder to define (and even harder to visualize) a cone
of angle α > 2π. One possible way is to partition α into several angles αi ∈ (0, 2π),
i = 0, 1, . . . n− 1, to take wedges Wi of angles αi, and paste Wi to Wi+1 by gluing
the sides isometrically (where i is taken mod n) ( and then to check, by taking a
“common subdivision”, that the result is independent of the particular choice of
the angles αi).

But there is a more natural way. Consider a smooth universal covering exp :
H → D∗, z �→ eiz, over the punctured disk, and endow H with the pullback of
the Euclidean metric, e−y|dz|. Let us define the wedge W = W (α) of angle α
as the strip {z : 0 ≤ Re z ≤ α} completed with one point at Im z = +∞. If we
isometrically glue the sides of this wedge, we obtain the cone C = C(α) of angle
α. (We can also define C(α) as the one-point completion at +∞ of the quotient
H/αZ.)

Exercise 1.29. Let γ be a little circle around a cone singularity of angle α.
Check that the tangent vector γ′ rotates by angle α as we go once around γ.

According to the discussion in Appendix 1.9, a cone singularity x with angle
α = α(x) carries curvature 2π − α.

Let us now consider a compact flat surface S with boundary. Assume that
the boundary is piecewise linear with corners. It means that near any boundary
point, S is isometric to a wedge W (α) with some α > 0. Points where α �= π are
called corners of angle α (as the corners are isolated, there are only finitely many
of them). The rotation ρ(x) at a corner x ∈ ∂S of angle α = α(x) is defined as
π − α (see Appendix 1.9).
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1.7.2. Gauss-Bonnet Formula.

Theorem 1.30. If S is a compact flat surface with cone singularities and piece-
wise linear bounady with corners then∑

K(x) +
∑

ρ(y) = 2πχ(S),

where the first sum is taken over the cone singularities while the second sum is
taken over the boundary corners.

This is certainly a particular case of the general Gauss-Bonnet formula (1.13)
from Appendix 1.9, but in our special case we will give a direct combinatorial proof
of it.

Proof. Let us triangulate S by Euclidean triangles in such a way that all cone
singularities and all boundary corners are contained in the set of vertices. Let αi

be the list of the angles of all triangles. Summing these angles over the triangles,
we obtain: ∑

αi = π(# triangles).

On the other hand, summation over the vertices gives:∑
αi = 2π(# regular vertices) +

∑
cones

α(x) +
∑

corners

α(y)

= 2π (# vertices)−
∑
cones

K(x)−
∑

corners

ρ(y) + π(# corners).

Hence∑
K(x) +

∑
ρ(y) = π (2(# vertices) + (# corners)− (# triangles)) = 2πχ(S),

where the last equality follows from

3(# triangles) = 2(# edges) + (# corners).

�

1.7.3. Geodesics. Let S be a flat surface with cone singularities. A piecewise
smooth curve γ(t) in S is called a geodesic if it is locally shortest, i.e., for any
x = γ(t) there exists an ε > 0 such that for any t1, t2 ∈ [t− ε, t+ ε], γ : [t1, t2]→ S
is the shortest path connecting γ(t1) to γ(t2).

Obviously, any geodesic is piecewise linear: a concatenation of straight Eu-
clidean intervals meeting at cone points. Moreover, both angles between two con-
secutive intervals in a geodesic must be at least π (in particular, the intervals cannot
meet at a cone point with angle < 2π).

Exercise 1.31. Verify these assertions by exploring geodesics on a cone C(α).

Theorem 1.32. Let S be a closed flat surface with only negatively curved cone
singularities. Then for any path γ : [0, 1]→ S, there is a unique geodesic δ : [0, 1]→
S homotopic to γ rel the endpoints.

Proof. Existence. Let L be the infimum of the lengths of smooth paths ho-
motopic to γ rel the endpoints. We can select a minimizing sequence of picewise
linear paths with the intervals of definite length. Such paths form a precompact
sequece in S, so we can select a subsequence converging to a path δ in S of length
L. Obviously, δ is a local minimizer, and hence is a geodesic.
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Uniqueness. Let γ and δ be two geodesics on S homotopic rel the endpoints.

They can be lifted to the universal covering Ŝ to geodesics γ̂ and δ̂ with common
endpoints. We can assume without loss of generality that the endpoints a and b are
the only intersection points of these geodesics (replacing them if needed by the arcs

γ̂′ and δ̂′ bounded by two consecutive intersection points). Then γ̂ and δ̂ bound a
polygon Π with vertices at a and b and some corner points xi. Let yj be the cone
poins in intΠ. By the Gauss-Bonnet formula,

(π − ρ(a)) + (π − ρ(b)) +
∑

(π − ρ(xi)) +
∑

K(yj) = 2π.

But the first two terms in the left-hand side are less than π wlile the others are
negative – contradiction. �

1.7.4. Quadratic differentials and Euc(2)-structures. Let S∗ stand for a flat
surface S with its cone singularities punctured out.

A parallel line field on S is a family of tangent lines l(z) ∈ TzS, z ∈ S∗, that
are parallel in any local chart of S.

Let j : Euc(C)→ U(2) be the natural projection that associates to a Euclidean
motion its rotational part. Let Euc(n) stand for the j-preimage of the cyclic group
of order n in U(2). In other words, motions A ∈ Euc(n) are compositions of
rotations by 2πk/n and translations. (So, the complex coordinate, they assume the
form A : z �→ e2πk/nz + c.)

Lemma 1.33. A flat surface S admits a parallel line field if and only if its
Euclidean structure can be refined to a Euc(2)-structure.

Proof. Let S be Euc(2)-surface and let θ ∈ R/modπZ. Given a local chart,
we can consider the parallel line field in the θ-direction. Since the θ-direction is
preserved (modπ) by the group Euc(2), we obtain a well defined parallel line field
on S∗.

Vice versa, assume we have a parallel line field on S∗. Then we can rotate the
local charts so that this line field becomes horizontal. The transit maps for this
atlas are Euclidean motions preserving the horizontal direction, i.e., elements of
Euc(2). �

Lemma 1.34. S admits a parallel line field if and only if all cone angles are
multiples of π.

Proof. Any tangent line can be parallely trnsported along any path in S∗.
Since S is flat, the result is independent of the choice of a path within a certain
homotopy class. S admits a parallel line field if and only if the holonomy of this
parallel transport around any cone singularity is trivial, i.e., it rotates the line by
a multiple of π. But the holonomy around a cone singularity of angle α rotates the
line by angle α. �

Next, we will relate flat geometry to complex geometry. Namely, any flat surface
S is naturally a Riemann surface. Indeed, since Euclidean motions are conformal,
the flat structure induces complex structure on S∗. To extend it through cone
singularitites, consider a conformal isomorphism φ : H/αZ → D∗, z �→ e2πiz/α. It
extend to a homeomorphism C(α) → D that serves as a local chart on the cone
C(α).
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Exercise 1.35. Show that the extension of the conformal structures from S∗

to S is unique.

1.7.5. Abelian differentials and translation surfaces.

1.8. Appendix 1 : Tensor calculus in complex dimesnion one.
1.8.1. General notion. For (n,m) ∈ Z2, an (n,m)-tensor on a Riemann surface

S is an object τ that can be locally written as a differential form

(1.4) τ(z) dzndz̄m.

Formally speaking, to any local chart z = γ(x) on S corresponds a function τγ(z),
and this family of functions satisfy the transforamtion rule: if ζ = δ(x) is another
local chart and z = φ(ζ) is the transit map, then

(1.5) τδ(ζ) = τγ(φ(ζ))φ
′(ζ)nφ′(ζ)

m
.

The regularity of the tensor (e.g., τ can be measurable, smooth or holomorphic) is
determined by the regularity of all its local representative τγ .

Even when dealing with globally defined tensor, we will often use local notaion
(1.4), and we will usually use the same notation for a tensor and the representing
local function.

Disregarding the regularity issue, tensors form a bigraded commutative semi-
group: if τ and τ ′ are respectively (m,n)- and (m′, n′)-tensors, then τ τ ′ is an
(m+m′, n+ n′)-tensor.

A holomorphic (1, 0)-tensor ω(z)dz is called an Abelian differential; a holomor-
phic (2, 0)-tensor q(z)dz2 is called a quadratic differential. More generally, we can
consider meromorphic (n, 0)-tensors, e.g., meromorphic quadratic differentials.

A (−1, 1)-tensor μ(z)dz̄/dz is called a Beltrami differential. Notice that the
absolute value of a Beltrami differential, |μ|, is a global function on S. (In this book
all Beltrami differentials under consideration are assumed measurable and bounded.)

A (1, 1)-tensor ρ = ρ(z) dzdz̄ with ρ ≥ 0 is a conformal Riemannian metric
ρ(z)|dz|2 on S. Its area form

i

2
ρ(z) dz ∧ dz̄ = ρ(z) dx ∧ dy

is a tensor of the same type (both are transformed by the factor |φ′(ζ)|2). This
allows us to integrate (1, 1)-tensors:∫

ρ =
i

2

∫
ρ(z) dz ∧ dz̄.

For instance, if q is a quadratic differential then |q| is a (1, 1)-form, so that
we can evaluate

∫
|q| (at least locally). If q is a quadratic differential and μ is a

Beltrami differential, then qμ is again a (1, 1)-form, so the local integral
∫
qμ makes

sense.

A (−1, 0)-tensor v(z)
dz

has the same type as a vector field. Indeed, in this case

the tensor rule (1.5) assumes the form vγ(φ(ζ)) = φ′(ζ) vδ(ζ) that coinides with the
transformation rule for vector fields.
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Exercise 1.36. (i) Let v = v(z)/dz be a C1-smooth vector field near ∞ on Ĉ.
Show that v(z) = az2 + bz +O(1). Moreover, v(∞) = 0 iff a = 0.

(ii) A vector field v(z)/dz is holomorphic on the whole sphere Ĉ iff

v(z) = az2 + bz + c.

Exercise 1.37. (i) Let q = q(z) dz2 be a meromorphic quadratic differential

near ∞ on Ĉ. If q(z) � z−n then q has a pole of order n+ 4 at ∞. In particular,
q has at most a simple pole at ∞ iff q(z) vanishes to the second order at ∞, i.e.,
q(z) = O(|z|−3).

(ii) q ∈ Q1(Ĉ) iff q(z) is a rational function with simple poles in C and vanishing
to the second order at ∞.

1.8.2. ∂ and ∂̄. The differential of a function τ(z) can be expressed in (z, z̄)-
ccordinates as follows:

dτ = ∂xτ dx+ ∂yτ dy = ∂zτ dz + ∂z̄τ dz̄,

where

(1.6) ∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y).

This suggests to introduce differential operators ∂ and ∂̄ (acting from functions to
(1, 0)- and (0, 1)-forms respectively):

∂τ = ∂zτ dz, ∂̄τ = ∂z̄τ dz̄, so d = ∂ + ∂̄.

Exercise 1.38. Check that ∂τ and ∂̄τ are correctly defined (1, 0)- and (0, 1)-
forms respectively. .

We will sometimes use notation ∂ and ∂̄ for the partial derivatives (1.6) as well,
unless it can lead to a confusion.

Using the semigroup structure, we can extend these differential operators to
arbitrry tensors:

∂(τ dzndz̄m) = ∂τ dzndz̄m = ∂zτ dz
n+1dz̄m,

∂̄(τ dzndz̄m) = ∂̄τ dzndz̄m = ∂z̄τ dz
ndz̄m+1.

These operators increase the grading by (1, 0) and (0, 1) respectively.
For instance, if v is a vector field viewed as a (−1, 0) tensor, then ∂̄v is a

Beltrami differential.

Remark 1.2. The above commutative tensor operators should not be confused
with their anti-commitative exterior counterparts acting on differential forms. For
instance, if ω = ω(z) dz is a holomorphic (1, 0)-form then in the tensor sense ∂ω =
ω′(z) dz2, while ∂ ω = 0 in the exterior sense .
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1.8.3. Pullback and push-forward. Let f : S → T be a holomorphic map be-
tween two Riemann surfaces. Then any (n,m)-form τ on T can be pulled back to
an (n,m)-form f∗τ on S, which in is given in local coordinates by the expression

f∗(τ(w) dwmdw̄m) = τ(f(z))f ′(z)nf̄ ′(z)m dzndz̄m.

Moreover, if τ is a holomorphic/meromorphic (n, 0)-form then so is f∗(τ).
If f is invertible then of course forms can be also pushed forward. For τ =

τ(z) dzndz̄m, it looks as follows:

f∗τ ≡ (f−1)∗(τ) =
τ(z)

f ′(z)nf̄ ′(z)m
dwndw̄m substituting z = f−1(w).

It is less standard that tensors can be also pushed forward by non-invertible maps
(at least, by branched coverings of finite degree) by summing up the local push-
forwards over the preimages:

f∗τ =
∑

(fi)∗(τ) =
∑

zi∈f−1(w)

τ(f(zi))

f ′(zi)nf̄ ′(zi)m
dwndw̄m substituting zi = f−1

i (w).

where fi is the local branch of f near zi ∈ f−1(w). This expression is well defined
outside the set V of critical values of f .

Moreover, if τ is a meromorphic (n, 0)-form with the polar set P then f∗τ is also
meromorphic, with the polar set contained in f(P )∪ V . Indeed, outside f(P )∪ V ,
the push-forfard f∗(τ) is a holomorphic (n, 0)-form with at most power growth near
f(P ) ∪ V .

This discussion applies directly to the case of meromorphic quadratic differen-
tials q = q(z) dz2, which will be the main case of our interest:

f∗q =
∑

(fi)∗q =
∑

zi∈f−1(w)

q(zi)

f ′(zi)2
.

In the case of an area form ρ dz ∧ dz̄, the push-forward operation is actually
standard as it corresponds to the push-forward of the measure with density ρ:

f∗(ρ dz ∧ dz̄) =
∑

z∈f−1(w)

ρ(z)

|f ′(z)|2 .

Since the area is conserved under invertible changes of variable, we have:

(1.7)

∫
f∗ρ = d

∫
ρ,

∫
f∗ρ =

∫
ρ

(assuming ρ has a finite total mass).

1.8.4. Push-forward is a contraction in Q1. Intergability of a meromorphic qua-
dratic differential q on a Riemann surface S means integrability of the corresponding
area form |q|. Let Q1(S) stand for the space of integrable meromorphic quadratic
differential on S, and Q1

loc(S) stand for the space of locally integrable ones. Note
that q ∈ Q1

loc if and only if it has only simple poles.
For q ∈ Q1(S), transformation rules (1.7) (together with the triangle inequality)

imply:

(1.8)

∫
|f∗q| ≤

∫
f∗|q| =

∫
|q|
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Thus, the push-forward operator is contracting in the space of integrable holomor-
phic quadratic differentials. This property plays a key role in the Thurston theory,
see §48.

Exercise 1.39. Consider a holomorphic quadratic differntial q = q(z)dz2 on

the whole Riemann sphere Ĉ, so q(z) is a rational function.

(i) What is the condition that q has zero/pole at ∞. If so, what is its order?

(ii) q is integrable if and only if all its poles (including at ∞) are simple;

(iii) For f : z �→ zd and q = zndz2, calculate f∗q and f∗q.

Lemma 1.40. Let f : S → T be a holomorphic covering of degree d, and let q
be an integrable quadratic differential on S. Then

(1.9)

∫
|f∗q| =

∫
|q|

if and only if f∗(f∗q) = d q.

Proof. Equality (1.9) is equivalent to attaining equality in (1.8). Since both
q and f∗q are continuous outside a finite set and |f∗q| ≤ f∗|q| everywhere, integral
equality in (1.8) is equivalent to pointwise equality |f∗q| = f∗|q|. But equality in
the triangle inequality is attained if and only if all the terms have the same phase,
so

f∗q = ci (fi)∗q, ci > 0.

Being positive and holomorphic in z, the factors ci must be constants. Applying
the pullback f∗i to the last equation, we obtain:

f∗(f∗q) = ci q near zi ∈ f−1z.

But the ratio f∗(f∗q)/q is a global meromorphic function: if it is locally constant,
it must be globally constant, so f∗(f∗q) = c q. Finally, by (1.7)∫

|f∗(f∗q)| = d

∫
|f∗q| = d

∫
|q|,

so c = d. �

1.8.5. Duality.

Lemma 1.41. Let f : S → T be a holomorphic covering of degree d. Consider a
meromorphic quadratic differential q ∈ Q1(S) and a measurable essentially bounded
Belrtami differntial μ on T . Then∫

S

q · f∗μ =

∫
T

f∗q · μ.

Proof. It is sufficient to check that∫
U

q · f∗μ =

∫
V

f∗q · μ

for a base of neighborhoods V on T and U = f−1(V ). Since f is covering, we can
choose the V so that

U =

d⊔
i=1

Ui,
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where the restrictions fi = (f : Ui → V ) are biholomorphic. Then∫
U

q · f∗μ =
∑∫

Ui

q · f∗μ =
∑∫

Ui

f∗((fi)∗q · μ)

=
∑∫

Ui

(fi)
∗q · μ =

∫
U

(fi)
∗q · μ.

�

Remark 1.3. All the above statements concerning covering maps extend im-
mediately to maps f : S → T that are coverings over T � A where A is a discrete
subset. This includes branched coverings (see §2).

1.9. Appendix 2: Gauss-Bonnet formula for variable metrics. For-
mally speaking, we can skip a discussion of this general version of the Gauss-Bonnet
formula as we have verified it directly in all special cases that we need. However,
it does give a deeper insight into the matter. The reader can consult, e.g., [] for a
proof.

Let S be a compact smooth Riemannian surface, maybe with boundary. Let
K(x) be the Gaussian curvature at x ∈ S, and let κ(x) be the geodesic curvature at
x ∈ ∂S. The Gauss-Bonnet formula related these gemeotric quantities to topology
of S:

(1.10)

∫
S

Kdσ +

∫
∂S

κds = 2πχ(S),

where dσ and ds are the area and length elements respectively.
In particular, if S is closed then

(1.11)

∫
S

Kdσ = 2πχ(S),

which, in particular, implies that there are no flat structures on a closed surface of
genus g �= 0.

The boundary term in (1.10) admits a nice interpretation. Let us parametrize a
closed boundary curve γ with the length parameter, so that γ′(t) is the unit tangent
vector to γ. Then for nearby points γ(t) and γ(τ), where τ = t+Δt > t, let v(t, τ)
be the tangent vector γ′(τ) parallelly transported from γ(τ) back to γ(t). Then let
θ(t, τ) be the angle between γ′(t) and v(t, τ) (taking with positive sign if v points
“into S”. Summing these angles up over a partition of γ into small intervals, we

obtain the rotation number of the tangent vector. It coincides with

∫
γ

κds.

Note that if ∂S consists of geodesics, the boundary term in (1.10) disappears,
and it assumes the same form (1.11) as in the closed case.

If we allow the Riemannian metric to have an isolated singularity at some
point x ∈ S then using the Gauss-Bonnet formula for a small disk arround x, we
can assign the Gaussian curvature to x:

(1.12) K(x) = 2π − lim
γ→x

∫
γ

κds,

provided the limit exists. (Here γ is a small circle around x, and K(x) is assumed
to be integrable.)
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If we allow a corner of angle α ∈ (0,∞) at a boundary point y ∈ ∂S (see
§1.7.1), we can assign the rotation number ρ(y) = π − α ∈ (π,−∞) to it as the
angle between the incoming and outgoing tangent vectors.

Then the Gauss-Bonnet formula is still valid for surfaces with singularities and
boundary corners, assuming the following form:

(1.13)

∫
S

Kdσ +
∑
sing

K(x) +

∫
∂S

κds+
∑

corners

ρ(y) = 2πχ(S).

2. Holomorphic proper maps and branched coverings

2.1. First properties. Topological proper maps were defined in §2.
Exercise 1.42. Assume that S and T are precompact domains in some ambient

surfaces and that f : S → T admits a continuos extension to the closure S̄. Then
f is proper if and only if f(∂S) ⊂ ∂T .

Exercise 1.43. Let V ⊂ T be a domain and U ⊂ S be a component of f−1V .
If f : S → T is proper, then the restriction f : U → V is proper as well.

Let now S and T be topological surfaces, and f be a topologically holomorphic
map. The latter means that for any point a ∈ S, there exist local charts φ :
(U, a)→ (C, 0) and ψ : (V, fa)→ (C, 0) such that ψ ◦f ◦φ−1(z) = zd, where d ∈ N.
This number d ≡ dega f is called the (local) degree of f at a. If dega f > 1, then a
is called a branched or critical point of f , and f(a) is called a branched or critical
value of f . We also say that d is the multiplicity of a as a preimage of b = f(a).

Exercise 1.44. Show than any non-constant holomorphic map between two
Riemann surfaces is topologically holomorphic.

Exercise 1.45. Show that a continuous map f : (D, 0) → (D, 0) that restricts
to a covering D∗ → D∗ is topologically holomorphic.

A basic property of topologically holomorphic proper maps is that they have a
global degree:

Proposition 1.46. Let f : S → T be a topologically holomorphic proper map
between two surfaces. Assume that T is connected. Then all points b ∈ T have
the same (finite) number of preimages counted with multiplicities. This number is
called the degree of f , deg f .

Proof. Since the fibers of a topologically holomorphic map are discrete, they
are finite. Take some point b ∈ T , and consider the fiber over it, f−1b = {ai}li=1.
Let di = degai

f . Then there exists a neighborhood V of b and neighborgood Ui

of ai such that any point z ∈ V , z �= b, has exactly di preimages in Ui, and all of
them are regular.

Let us show that if V is sufficiently small then all preimages of z ∈ V belong
to ∪Ui. Otherwise there would exist sequences zn → b and ζn ∈ S � ∪Ui such
that f(ζn) = zn. Since f is proper, the sequence {ζn} would have a limit point
ζ ∈ S �∪Ui. Then f(ζ) = b while ζ would be different from the ai - contradiction.

Thus all points close to b have the same number of preimages counted with
multiplicities as b, so that this number is locally constant. Since T is connected,
this number is globally constant. �

Corollary 1.47. Topologically holomorphic proper maps are surjective.
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The above picture for proper maps suggests the following generalization. A
topologically holomorphic map f : S → T between two surfaces is called a branched
covering of degree d ∈ N ∪ {∞} if any point b ∈ T has a neighborhood V with
the following property. Let f−1b = {ai} and let Ui be the components of f−1V
containing ai. Then these components are pairwise disjoint, and there exist maps
φi : (Ui, ai)→ (C, 0) and ψ : (V, b)→ (C, 0) such that ψ◦f◦φ−1

i (z) = zdi . Moreover,∑
di = d. (A branched covering of degree 2 will be also called a double branched

covering.)
We see that a topologically holomorphic map is proper if and only if it is a

branched covering of finite degree. All terminilogy developed above for proper maps
immediately extends to arbitrary branched coverings.

Note that if V ⊂ T is a domain which does not contain any critical values, then
the “map f is unbranched over V ”, i.e., its restriction f−1V → V is a covering
map. In particular, if V is simply connected, then f−1V is the union of d disjoint
domains Ui each of which homeomorphically projects onto V . In this case we have
d well-defined branches f−1

i : V → Ui of the inverse map. (When it does not lead
to confusion, we will often use notation f−1 for the inverse branches.)

2.2. Riemann-Hurwitz formula. This formula gives us a beautiful relation
between topology of the surfaces S and T , and branching properties of f .

Riemann - Hurwitz formula. Let f : S → T be a branched covering of
degree d between two topological surfaces of finite type. Let C be the set of branched
points of f . Then

χ(S) = d · χ(T )−
∑
a∈C

(dega f − 1).

Let us define the multiplicity of a ∈ C as a critical point to be equal to dega f−1
(in the holomorphic case it is the multiplicity of a as the root of the equation
f ′(a) = 0). Then the sum in the right-hand side of the Riemann-Hurwitz formula
is equal to the number of critical points of f counted with multiplicities.

Proof. Let us first assume that S and T are closed Riemann surfaces.
Let us consider a triangulation T of T such that all critical values of f are

vertices of T . By the Euler formula,

χ(T ) = v(T )− e(T ) + t(T ),
where v,e and t stand for the number of vertices, edges and faces (triangles) of T .
Let S be the lift of this triangulation to S. Then

t(S) = d · t(T ), e(S) = d · e(T ), v(S) = d · v(T )−
∑
a∈C

(dega f − 1),

and the conclusion follows.

To deal with non-closed case, consider the one-point-per-end compactifications
Ŝ and T̂ of our surfaces. If S and T are of finitre type then these surfaces are

closed. Since f is proper, it continuously extends to a map f̂ : Ŝ → T̂ . This map
is certainly proper. By Exersice 1.45), it is topologically holomorphic. Thus, it is
a branched covering (of the same degree d). As in the above calulation, we have

|E(S)| = d · |E(T )| −
∑

e∈E(S)

(dege f̂ − 1).
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Putting this together with the Riemann-Hurwitz formula for f̂ implies the desired.
�

Remark 1.4. The formula also applies to surfaces with boundary, with the
same proof (or by removing boundary, which does not change the Euler character-
istic).

Corollary 1.48. Under the above circumstances, assume that T is a topolog-
ical disk. Then S is a topological disc as well if and only if there are d− 1 critical
points in S (counted with multiplicities).

Proof. A surface S is a topological disk if and only if χ(S) = 1. �

2.3. Topological Argument Principle. Consider the punctured plane R2�

{b}. If γ : S1 → R2 � {b} is a smooth oriented Jordan curve then one can define
the winding number of γ around b as

wb(γ) =

∫
γ

d(arg(x− b)).

Since the 1-form d(arg(x− b)) is closed, the winding number is the same for homo-
topic curves. Hence we can define the winding number wb(γ) for any continuous
Jordan curve γ : S1 → R2 � {b} by approximating it with a smooth Jordan curves.

Furthermore, the winding number can be linearly extended to any simplicial
1-cycle in R2 � {b} with integer coefficients (i.e., a formal combination of oriented
Jordan curves in R2 � {b}) and then factored to the first homology group. It gives
an isomorphism

(2.1) w : H1(R
2 � {b})→ Z, [γ] �→ wb(γ).

Exercise 1.49. Prove the last statement.

Proposition 1.50. Let D be a Jordan disc and let f : D̄ → R2 be a continuous
map that does not assume some value b ∈ R2 on ∂D. If wb(f | ∂D) �= 0 then f
assumes the value b in D.

Proof. Obviously, the curve γ = (f : ∂D → R2) is contractible in f(D̄). If
b �∈ f(D) then γ would be contractible in R2 � {b}, so it would have zero winding
number around b. �

Let x ∈ D be an isolated preimage of b = fx. Then one can define the indx(f)
as follows. Take a disk V ⊂ D around x that does not contain other preimages
of b = fx. Take a positively oriented Jordan loop γ ⊂ V � {x} around x whose
image does not pass through b, and calculate the winding number of the curve
f : γ → R2 � {b} around b:

indx(f) = wfx(f ◦ γ).
Clearly it does not depend on the loop γ, since the curves corresponding to different
loops are homotopic without crossing b.

Proposition 1.51. Let D ⊂ R2 be a domain bounded by a Jordan curve Γ,
and let f : D̄ → R2 be a continuous map such that the curve f ◦ Γ does not pass
through some point b ∈ R2. Assume that the preimage of this point f−1b is discrete
in D. Then ∑

x∈f−1b

indx(f) = wb(f ◦ Γ),
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provided Γ is positively oriented.

Proof. Note first that since f−1b is a discrete subset of a compact set D̄,
f−1x is actually finite, so that the above sum makes sense.

Select now small Jordan loops γi around points xi ∈ f−1b, and orient them anti-
clockwise. Since Γ and these loops bound a 2-cell, [Γ] =

∑
[γi] in H1(D̄ � f−1b).

Hence f∗[Γ] =
∑
f∗[γi] in H1(R

2�{b}). Applying the isomorphism (2.1), we obtain
the desired formula. �

Exercise 1.52. Let f : D → R2 be a continuous map, and let a ∈ D be an
isolated point in the fiber f−1b, where b = f(a). Assume that inda(f) �= 0. Then
f is locally surjective near a, i.e., for any ε > 0 there exists a δ > 0 such that
f(Dε(a)) ⊃ Dδ(b).

Hint: For a small ε-circle γ around a, the curve f◦γ stays some positive distance
δ from b. Then for any b′ ∈ Dδ(b) we have: indb(f ◦ γ) = indb(f ◦ γ) �= 0. But if
b′ �∈ f(Dε(a)) then the curve f ◦ γ could be shrunk to b without crossing b′.

2.3.1. Degree of proper maps.

2.4. Lifts.

Lemma 1.53. Let f : (S, a) → (T, b) and f̃ : (S̃, ã) → T̃ , b̃) be two double
branched between topological disks (with or without boundary) coverings branched

at points a and ã respectively. Then any homeomorphism h : (T, b)→ (T̃ , b̃) lifts to

a homeomorphism H : (S, a)→ (S̃, ã) which makes the diagram

(S, a) −→
H

(S̃, ã)

f ↓ ↓ f̃

(T, b) −→
h

(T̃ , b̃)

commutative. Moreover, the lift H is uniquely determined by its value at any un-
branched point z �= a. Hence there exists exactly two lifts.

If the above surfaces are Riemann and the map h is holomorphic then then the
lifts H are holomorphic as well.

Proof. Puncturing all the surfaces at their preferred points, we obtain four
topological annuli. The maps f and f̃ restrict to the unbranched double coverings
between respective annuli, while h restricts to a homeomorphism. The image of the
fundamental group π1(S� {a}) under f consist of homotopy classes of curves with

winding number 2 around b, and similar statement holds for f̃ . Since the winding
number is preserved under homeomorphisms,

(2.2) h∗(f∗(π1(S � {a})) = f̃∗(π1(S̃ � {ã})).
By the general theory of covering maps, h admits a lift

H : S � {a} → S̃ � {ã}
which makes the “punctured” diagram (2.2) commutative. Moreover, this lift is
uniquely determined by the value of H at any point z ∈ S � {a}.

Extend now H at the branched point by letting H(a) = ã. It is clear from the
local structure of branched coverings that this extension is continuous (as well as
the inverse one), so that it provides us with the desired lift.
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If all the given maps are holomorphic then the lift H is also holomorphic on
the punctured disk S � {a}. Since isolated singularities are removable for bounded
holomorphic maps, the extension of H to the whole disk is also holomorphic. �

Exercise 1.54. Similar statement holds for branched coverings f and f̃ with
a single branched point (of any degree). Analyse the situation with two branched
points.

Exercise 1.55. Assume that all the topological disks in the above lemma are
R-symmetric and that all the maps commute with the reflection σ with respect to
R. Assume also that h(f(T ∩R)) = f̃(T̃ ∩R). Then both lifts H also commute with
σ (in particualar, they preserve the real line).

3. Extremal length and width

3.1. Definitions. Let us now introduce one of the most powerful tools of
conformal geometry. Given a family Γ of curves in a Riemann surface U , we will
define a conformal invariant L(Γ) called the extremal length of Γ. Consider a
measurable conformal metric ρ|dz| on C with finite total mass

mρ(U) =

∫ ∫
ρ2dx ∧ dy

(such metrics will be called admissible). Let

ρ(γ) =

∫
γ

ρ|dz|,

stand for the length of γ ∈ Γ in this metric (with the convention ρ(γ) = ∞ if γ is
non-rectifiable, or ρ| γ is not measurable, or else it is not integrable4. Define the
ρ-length of Γ as

ρ(Γ) = inf
γ∈Γ

ρ(γ).

Normalize it in the scaling invariant way:

Lρ(Γ) =
ρ(Γ)2

mρ(U)
,

and define the extremal length of Γ as follows:

L(Γ) = sup
ρ
Lρ(Γ),

where the supremum is taken over all admissible metrics.
A metric ρ on which this supremum is attained (if exists) is called extremal.

Exercise 1.56. Show that the value of L(Γ) does not change if one uses only
continuous admissible metrics ρ.

Let us summarize immediate consequences of the definition:

4For this to make sense, we should think of ρ as an actual function rather than a class

of functions up to modification on null-sets. It is also convenient to assume that ρ is defined

everywhere.
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Exercise 1.57. • Extension of the family: If a family of curves Γ′ contains a
family Γ, then L(Γ′) ≤ L(Γ).
• Overflowing: If Γ overflows Γ′ (i.e., each curve of Γ contains some curve of Γ′),
then L(Γ) ≥ L(Γ′).

• Independence of the embient surface: If U ⊂ U ′ and Γ is a family of curves in U
then L(Γ) = L(Γ′). (This justifies skipping of “U” in the notation.)

The extremal width of the family Γ is defined as the inverse to its length:
W(Γ) = L(Γ)−1. One can also conveniently define it as follows:

Exercise 1.58.
W(Γ) = infmρ(U),

where the infimum is taken over all admissible metrics with ρ(γ) ≥ 1 for all curves
γ ∈ Γ.

Remark 1.5. One should think that a family is “big” if it has big extremal
width. So, big families are short.

The extremal lenght and width are conformal invariants:
If φ : U → U ′ is a conformal isomorphism between two Riemann surfaces such that
φ(Γ) = Γ′, then L(Γ) = L(Γ′). This immediately follows from the observartion
that φ tranfers the family of admissible metrics on U onto the family of admissible
metrics on U ′.

3.2. Electric circuits laws. We will now formulate two crucial properties
of the extremal length and width which show that the former behaves like the
resistance in electric circuits, while the latter behaves like conductance.

Let Γ1, Γ2 and Γ be three families of curves on U . We say that Γ disjointly
overflows Γ1 and Γ2 if any curve γ ∈ Γ contains a pair of disjoint curves γ1 ∈ Γ1

and γ2 ∈ Γ2.

Series Law. Assume that a family Γ disjointly overflows families Γ1 and Γ2.
Then

L(Γ) ≥ L(Γ1) + L(Γ2),

or equivalently,
W(Γ) ≤ W(Γ1)⊕W(Γ2).

Proof. Let ρ1 and ρ2 be arbitrary admissible metrics. By appropriate scalings,
we can normalize them so that

ρi(Γi) = mρi
(U) = Lρi

(Γi), i = 1, 2.

Let ρ = max(ρ1, ρ2). Since any γ ∈ Γ contains two disjoint curves γi ∈ Γi, we have:

ρ(γ) ≥ ρ1(γ1) + ρ2(γ2) ≥ ρ1(Γ1) + ρ2(Γ2) = Lρ1
(Γ1) + Lρ2

(Γ2).

Taking the infimum over all γ ∈ Γ, we obtain:

ρ(Γ) ≥ Lρ1
(Γ1) + Lρ2

(Γ2).

On the other hand,

mρ(U) ≤ mρ1
(U) +mρ2

(U) = Lρ1
(Γ1) + Lρ2

(Γ2).

Hence
Lρ(Γ) ≥ Lρ1

(Γ1) + Lρ2
(Γ2).
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Taking the supremum over all normalized metrics ρ1 and ρ2, we obtain the desired
inequality. �

We say that two families of curves, Γ1 and Γ2, are disjoint if they are contained
in disjoint measurable sets.

Parallel Law. Let Γ = Γ1 ∪ Γ2. Then

W(Γ) ≤ W(Γ1) +W(Γ2).

Moreover, if Γ1 and Γ2 are disjoint then

W(Γ) =W(Γ1) +W(Γ2).

Proof. This time, let us normalize admissible metrics ρ1 and ρ2 so that
ρi(Γi) ≥ 1, and let again ρ = max(ρ1, ρ2). Then ρ(Γ) ≥ 1 as well, and hence

W(Γ) ≤ mρ(U) ≤ mρ1
(U) +mρ2

(U).

Taking the infimum over the metrics ρi, we obtain the desired inequality.
Assume now that Γ1 and Γ2 are disjoint. Let X1 and X2 be two disjoint

measurable sets supporting the respective families. Take any admissible metric ρ
with ρ(Γ) ≥ 1, and let ρi = ρ|Xi. Then ρi(Γi) ≥ 1 as well, and hence

mρ(U) = mρ1
(U) +mρ2

(U) ≥ W(Γ1) +W(Γ2).

Taking the infimum over ρ, we obtain the opposite inequality. �

Remark 1.6. Both laws obviously extend to the case of n families Γ1, . . . ,Γn.

3.3. Modulus of an annulus revisited.
3.3.1. Modulus as the extremal length. We will now calculate the modulus of

an annulus (see §1.6.1) in terms of the extremal length. Consider a flat cylinder
C = C[l, h] = (R/lZ) × [0, h] with circumferance l and height h. Curves joining
the top to the bottom of C will be called vertical. Among these curves there are
genuinly vertical, that is, straight intervals perpendicular to the top and the bottom.
Horizontal curves in C are closed curves homotopic to the top and the bottom of
C. Among them there are genuinly horizontal, that is, the circles parallel to the
top and the bottom. Genuinly verical and horizontal curves form the vertical and
horizontal foliations respectively.

If A is an open conformal annulus, then it is isomorphic to a flat cylinder,
A ≈ C(0, h), and we will freely identify them. In particular, curves in A corre-
sponding to vertical/horizontal curves in the cylinder will be also referred to as
vertical/horizontal.5

Proposition 1.59. Let Γ be a family of vertical curves in the annulus A con-
taining almost all genuinly vertical ones. Then L(Γ) = mod(A).

Proof. We will identify A with the cylinder C(l, h). Take first the flat metric
e on the cylinder.6 Then e(γ) ≥ h for any γ ∈ Γ, so that, e(Γ) = h. On the other
hand, me(Γ) = lh. Hence

L(Γ) ≥ Le(Γ) = h2/lh = mod(A).

5Notice that if A ⊂ C but ∂A is not locally connected, then vertical curves do not have to

land at some points of ∂A.
6As we will see, e will happen to be the extremal metric.
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Take now any admissible metric ρ on A. Let γθ be the genuinly vertical curve
through θ ∈ R/lZ. Then ρ(Γ) ≤ ρ(γθ) for any θ ∈ R/lZ. Integrating this over R/lZ
(using that γθ ∈ Γ for a.e. θ ∈ R/lZ) and applying the Cauchy-Schwarz inequality,
we obtain:

(3.1) (l · ρ(Γ))2 ≤
(∫

R/lZ

ρ(γθ) dθ

)2

=

(∫
A

ρ dme

)2

≤ lhmρ(A).

Hence Lρ(A) ≤ mod(A), and the conclusion follows. �

There is also the “dual” way to evaluate the same modulus:

Exercise 1.60. Let Γ be a family of horizontal curves in A containing almost
all genuinly horizontal curves. Then

mod(A) =W(Γ).

3.3.2. Gröztsch Inequality. The following inequality plays an outstanding role
in holomorphic dynamics (the name we use for it is widely adopted in the dynamical
literature):

Proposition 1.61. Consider a conformal annulus A containing n disjoint
conformal annuli A1, . . . An homotopically equivalent to A. Then

mod(A) ≥
∑

modAk.

Proof. Let Γk be the horizontal family of Ak and Γ be the horizontal family
in A. By the Parallel Law, W(Γ) ≥ ∑W(Γk), and the concusion follows from
Exercise 1.60. (Dually, one can apply the Series Law to the extremal length of the
vertical families.)

�

3.3.3. Euclidean geometry of an annulus. The length-area method allows one
to relate mod(A) to the Euclidean geometry of A. As a simple illustration, let us
show that mod(A) is bounded by the “distance between the inner and the outer
complements of A rel the size of the inner complement”:

Lemma 1.62. Consider a topological annulus A ⊂ C. Let K and Q stand for
its inner and outer complements respectively. Then define

mod(A) ≤ C dist(K,Q)/diamK.

Proof. Let Γ be the family of horizontal curves in A. According to the last
Exercise, we need to bound λ(Γ) from below.

Take points a ∈ K and c ∈ Q on minimal distance dist(K,Q), and then select a
point b ∈ K such that dist(a, b) > diamK/2. Consider a family Δ of closed Jordan
curves γ ⊂ C�{a, b, c} with winding number 1 around a and b and winding number
0 around c. Since Γ ⊂ Δ, λ(Γ) ≥ λ(Δ).

Let us estimate λ(Δ) from below. Rescale the configuration {a, b, c} (without
changing notations) so that |a− b| = 1 and |a− c| = d, where

1

2
dist(K,Q)/diamK ≤ d ≤ dist(K,Q)/diamK.

Consider a unit neighborhood B of the union [a, b] ∪ [a, c] of two intervals, and
endow it with the Euclidean metric E (extended by 0 outside B). Then lE(Δ) ≥ 1
while mE(B) ≤ Ad. Hence λE(Δ) ≥ 1/Ad, and we are done. �
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Exercise 1.63. For an annulus A as above, prove a lower bound:

mod(A) ≥ μ(dist(K,Q)/diam(K)) > 0.

3.3.4. Shrinking nests of annuli. Let X ⊂ C be a compact connected set. Let
us say that a sequence of disjoint annuli An ⊂ C is nested around X if for any any
n, An separates both An+1 and X from ∞. (We will also call it a “nest of annuli
around X”.)

Corollary 1.64. Consider a nest of annuli An around X. If
∑

modAn =∞
then X is a single point.

Proof. Only the first annulus, A1, can be unbounded in C. Take some disk
D = DR containing A2, and consider the annulus D�X. By the Gröztsch Inequal-
ity,

mod(D �X) ≥
∑
n≥2

modAn =∞.

Hence X is a single point. �

3.3.5. Quadrilaterals. Given a standard flat recatangle Π[l, h] = [0, l] × [0, h],
we can naturally define (genuinly) vertical/horizontal curves in it. We let modΠ =
h/l. Two rectangels Π and Π′ are called conformally equivalent if there is a con-
formal isomorphism Π → Π′ that maps the horizontal sides of Π to the horizontal
sides of Π′.

Exercise 1.65. Two rectangles Π and Π′ are conformally equivalent if and
only if modΠ = modΠ′.

Exercise 1.66. Let Γ be a family of vertical curves in Π[l, h] that contains
almost all genuinly vertical curves. Then L(Γ) = mod(Π).

A quadrilateral or a conformal rectangle Q(a, b, c, d) is a conformal disk Q with
four marked points a, b, c, d on its ideal boundary. We will often let Q = Q(a, b, c, d)
sothat there is no notational difference between the quadrilateral and the underlying
disk. (If the underlying disk is called, say, D then the corresponding quadrilateral
is denoted accordingly, D = D(a, b, c, d).

A quadrilateral has four ideal boundary sides. Marking of a quadrilateral is
a choice of pair of opposite sides called “horizontal” (and then the other pair is
naturally called “vertical”). Any marked quadrilateral can be conformally mapped
onto a rectangle Π(l, h) so that the horizontal sides of Q go to the horizontal sides
of Π(l, h). At this point, we can naturally define (genuinly) vertical/horizontal
curves in Q, and also let modQ = modΠ(l, h). With this at hands, Exercises 1.65
and 1.66 immediately extend to general marked quadrilaterals.

As an important example, let us consider the quadrilateral ΠR = H(0, 1, R,∞),
R > 1, based on the upper half-plane. Let θ(R) := mod(ΠR) = L(Γ) where Γ is
the path family in H connecting [0, 1] to [R,∞].

Exercise 1.67. Show that
1

4π
logR ≤ θ(R) ≤ − 4π

log(1− 1/R)
.

(Here the left-hand estimate is good for big R, while the right-hand one is good
for R ≈ 1.)
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3.3.6. Tori. Let us now consider a flat torus T2. Given a non-zero homology
class α ∈ H1(T

2), we let Γα be the family of closed curves on T2 representing α (we
call them α-curves). Among these curves, there are closed geodesics, α-geodesics
(they lift to straight lines in the universal covering R2) . They form a foliation. All
these geodesics have the same length, lα.

Exercise 1.68. Let Γ be a family of α-curves containing all α-geodesics. Then

W(Γ) =
areaT2

l2α
.

An annulus A emebedded into T2 is called an α-annulus if its horizontal curves
represent the class α. The following obseravation finds interesting applictions in
dynamics and geometry:

Proposition 1.69. Let A1, . . . , An be a family of disjoint α-annuli. Then∑
modAi ≤

areaT2

l2α
.

Proof. Let Γi be the family of horizontal curves of the annulus Ai. Then by
the Parallel Law,

∑W(Γi) ≤ W(Γα), and the result follows from Exercises 1.60
and 1.68. �

3.4. Dirichlet integral.
3.4.1. Definition. Consider a Riemann surface S endowed with a smooth con-

formal metric ρ. The Dirichlet integral (D.I.) of a function χ : S → C is defined
as

D(χ) =

∫
‖∇χ‖ρ dmρ,

where the norm of the gradient and the area form are evaluated with respect to ρ.
However:

Exercise 1.70. The Dirichlet integral is independent of the choice of the con-
formal metric ρ. In particular, it is invariant under conformal changes of variable.

In the local coordinates, the Dirichlet integral is expressed as follows:

D(h) =

∫
(|hx|2 + |hy|2)dm =

∫
(|∂h|2 + |∂̄h|2)dm.

In particular, for a conformal map h : U ↪→ C we have the area formula:

D(h) =

∫
|h′(z)|2dm = areah(U).

3.4.2. D.I. of a harmonic function.

Exercise 1.71. Consider a flat cylinder A = S1 × (0, h) with the unit circum-
ference. Let χ : A→ (0, 1) be the projection to the second coordinate (the “height”
function) divided by h. Then D(χ) = 1/h.

Note that the function χ in the exercise is a harmonic function with boundary
values 0 and 1 on the boundary components of the cylinder (i.e., the solution of the
Dirichlet problem with such boundary values).

Exercise 1.72. Such a harmonic function is unique up to switching the bound-
ary components of A, which leads to replacement of χ by 1− χ.
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Due to the conformal invariance of the Dirichlet integral (as well as the modulus
of an annulus and harmonicity of a function), these trivial remarks immediately
yield a non-trivial formula:

Proposition 1.73. Let us consider a conformal annulus A. Then there exist
exactly two proper harmonic function χi : A → (0, 1) (such that χ1 + χ2 = 1) and
D(χi) = 1/mod(A).

3.4.3. Multi-connected case. Let S be a compact Riemann surface with bound-
ary. Let ∂S = (∂S)0�(∂S)1, where each (∂S)i �= ∅ is the union of several boundary
components of ∂S. Let us consider two families of curves: the “vertical family” Γv

consisting of arcs joining (∂S)0 to (∂S)1, and the “horizontal family” Γh consisting
of Jordan multi-curves separating (∂S)0 from (∂S)1. (A multicurve is a finite union
of Jordan curves.)

Let χ : S → [0, 1] be the solution of the Dirichlet problem equal to 0 on (∂S)0
and equal to 1 on (∂S)1.

Theorem 1.74.

L(Γv) =W(Γh) =
1

D(h)
.

The modulus of S rel the boundaries (∂S)0 and (∂S)1 is defined as the above
extremal length:

mod((∂S)0, (∂S)1) = L(Γv).

Remark. Physically, we can think of the pair (∂S)0 and (∂S)1 in S as an electric
condensator. The harmonic function χ represents the potential of the electric field
created by the uniformly distributed charge on (∂S)1. The Dirichlet integral D(χ)
is the energy of this field. Thus, mod((∂S)0, (∂S)1) = 1/D(χ) is equal to the ratio
of the charge to the energy, that is, to the capacity of the condensator.

4. Principles of the hyperbolic metric

4.1. Schwarz Lemma. In terms of the hyperbolic metric, the elementary
Schwarz Lemma can be brought to a conformally invariant form that plays an
outstanding role in holomorphic dynamics:

Schwarz Lemma. Let φ : S → S′ be a holomorphic map between two hyper-
bolic Riemann surfaces. Then
• either φ is a strict contraction, i.e., ‖Dφ(z)‖ < 1 for any z ∈ S, where the norm
of the differential is evaluated with respect to the hyperbolic metrics of S and S′;
• or else, φ is a covering map, and then it is a local isometry: ‖Dφ(z)‖ = 1 for any
z ∈ S.

Proof. Given a point z ∈ S, let π : (D, 0)→ (S, z) and π′ : (D, 0)→ (S′, φ(z))
be the universal coverings of the Riemann surfaces S and S′ respectively. Then φ
can be lifted to a holomorphic map φ̃ : (D, 0)→ (D, 0). By the elementary Schwarz

Lemma, |φ̃′(0)| < 1 or else φ̃ is a conformal automorphism of D (in fact, rotation).
This yields the desired dichotomy for φ. �

In particular, if S ⊂ S′ then ρS ≥ ρS′ (“a smaller Riemann surface is more
hyperbolic”). Moreover, if S �= S′ then dρS(z) > dρS′(z) for any z ∈ S.
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Corollary 1.75. Let S ⊂ S′ be a nest of two hyperbolic Riemann surfaces,
S �= S′, and let f : S → S′ be an (unramified) covering map. Then for z ∈ S we
have

‖Df(z)‖S′ > 1,

where the norm of Df(z) is evaluated in the hyperbolic metric of S′ (in both the
domain and the target).

Proof. Since f is a local isometry from the hyperbolic metric of S to that of
S′, we have

(4.1) ‖Df(z)‖S′ =
dρ

dρ′
(z),

and the desired estimate follows from the remark preceding this Corollary. �

4.2. Hyperbolic metric blows up near the boundary. For a domain
U ⊂ C̄, let d(z) stand for the spherical distance from z ∈ U to ∂U .

Exercise 1.76. Show that dρD∗(z) = − |dz|
|z| log |z| .

Lemma 1.77. Let S be a Riemann surface, x ∈ S, and assume that the punc-
tured surface S = S� {x} is hyperbolic with the hyperbolic metric ρ. Then

dρ(z) � − |dz|
|z| log |z| ,

where z is a local coordinate on S with z(x) = 0.

Proof. By Proposition 1.12, a standard cusp Hh/Z is isometrically embedded
into S so that its puncture corresponds to x. On the other hand, by means of the
exponential maps H→ D∗, z �→ e2πiz, the cusp Hh/Z is isometric to the punctured
disk D∗

r , r = e−2πh, in the hyperbolic metric of D∗. By the previous Excercise,
the latter has the desired form in the plane coordinate of D∗

r (which extends to a
local coordinate on S near x). Hence it has the desired form in any other local
coordinate on S near x. �

Proposition 1.78. For any hyperbolic plane domain U ⊂ Ĉ, there exists κ =
κ(U) > 0 such that:

dρU
dσ

(z) ≥ − κ

d(z) log d(z)
, z ∈ U,

where σ is the spherical metric.

Proof. Take some point z ∈ U , and find the closest to it point a ∈ ∂U .
Since ∂U consists of at least three points, we can find two more points, b, c ∈ ∂U ,
such that the points a, b, c are ε-spearated on C̄, where ε > 0 depends only on
U . Let us consider the Möbius transformation φ that moves (a, b, c) to (0, 1,∞).
By Exercise 1.5, these transformations are uniformly bi-Lipschitz in the spherical
metric, which reduces the problem to the case when (a, b, c) = (0, 1,∞). But in this
case, ρU (z) dominates the hyperbolic metric on U = C � {0, 1}, and the desired
estimate follows from Lemma 1.77. �
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Exercise 1.79. More generally, let S be a Reimann surface endowed with a
conformal Riemannian metric σ, and let K be a compact subset of S such that
S�K is a hyperbolic Riemann surface with hyperbolic metric ρ. Then there exists
a κ = κ(S,K) > 0 such that

dρ

dσ
(z) ≥ − κ

d(z) log d(z)
, z ∈ S�K,

where d(z) = dist(z,K).

4.3. Normal families and Montel’s Theorem. Let U be a Riemann sur-
face, and let M(U) be the space of meromorphic functions φ : U → C̄. Supply the
target Riemann sphere C̄ with the spherical metric ds and the space M(U) with
the topology of uniform convergence on compact subsets of U . Thus φn → φ if for
any compact subset K ⊂ U , ds(φn(z), φ(z)) → 0 uniformly on K. Since locally
uniform limits of holomorphic functions are holomorphic, M(U) is closed in the
space C(U) of continuous functions φ : U → C̄ (endowed with the topology of
uniform convergence on compact subsets of U).

Exercise 1.80. Endow M(U) with a metric compatible with the above conver-
gence that makes M(U) a complete metric space.

It is important to remember that the target should be supplied with the spher-
ical rather than Euclidean metric even if the original family consists of holomorphic
functions. In the limit we can still obtain a meromorphic function, though of a very
special kind:

Exercise 1.81. Let φn : U → C be a sequence of holomorphic functions con-
verging to a meromorphic function φ : U → C̄ such that φ(z) =∞ for some z ∈ U .
Then φ(z) ≡ ∞, and thus φn(z)→∞ uniformly on compact subsets of U .

A family of meromorphic functions on U is called normal if it is precompact in
M(U).

Exercise 1.82. Show that normality is the local property: If a family is normal
near each point z ∈ U , then it is normal on U .

Theorem 1.83 (Little Montel). Any bounded family of holomorphic functions
is normal.

Proof. It is because the derivative of a holomorphic function can be estimated
via the function itself. Indeed by the Cauchy formula

|φ′(z)| ≤ max ζ∈U |φ(ζ)|
dist(z, ∂U)2

.

Thus, if a family of holomorphic functions φn is uniformly bounded, their derivatives
are uniformly bounded on compact subsets of U . By the Arzela-Ascoli Criterion,
this family is precompact in the space C(U) of continuous functions. SinceM(U) is
closed in C(U), we see that the original family is precompact in the spaceM(U). �

Exercise 1.84. If a domain U ⊂ C is supplied with the Euclidean metric |dz|
while the target C̄ is supplied with the spherical metric |dz|/(1 + |z|2), then the
corresponding “ES norm” of the differential Dφ(z) is equal to |φ′(z)|/(1+ |φ(z)|2),
z ∈ U . Show that a family of meromorphic functions φn : U → C̄ is normal if and
only if the ES norms ‖Dφn(z)‖ are uniformly bounded on compact subsets of U .
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Exercise 1.85. A sequence of holomorphic functions is normal if and only if
one can extract from any subsequence a further subsequence which is either locally
bounded or divergent (locally uniformly) to ∞.

Theorem 1.86 (Montel). If a family of meromorphic functions φn : U → C̄

does not assume three values then it is normal.

Proof. Since normality is a local property, we can assume that U is a disk.
Let us endow it with the hyperbolic metric ρ. Let a, b, c be omitted values on C̄,
and let ρ′ be the hyperbolic metric on the thrice punctured sphere C̄ � {a, b, c}.

By the Schwarz Lemma, all the functions φn are contractions with respect to
these hyperbolic metrics. By Proposition 1.78 (iii), the spherical metric is domi-
nated by ρ′, so the φn are uniformly Lipschitz from metric ρ to the spherical metric.
Normality follows. �

Theorem 1.87 (Refined Montel). Let {φn : U → C̄} be a family of meromor-
phic functions. Assume that there exist three meromorphic functions ψi : U → C̄

such that for any z ∈ U and i �= j we have: ψi(z) �= ψj(z) and φn(z) �= ψi(z).
Then the family {φn} is normal.

Proof. Let us consider the holomorphic family of Möbius transformations
hz : C̄→ C̄ depending on z ∈ U as a parameter such that

hz : (ψ1(z), ψ2(z), ψ3(z)) �→ (0, 1,∞).

Then the family of functions Φn(z) = hz(φn(z)) omits value 0, 1,∞, and hence is
normal by Theorem 1.86. It follows that the original family is normal as well. �

Exercise 1.88. Show that the theorem is still valid if the functions ψj are
different but ψi(z) = ψj(z) is allowed for some z ∈ U .

Given a family {φn} of meromorphic functions on U , we can define its set of
normality as the maximal open set F ⊂ U on which this family is normal.

4.4. Koebe Distortion Theorem. We are now going to discuss one of the
most beautiful and important theorems of the classical geometric functions theory.

The inner radius rD(a) ≡ dist(a, ∂D) of a pointed disk (D, a) is as the biggest
round disk D(a, ρ) contained in D. The outer radius RD(a) ≡ distH(a, ∂D) is the
radius of the smallest disk D̄(a, ρ) containing D. (If a = 0, we will simply write rD
and RD.) The shape of a disk D around a is the ratio RD(a)/rD(a).

Theorem 1.89 (Koebe Distortion). Let φ : (D, 0) → (D, a) be a conformal
isomorphism, and let k ∈ (0, 1), Dk = φ(Dk). Then there exist constants C = C(k)
and L = L(k) (independent of a particular φ!) such that

(4.2)
|φ′(z)|
|φ′(ζ)| ≤ C(k) for all z, ζ ∈ Dk

and

(4.3) L(k)−1|φ′(0)| ≤ rDk,a ≤ RDk
(a) ≤ L(k) |φ′(0)|.

In particular, the inner radius of the image φ(D) around a is bounded from below
by an absolute constant times the derivative at the origin:

(4.4) rφ(D)(a) ≥ ρ|φ′(0)| > 0.
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The expression in the left-hand side of (4.2) is called the distortion of φ. Thus,
estimate (4.2) tells us that the function φ restricted to Dk has a uniformly bounded
distortion (depending on κ only). Estimate (4.3) tells that the shape of the domain
Dk around a is uniformly bounded. This shape is also called the dilatation of h
on Dκ. So, univalent functions have uniformly bounded dilatation on any disk Dκ.
Note that since any proper topological disk in C can be uniformized by D, there
could be no possible bounds on the distortion and dilatation of φ in the whole unit
disk D. However, once the disk is slightly shrunk, the bounds appear!

The Koebe Distortion Theorem is equivalent to the normality of the space of
normalized univalent functions:

Theorem 1.90. The space U of univalent functions φ : (D, 0) → (C, 0) with
|φ′(0)| = 1 is compact (in the topology of uniform convergence on compact subsets
of D).

Let us make a simple but important observation:

Lemma 1.91. Let φ : (D, 0)→ (C, 0) be a univalent function normalized so that
|φ′(0)| = 1. Then the image φ(D) cannot contain the whole unit circle T.

Proof. Otherwise the inverse map φ−1 would be well defined on some disk Dr

with r > 1, and the Schwarcz Lemma would imply |Dφ−1(0)| ≤ 1/r < 1, contrary
to the normalization assumption. �

Proof of Theorem 1.90. By Lemma 1.91, for any φ ∈ U there is a θ ∈ R such
that the rotated function eiθφ does not assume value 1. Since the group of rotation
is compact, it is enough to prove that the space U0 ⊂ U of univalent functions φ ∈ U
which do not assume value 1 is compact.

Let us puncture D at the origin, and restrict all the functions φ ∈ U0 to the
punctured disk D∗. Since all the φ are univalent, they do not assume value 0 in D∗.
By the Montel Theorem, the family U0 is normal on D∗.

Let us show that it is normal at the origin as well. Take a Jordan curve γ ⊂ D∗

around 0, and let Δ be the disk bounded by γ. Restrict all the functions φ ∈ U0 to
γ. By normality in D∗, the family U0 is either uniformly bounded on γ, or admits
a sequence which is uniformly going to ∞. But the latter is impossible since all
the curves φn(γ) intersect the interval [0, 1] (as they go once around 0 and do not
go around 1). Thus, the family U0 is uniformly bounded on γ. By the Maximum
Principle, it is is uniformly bounded, and hence normal, on Δ as well.

Thus, the family U0 is precompact. What is left, is to check that it contains all
limiting functions. By the Argument Principle, limits of univalent functions can be
either univalent or constant. But the latter is not possible in our situation because
of normalization |φ′(0)| = 1. ��

Exercise 1.92. (a) Show that a family F of univalent functions φ : D → C

is precompact in the space of all univalent functions if and only if there exists a
constant C > 0 such that

|φ(0)| ≤ C and C−1 ≤ |φ′(0)| ≤ C for all φ ∈ F .
b) Let (Ω, a) be a pointed domain in C and let C > 0. Consider a family F

of univalent functions φ : Ω → C such that |φ(a)| ≤ C. Show that this family is
normal if and only if there exists ρ > 0 such that each function φ ∈ F omits some
value ζ with |ζ| < ρ.
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Proof of the Koebe Distortion Theorem. Compactness of the family U immedi-
ately yields that functions φ ∈ U and their derivatives are uniformly bounded on
any smaller disk Dk, k ∈ (0, 1). Combined with the fact that all functions of U are
univalent, compactness also implies a lower bound on the inner radius rφ(Dk) and on
the derivative φ′(z) in Dk. These imply estimates (4.2) and (4.3) on the dsitortion
and shape by normalizing a univalent function φ : D→ C, i.e., considering

φ̃(z) =
φ(z)− a
φ′(0)

∈ U .

(Note that this normalization does not change either distortion of the function or
its dilatation.)

Estimate (4.4) is an obvious consequence of the left-hand side of (4.3). ��
We have given a qualitative version of the Koebe Distortion Theorem, which

will be sufficient for all our purposes. The quantitative version provides sharp
constants C(k), L(k), and ρ, all attained for a remarkable extremal Koebe funcion
f(z) = z/(1−z)2 ∈ U . The sharp value of the constant ρ is particularly remarkable:

Koebe 1/4-Theorem. Let φ : (D, 0) → (C, 0) be a univalent function with
φ′(0) = 1. Then φ(D) ⊃ D1/4, and this estimate is attained for the Koebe function.

We will sometimes refer to the Koebe 1/4-Theorem rather than its qualitatve
version (4.4), though as we have mentioned, the sharp constants never matter for
us.

Exercise 1.93. Find the image of the unit disk under the Koebe function.

Let us finish with an invariant form of the Koebe Distortion Theorem:

Theorem 1.94. Consider a pair of conformal disks Δ � D. Let mod(D�Δ) ≥
μ > 0. Then any univalent function φ : D → C has a bounded (in terms of μ)
distortion on Δ:

|φ′(z)|
|φ′(ζ)| ≤ C(μ) for all z, ζ ∈ Δ.

The proof will make use of one important property of the modulus of an annulus:
if an annulus is getting pinched, then its modulus is vanishing:

Lemma 1.95. Let 0 ∈ K ⊂ D, where K is compact. If

mod(D �K) ≥ μ > 0

then K ⊂ Dk where the radius k = k(μ) < 1 depends only on μ.

Proof. Assume there exists a sequence of compact sets Ki satisfying the as-
sumptions but such that Ri → 1, where Ri is the outer radius of Ki around 0.
Let us uniformize D � Ki by a round annulus, hi : A(ρi, 1) → D � Ki. Then
ρi ≤ ρ ≡ e−μ < 1. Thus, the maps hi are well-defined on a common annulus
A = A(ρ, 1). By the Little Montel Theorem, they form a normal family on A, so
that we can select a converging subsequence hin → h.

Let γ ⊂ A be the equator of A. Then h(γ) is a Jordan curve in D which
separates the sets Kin (with sufficiently big n) from the unit circle - contradiction.

�
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Remark. The extremal compact sets in the above lemma (minimizing k for a
given μ) are the straight intervals [0, keiθ].

Proof of Theorem 1.94. Let us uniformize D by the unit disk, h : D → D, in
such a way that h(0) ∈ Δ. Let Δ̃ = h−1Δ and φ̃ = φ ◦ h. By Lemma ??, Δ̃ ⊂ Dk,
where k = k(μ) < 1. By the Koebe Theorem, the distortion of the functions h

and φ̃ on Δ̃ is bounded by some constant C = C(k). Hence the distortion of φ is
bounded by C2. ��
We will often use the following informal formulation of Theorem 1.94: “If φ : D → C

is a univalent function and Δ ⊂ D is well inside D, then φ has a bounded distortion
on Δ”. Or else: “If a univalent function φ : Δ→ C has a definite space around Δ,
then it has a bounded distortion on Δ”.

Let us summarize some of the above results in a very useful comparison of the
derivative of a univalent function with the inner radius of its image:

Corollary 1.96. For any univalent function φ : (D, 0)→ (D, a), we have:

rD(A) ≤ |φ′(0)| ≤ 4 rD(a).

Proof. The left-hand side estimate follows from Lemma 1.91 by normalizing

φ. The Koebe 1/4-Theorem implies the right-hand side one: rD(a) ≥ 1

4
|φ′(0)|. �

4.5. Hyperbolic metric on simply connected domains. For simply con-
nected plane domains, the hyperbolic metric can be very well controlled:

Lemma 1.97. Let D ⊂ C be a conformal disk endowed with the hyperbolic
metric ρD. Then

1

4

|dz|
dist(z, ∂D)

≤ dρD(z) ≤ |dz|
dist(z, ∂D)

.

Remark. Of course, particular constants in the above estimates will not matter
for us.

Proof. Let r = dist(z, ∂D); then D(z, r) ⊂ D. Consider a linear map h :
D → D(z, r) as a map from D into D. By the Schwarz Lemma, it contracts the
hyperbolic metric. Hence

dρD(z) ≤ h∗(dρD(0)) = h∗(|dζ|) = |dz|/r.
To obtain the opposite inequality, consider the Riemann mapping ψ : (D, 0)→

(D, z). By definition of the hyperbolic metric,

dρD(z) = ψ∗(dρD(0)) = ψ∗(|dζ|) =
|dz|
|ψ′(0)| .

But by the Koebe 1/4-Theorem, r ≤ |ψ′(0)|/4, so that dρD(z) ≥ |dz|/4r. �

The 1/d-metric on a plane domain U is a continuous Riemannian metric with
the length element |dz|/d(z). The previous lemma tells us that the hyperbolic
metric on a simply connected domain is equivalent to the 1/d-metric.

4.6. Definitive Schwarz Lemma.
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4.6.1. Definitive contraction. Montel’s compactness allows one to turn the Schwarz
Lemma into a definitive form. Let us begin with an elementary version:

Lemma 1.98. Let φ : (D, 0)→ (D, 0) be a holomorphic map that omits a point
z with |z| ≤ ρ < 1. Then |φ′(0)| ≤ σ(ρ) < 1.

Proof. By the Little Montel Theorem and the Hurwitz Theorem, the space
of maps in question is compact (for a given ρ < 1). Hence the Schwarz Lemma
becomes definitive on this space. �

Now the Uniformization Theorem immediately turns this elementary fact into
an invariant geometric property:

Lemma 1.99. Let φ : (S, a)→ (S′, a′) be a holomorphic map between hyperbolic
Riemann surfaces. If dist(a′, ∂(φS)) ≤ ρ then ‖Dφ(a)‖ ≤ σ(ρ) < 1, where the norm
is evaluated with resepct to the hyperbolic metrics.

Proof. Following the proof of the Schwarz Lemma given in §4.1, lift φ to a
holomorphic map φ̃ : (D, 0) → (D, 0). By assumption, there is a point z ∈ ∂(φS)

such that distS′(a′, z) ≤ ρ. Then φ̃ omits a point z̃ such that

distD(z̃, 0) = distS′(z, a′) ≤ ρ.

By Lemma 1.98,

‖Dφ(a)‖ = |φ̃′(0)| ≤ σ(ρ) < 1.

�

Corollary 1.100. For a nest of two hyperbolic Riemann surfaces S ⊂ S′ and
any z ∈ S such that distS′(z, ∂S) ≤ ρ we have:

dρ′

dρ
(z) ≤ σ(ρ) < 1.

Corollary 1.101. Let S ⊂ S′ be a nest of two hyperbolic Riemann surfaces,
and let f : S → S′ be an (unramified) covering map. Then for z ∈ S we have

‖Df(z)‖S′ ≥ λ(ρ) > 1, provided distS′(z, ∂S) ≤ ρ.

Proof. It follows from (4.1) and Corollary 1.100. �

Exercise 1.102. Let A′ ⊃ A ⊃ T be a nest of two annuli symmetric with
respect to the unit circle T such that

0 < μ′ ≤ modA′ ≤ 1/μ′, 0 < μ ≤ modA ≤ 1/ν.

Then for any z ∈ T we have:

dρ′

dρ
(z) ≤ σ(μ, μ′) < 1.

Moreover, if g : A→ A′ is a holomorphic double covering then

‖Dg(z)‖A′ ≥ λ(μ′) > 1.

4.7. Hyperbolic metric on the thick part.
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4.8. Carathéodory convergence. Let us consider the space D of all pointed
conformal disks (D, a) in the complex plane. This space can be endowed with a
natural topology called Carathéodory. We will describe it it terms of convergence:

Definition 1.103. A sequence of pointed disks (Dn, an) ∈ D converges to a
disk (D, a) ∈ D if:

(i) an → a;

(ii) Any compact subset K ⊂ D is eventually contained in all disks Dn:

∃N : K ⊂ Dn ∀n ≥ N ;

(iii) If U is a topological disk contained in infinitely many domains Dn then U is
contained in D.

Note that this definition allows one to pinch out big bubbles from the domains
Dn (see Figure ...).

Exercise 1.104. a) Define a topology on D that generates the Carathéodory
convergence.

b) Show that if ∂Dn converges to ∂D in the Hausdorff metric then the disks
Dn converge to D in the Carathéodory sense.

The above purely geometric definition can be reformulated in terms of the
uniformizations of the disks under consideration. Let us uniformize any pointed
disk (D, a) ∈ D by a conformal map φ : D → D positively normalized so that
φ(0) = a and φ′(0) > 0.

Proposition 1.105. A sequence of pointed disks (Dn, a) ∈ D converges to a
pointed disk (D, a) ∈ D if the corresponding sequence of normalized uniformizations
φn : D → Dn converges to the positively normalized uniformization φ : D → D
uniformly on compact subsets of D.

Proof. Assuming φn → φ, let us check properties (i)-(iii) of Definition 1.103.
The first one is obvious. To verify (ii), take a compact subset K of D. Then
φ(Dr) ⊃ K for some r < 1. Hence dist(φ(Tr),K) > 0 and the curve φ : Tr → C

has winding number 1 around any point of K. Since φn → φ uniformly on Tr,
eventually all the curves φn : Tr → C have winding number 1 around all points of
K. Then φn(Dr) ⊃ K.

Let us now veryfy (iii). It is enough to check that any disk V � U is contained
in D. For such a disk, we have: mod(Dn, V ) ≥ μ > 0 for all n. Let Wn = φ−1

n (Vn).
By the conformal ivariance, mod(D,Wn) ≥ μ as well. Hence Wn ⊂ D1−2ε for some
ε > 0 (by Lemma 1.95 or 1.62). Using conformal invariance of moduli and Lemma
1.62 once again, we conclude that dist(φn(T1−ε), V ) ≥ ρ > 0. Since eventually
|φ(z) − φn(z)| < ρ/2 on T1−ε, the curve φ : T1−ε → C has the same winding
number around any point of V as φn : T1−ε → C, and the latter is equal to 1 (for
n sufficiently big). Hence φ(D1−ε) ⊃ V , as required.

Vice versa, assume (Dn, an) → (D, a) in the Carathéodory topology. By
Property (ii) of Definition 1.103, the domains Dn eventually contain the disc
D(a, rD(a)/2) (where rD(a) stands for the inner radius of the domainD with respect
to a ∈ D, see §4.4). By Corollary 1.96, |φn(0)| ≥ rD(a)/2.

On the other hand, by Property (iii), the domains Dn do not eventually contain
the disc D(a, 2rD(a)). By Corollary 1.96, |φ′n(0)| ≤ 8rD(a).
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Thus, |φn(0)| � 1. By the Koebe Distortin Theorem (see Exercise 1.92), the
family {φn} is precompact in the space of univalent functions. But by the first
part of this lemma, any limit function φ = limφn(k) is the positively normalized
uniformization of (D, a) by (D, 0). It follows that the φn converge to this uni-
formization. �

For r ∈ (0, 1), let Dr stand for the family of pointed disks (D, a) ∈ D with

r ≤ rD(a) ≤ 1/r.

Corollary 1.106. The space Dr is compact.

Proof. Let φD : (D, 0) → (D, a) be the positively normalized uniformization
of D. By Corollary 1.96, r ≤ φ′D(0) ≤ 4/r By the Koebe Distortion Theorem
(see Exercise 1.92), the family of univalent functions φD, D ∈ Dr, is compact. By
Proposition 1.105, the space Dr is compact as well.

�

With thes notions in hands, we can define convergence of a sequence of functions
ψn : (Dn, an)→ (C, bn) on varying domains. Namely, the functions ψn converge to
a function ψ : (D, a) → (C, b) if the pointed domains (Dn, an) converge to (D, a),
and ψn → ψ uniformly on compact subsets of D. (This makes sense since for any
K � D, all but funitely many functions ψn are well defined on K.)

Remark 1.7. We will often supress mentioning of the base points an, as long
as it would not lead to a confusion.

We can now naturally define normality of a family of functions ψn : Dn → C

with varying domains of defintion. In cacse when the Dn converge to some domain
D, we also say that “the family {ψn} is normal on D”.

The statement of the Montel Theorem admits an obvious adjustment in this
setting: If the family of domains Dn is Carath’eodory precompact and the functions
ψn : Dn → Ĉ omit three values on the Riemann sphere, then the family {φ}n is
normal.

5. Uniformization Theorem

5.1. Statement. The following theorem of Riemann and Koebe is the most
fundamental result of complex analysis:

Theorem 1.107. Any simply connected Riemann surface is conformally equiv-
alent to either the Riemann sphere Ĉ, or to the complex plane C, or the unit disk
D.

5.2. Classification of Riemann surfaces. Consider now any Riemann sur-
face S. Let π : Ŝ → S be its universal covering. Then the complex structure on
S naturally lifts to Ŝ turning S into a simply connected Riemann surface which
holomorphically covers S. Thus, we come up with the following classification of
Riemann surfaces:

Theorem 1.108. Any Riemann surface S is conformally equivalent to one of
the following surfaces:

• The Riemann sphere Ĉ (spherical case);
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• The complex plane C, or the punctured plane C∗, or a torus T2
τ , τ ∈ H

(parabolic case);
• The quotient of the hyperbolic plane H2 modulo a discrete group of isome-

tries (hyperbolic case).

Thus, any Riemann surface comes endowed with one of the three geometries
described in §??: projective, affine, or hyperbolic.

5.3. Uniformization of simply connected plane domains. For dynami-
cal applications, we will not need the full strength of the Uniformization Theorem:
only uniformization of plane domains will be relevant. Let us start with the most
classical case:

Riemann Mapping Theorem. Any simply connected domain D ⊂ Ĉ whose
complement contains more than one point is conformally equivalent to the unit disk
D. The conformal isomorphism φ : D→ D is unique up to pre-composition with a
Möbius transformation M ∈ Aut(D).7

Proof. The uniqueness part is obvious, so let us focus on the existence.
First, notice that D can be conformally mapped onto a bounded domain in C.

Indeed, since Ĉ�D contains more than one point and D is simpy connected, Ĉ�D
is in fact a continuum. Let us take two points a1, a2 ∈ Ĉ �D, and move them to
0,∞ by a Möbius transformation. This turns D into a domain in C∗.8 Since D
is simply connected, the square root map Q : z �→ √

z has a single-valued branch
on D. Applying it, we obtain a domain whose complement has non-empty interior
(the image of the other branch of Q). Moving ∞ to this complement by a Möbius
transformation, we make D a bounded domain in C.

Let us now take a point a ∈ D, and consider the space C of conformal embed-
dings ψ : D → D normalized so that ψ(a) = 0. Note that C �= ∅ since D can be
embedded into D by an affine map. By the Little Montel Theorem, C is normal.
Hence we can find a conformal map ψ0 ∈ C that maximizes the derivative |ψ′(a)|
over the class C.

We claim that ψ0 conformally maps D onto D. The only issue is surjectivity.
Assume there is a point a ∈ D � ψ0(D). Let B : (D, 0) → (D, 0) be a double
branched covering with critical point at a.

Exercise 1.109. Write down B explicitly.

Since ψ0(D) is simply connected, there is a single-valued branch B−1 : ψ0(D)→
D. By the Schwarz Lemma, |B′(0)| < 1, and hence the embedding B−1 ◦ ψ0 :
(D, a)→ (D, 0) has a bigger derivative at a than ψ – contradiction. �

5.4. Thrice punctured sphere and modular function λ. Let us now
consider the case of the biggest hyperbolic plane domain, the thrice punctured
sphere U = C � {0, 1}9. In this case, there is a simple explicit construction of the
universal covering. Namely, let us consider an ideal triangle Δ in the hyperbolic

7For instance, it is uniquely determined by its value at 0 and the image of the tangent vector

1 ∈ T0D under Dφ(0).
8We will keep notation D for various domains conformally equivalent to D.
9Note that all thrice punctured spheres are equivalent under the action of the Möbius group

Möb(Ĉ).
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plane, that is, the geodesic triangle with vertices on the absolute10 (see Figure ??).
By the Riemann Mapping Theorem, it can be conformally mapped onto the upper
half plane H so that its vertices go to the points 0, 1 and ∞. By the Schwarz
Reflection Principle, this conformal map can be extended to the three symmetric
ideal triangles obtained by reflection of Δ in its edges. Each of these symmetric
rectangles will be mapped onto the lower half-plane H−. Then we can extend this
map further to the six symmetic rectangles each of which will be mapped onto
H again, etc. Proceeding in this way, we obtain the desired universal covering
λ : D→ U called a modular function.

Exercise 1.110. Verify the follwing properties:
a) The union of these triangles tile the whole disk D;
b) The modular function λ is the desired universal covering;
c) Its group of deck transforamations is the congruent group Γ2, that is, the subgroup
of PSL(2,Z) consisting of matrices congruent to I mod 2.

5.5. Annuli. We will now pass to non-plane domains beginning with annuli:

Proposition 1.111. Let A � S be a topological annulus on a Riemann surface
S with piecewise smooth boundary. Then A is conformally equivalent to a standard
annulus A(r,R).

Proof. Let us call one of the boundary components of A “inner”, ∂iA, and
the other one “outer”, ∂oA. Let us consider the “harmonic measure” of the outer
component, i.e. a harmonic function u(z) on A vanishing on ∂iA and ≡ 1 on ∂0A
(see §7.8). Let u∗ be its harmonic conjugate, This function is not single valued, but
rather gets changed by the period

p =

∫
γ

∗du

under the monodromy along a non-trivial cycle γ in A (see §7.1). Hence the holo-
morphic function

f = exp
2π

p
(u+ iu∗)

is single valued. Moreover, it properly maps A onto the round annulus A(1, e1/p)
and has degree one (since f homeomorphically maps the equipotentials of A onto
the round circles. The conclusion follows. �

5.6. Simply connected domains.

Proposition 1.112. Let D � S be a simply connected domain on a Riemann
surface S with piecewise smooth boundary. Then D is conformally equivalent to the
unit disk D.

Proof. Take a base point z0 ∈ D, and let Dε be a coordinate disk of radius
ε > 0 centered at z0. Then U �Dε is a topological annulus with piecewise smooth
bundary, so by Proposition 1.111 there is a conformal map φε : D�Dε → A(r(ε), 1)
onto a round annulus. By the Little Montel Theorem, the family of maps φε is
normal on D � {z0}.11 Let us select a converging subsequence φεk → φ as εk → 0,

10Note that all these triangles are equivalent under the action of PSL(2,R).
11On normality with varying domains of definition, see §4.8.
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where φ : D � {z0} → D is a holomorphic map. By Removability of isolated
singularities, φ holomorphically extends through z0.

Let us show that φ : D → D is proper. It is sufficient to check that for any
r ∈ (0, 1), the preimage φ−1(Dr) is compactly contained in D. Indeed, take any
R ∈ (r, 1). By invariance of the modulus,

mod(φ−1
ε (A(R, 1)) =

1

2π
log

1

R
> 0, for any ε > 0 sufficiently small.

By Lemma 1.95, dist(φ−1
ε (TR), ∂D) ≥ ρ > 0 for some ρ = ρ(R) > 0. Letting ε→ 0,

we conclude that dist(φ−1(Tr), ∂D) ≥ ρ > 0, and properness of φ follows.
So, φ has a well defined degree. Since degree is stable under perturbations,

deg φ = deg φεk for all k sufficiently large. Thus deg φ = 1, and hence φ is a
conformal isomorphism. �

6. Carathéodory boundary

6.1. Prime ends. Let us consider a conformal disk D � Ĉ. Its cross-cut is a
path γ : [0, 1] → D̄ such that int γ := γ(0, 1) ⊂ D while ∂γ := γ{0, 1} ⊂ ∂D. It
divides D into two domains, D+(γ) and D−(γ).

A sequence γ̄ of disjoint crass-cuts γn, n ∈ N, form a nest if for all n ∈ Z+,
int γn separates int γn−1 from int γn+1 in D. In this case we let D+

n (γ̄) be the
component of D � γn containing γn+1 ( and hence all further γi, i > n).

A nest of cross-cuts is shrinking if length(γn)→ 0.
Let us say that a nest γ̄′ is n-subordinated to a nest γ̄ if there exists m0 such

that int γ′m ⊂ D+
n (γ̄) for all m ≥ m0. If this happens for every n ∈ N, we say

that γ̄′ is subordinated to γ̄. Two nests γ̄ and γ̄′ are equivalent if each of them is
subordinated to the other one.

Now we are ready to give the main definition: a prime end P of D is the
equivalence class of shrinking nests of cross-cuts.

Let ∂CD denote the space of all prime ends (the Carathéodory boundary of D),

and clC D = D ∪ ∂CD (the Carathéodory compactification of D). Endow clC D
with the following topology. Let us consider a prime end x ∈ ∂CD represented by
a shrinking nest γ̄. Given an n ∈ N, let Un(x) be the union of D+

n (γ̄) and all the
prime-ends that are n-subordinated to γ̄. This is the base of neighborhoods of x.

Exercise 1.113. Show that clC D ≈ D̄.

Exercise 1.114. Let us consider two conformal disks D,D′ ⊂ Ĉ and a home-
omorphism h : D̄ → D̄′. Then h : D → D′ continuously extends to a homeomor-

phism ĥ : clC D → clC D′.

The impression of the prime end P is defined as

I(P ) =
⋂
n

clD+
n (γ̄)

(which is easily seen to be independent of the choice of the nest γ̄ representing P ).
When the impression is a singleton, I(P ) = {x}, the prime end can be identified
with the corresponding point x ∈ ∂D (like in Exersice 1.113).
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6.2. Extension of the Riemann mapping. We are ready to formulate a
fundamental result of the classical boundary values theory:

First Carathéodory Theorem. The Riemann mapping φ : D→ D extends

to a homeomorphism φ̂ : D̄→ clC D.

Proof. Let a ∈ T and PD(a) be the corresponding prime end of D. It is
represented by shrinking nests δ̄ of circular cross-cuts δr := T(a, r) ∩ D around a
(see Exercise 1.113).

By the Fatou Theorem, almost all images φ(δr) are cross-cuts of D – let us
call such δr (and also r) “good”. They represent a class of equivalent nests, not
necessarily shrinking. However, as we will see in a moment, some of them shrink,
and these will represent the prime end of D corresponding to the image of a under

φ̂.
It will be slightly more convenient to replace D with the upper-half plane H and

to put a at the origin. Let us consider half-circles S(r) = Tr ∩H around 0. We will
show that there is a sequence of good radii ri → 0 such that the cross-cuts φ(S(ri))
of D shrink. To this end, let us consider half-annuli Ar = A(r/2, r) ∩ H viewed
as rectangles whose horizontal sides are the semi-circles. Let Fr be the horizontal
foliation of Ar by the good half-circles Sρ, r/2 < ρ < r. The extremal length of this
foliation is equal to 1/modAr = π/ log 2. By the conformal invariance, foliation
φ(Fr) has the same extremal length.

Let lr be the minimal spherical length of the curves of φ(Sρ), r/2 < ρ < r. By
definition of the extremal length,

l2r
area(φ(Ar))

≤ L(φ(Fr)) =
π

log 2
,

where the “area” stands for the spherical area. Since area(φ(Ar))→ 0 as r → 0, we
conclude that lr → 0 as well, which gives us the desired nest of shrinking cross-cuts.

So, we have constructed an extension φ̂ : D̄→ clC D. It easily follows from the

definitions that φ̂ is injective and continuous. To check surjectivity, notice that any
x ∈ ∂CD is the limit of some sequence ζn = φ(zn) ∈ D. Selecting a limit point

a = lim znk
∈ ∂D, we see that x = φ̂(a).

Hence φ̂ is a homeomorphism. �

Thus, the Carathédory boundary gets canonically identified with the ideal bound-
ary of D, and we will freely use this identification in what follows.

6.3. Local connectivity and the Schönflis Theorem.

Exercise 1.115. Show that the Riemann map φ : D→ D extends continuously

to a point a ∈ ∂D if and only if the corresponding impression I(φ̂(a)) is a singleton.

The next classical theorem will motivate some central problems of holomorphic
dynamics:

Second Carathéodory Theorem. The following properties are equivalent:

(i) The Riemann mapping φ : D→ D extends to a continuous map D̄→ D̄;

(ii) ∂D is locally connected;

(iii) Ĉ �D is locally connected.
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Proof. (i) =⇒ (ii) by Exercise 0.7.

(ii) =⇒ (iii) by Exercise 0.10.

(iii) =⇒ (i). Assume φ does not admit a continuous extension to D̄. Then there is

a point a ∈ ∂D such that the corresponding prime end φ̂(a) has a non-singleton im-

pression I = I(φ̂(a)). Let us consider a nest of semi-circles δn shrinking to a whose

images γn := φ(δn) form a nest γ̄ of cross-cuts representing the prime end φ̂(a) (see
the proof of the First Carathéodory Theorem). By selecting a subsequence, we can
assume that the cross-cuts γn shrink to some point y ∈ ∂D.

Since I is not a singleton, diamD+
n (γ̄) �→ 0. Hence there exist ε > 0 and a

sequence of points ζn = φ(zn) ∈ D+
n (γ̄) such that dist(ζn, γn) > ε. Let us connect

zn to 0 by the straight interval [0, zn]; it crosses δn at some point bn. As the distance
d(φ(0), φ(bn)) stays away from 0, we can assume it is bigger than ε as well.

Thus, both arcs, φ[0, bn] and φ[bn, zn] must intersect the circle of radius ε/2
around y (for n sufficiently big). Then there is a subarc

ωn ⊂ D(y, ε/2) ∩ φ[0, zn] ⊂ D

with endpoint on this circle that crosses γn at a single point φ(bn). This arc
separates the endpoints of γn in D(y, ε/2) �D, contradicting local connectivity of

Ĉ �D at y. �

As a consequence, we obtain:

Conformal Schönflis Theorem. Let γ ⊂ Ĉ be a Jordan curve and D be
a component of Ĉ � γ. Then the Riemann mapping φ : D → D extends to a
homeomorphism D̄→ D̄.

6.4. Proper Ends.

Proposition 1.116. Let S ⊂ S′ be a nest of two Riemann surfaces. Let e and
e′ be tame ends of S and S′ respectively such that the embedding i : S ↪→ S′ properly
maps e to e′. Then i continuously extends to a homeomorphism ∂Ie→ ∂Ie′ between
the ideal circles at infinity of the ends.

Under these circumstances, we identify e and e′′ by means of the homeomor-
phism i.

More generally, we have:

Exercise 1.117. Let f : S → S′ be a holomorphic map between two Riemann
surfaces. Let e and e′ be tame ends of S and S′ respectively such that f induces a
proper map e→ e′. Then i continuously extends to a covering ∂Ie→ ∂Ie′ between
the ideal circles at infinity of the ends.

There is a useful local version of the above result:

Exercise 1.118. Let us conisder two domains U,U ′ ⊂ C whose boundaries
contain open Jordan arcs γ ⊂ ∂U and γ′ ⊂ U ′. Let φ : U → U ′ be a holomorphic
map which is proper near γ in the sense that φ(z)→ γ′ as z → γ. Then φ extends
continuously to a map γ → γ′.
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6.5. Landing rays and cut-points. Let K ⊂ C be a hull and J = ∂K.
Given a point a ∈ J , the connected components of K � {a} are called unrooted
limbs of K (with the root at a). The limbs at a are obtained by adding a to the
urooted limbs.

If R1 and R2 are two rays landing at some point a ∈ K, then R1 ∪ R2 ∪ {a}
is a simple curve whose both ends go to ∞. By the Jordan Theorem, it divides C
into two domains called the sectors bounded by R1 and R2.

Lemma 1.119. If two rays R1 and R2 land at the same point a ∈ J then each
sector bounbed by these rays contains an unrooted limb of K at a.

Proof. Assume one of the sectors, S, does not contain any points of K. This
sector is the impage of a circular sector

Δ := {re2πiθ : r > 1, θ2 < θ < θ2} ⊂ D

under the Riemann map Φ : C� D̄ → C�K. Since a is the only point of K in S̄,
we have Φ(z) → a as z → T within Δ. But this is impossible for a non-constant
holomorphic function.

Exercise 1.120. Can you justify this assertion?

�

For this reason, landing points of at least two rays are called cut-points of K.

Lemma 1.121. If a hull K is locally connected then any two limbs at a ∈ J can
be separated by a pair of rays landing a,

Let us consider all the rays Rθ landing at a cut-point a ∈ J . Assume that
∪Rθ ∪ {a} is closed subset of C. (For instance, this is the case when there are
only finitely many rays, or when K is locally connected.) Then the components of
C� (∪Rθ ∪ {a}) are called the wakes of K at a.

6.6. Components of locally connected hulls. We will now use the Carathé-

odory Theorem for further study of the topology of lc hulls.
Let K be a hull, and let (D, b) be a pointed component of intK. Since it is

simply connected, it can be uniformized by the unit disk, ΦD : (D, 0) → (D, b).
Internal rays Rθ of (D, b) are defined to be the images of the straight rays {re2πiθ :
0 ≤ r < 1} under ΦD.

Proposition 1.122. Let K ⊂ C be a lc hull. Then any component D of intK
is a Jordan disk.

Proof. Let us consider the projection πD : K → D̄ (2.2). Since it is contin-
uous and K is lc, D̄ is lc as well (Exercise 0.7,b)). By the Second Carathéodory
Theorem, the boundary ∂D is lc as well and the uniformization ΦD : D → D
extends continuously to the boundary.

This shows that ∂D is a curve. We just need to show that it is simple. If
not, then there are two internal rays R1 and R2 in D that land at the same point
a ∈ ∂D. Then by Lemma 1.119 (applied to the hull Ĉ � D), the Jordan curve
γ := R1 ∪ R2 ∪ {a} surrounds a point b ∈ ∂D ⊂ ∂K. On the other hand, since
K is full, the open Jordan disk bounded by γ is contained in intK; in particular,
b ∈ intK – contradiction. �
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Exercise 1.123. For any two components D1 and D2 of a lc hull K, the
closures D̄1 and D̄2 are either disjoint or touch at a single point.

6.7. Pinched toplogical model of a lc hull. The Carathéodory Theorem
allows one to represent any hull K ⊂ C as a quotient of the unit disc D by a special
equivalence relation ∼

K
. Namely, this theorem provides us with the continuous

extension φ : C�D→ (C�K)∪∂K. Now, the equivalence classes of ∼
K

on the unit

circle T are defined as the fibers φ−1(·) of φ|T. Obviously, ∂K is homeomorphic to
the quotient T/ ∼

K
.

We will now extend it to D. Given a non-singleton class X of ∼
K

, let X̂ stand

for the hyperbolic convex hull of X, see (1.2). (For any singleton class X = {x},
we let X̂ = X.

Lemma 1.124. Given a lc hull K, the convex hulls X̂ are pairwise disjoint.

Proof. Let us compactify the complex plane C with the circle T∞ at infinity.
Convergence of points zn ∈ C to θ ∈ T∞ means that zn →∞ and arg zn → θ. It is
easy to check that this compactification , C̄, is homeomorphic to D̄.

The Riemann mapping φ : C � D̄ → C � K extends to a homeomorphism
C̄� D̄→ C̄�K in an obvious way. Since K is locally connected, it further extends
to a continuous map C̄ � D → C̄ � intK by the Second Carathéodory Theorem.
(We will keep notation φ for all these extensions.)

Given an ∼
K

equivalence class X = φ−1(x) ⊂ T∞, x ∈ ∂K, let

X̃ = {re2πiθ : r ∈ [0,∞], θ ∈ X} ⊂ C̄ � D :,

and let
X ′ = φ(X̃) = X ∪

⋃
θ∈X

Rθ ∪ {x} ⊂ C� intK.

This is a compact set intersecting T∞ by X and intersecting K by {x}.
Consider now another equivalence class, Y = {φ−1(y)}, y ∈ ∂K, y �= x. Then

X ∩ Y = ∅, and hence X̃ ∩ Ỹ = ∅. Since φ : C̄ � D̄→ C̄ �K is a homeomorphism,
the sets X ′ �K and Y ′ �K are disjoint. But the intersections X ′ ∩K = {x} and
Y ′ ∩K = {y} are also disjoint. Thus, X ′ ∩ Y ′ = ∅.

By Proposition 1.22, the sets X and Y are unlinked on T∞ ≈ T, so their convex
hulls X̂ and Ŷ are disjoint in D̄ . �

The sets X̂ are declared to be non-singleton equivalence classes of ∼
K
. All other

equivalence classes are singletons. (This equivalence relation can be considered not
only on D̄ but on the whole plane C.)

Theorem 1.125. A locally connected hull K ⊂ C is homeomorphic to the
quotient C/ ∼

K
.

Proof. Let T̂ :=
⊔
X̂, where the union is taken over all equivalence classes

on X ⊂ T.

Step 1: The set T̂ is closed. Let zn → z ∈ D and zn ∈ X̂n = φ−1(ζn) with ζn ∈ ∂K.
Passing to a subsequence, we can assume that ζn → ζ ∈ ∂K. By continuity of φ|T,
we have

lim sup
n→∞

Xn ⊂ X := φ−1(ζ).
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It easily implies that

lim sup
n→∞

X̂n ⊂ X̂,

so z ∈ X̂.

Step 2: The map φ : T→ ∂K extends to a continuous map φ̂ : T̂→ ∂K by declaring

φ̂(X̂) = φ(X).

Let zn → z ∈ D, zn ∈ X̂n. Without loss of generality, we can assume that
the Xn are pairwise disjoint. Then there exist points z′n ∈ ∂Xn converging to z as
well, so we can assume that zn ∈ ∂Xn in the first place. But

⋃
∂Xn is a geodesic

lamination, so

Step 3: Any gap Q in T̂ (i.e, a connected componet of D̄� T̂ ) is a convex set, and a

map φ̂ continuously extends to a homeomorphism Q̄→ D̄, where D is a component
of intK.

The ideal boundary of the gap Q, ∂IQ := Q∩T, is a closed subset of T. Let Ij
be its componentary intervals, and let Γj be the hyperbolic geodesics sharing the
endpoints with the Ij . Then the interior of the gap, intQ := Q ∩ D, is a convex
subset of D bounded (in D) by the geodesics Γj .

It is clear from this picture that Q is a closed Jordan disc: its boundary (in
D̄) can be homeomorpically mapped onto T by projecting the geodesics Γj onto the
ideal intervals Ij . The quotient Q/ ∼

K
obtained by collapsing the Γj to singletons

is also a closed Jordan disc.

Exercise 1.126. Check it.

Any homeomorphism between the boundaries of two Jordan discs extends
continuously to the whole discs (e.g., radially). In particular, the embedding

φ̂ : (∂Q/ ∼
K
) → ∂K extends to a homeomorphism (Q/ ∼

K
) → D̄, where D is

the (open) Jordan disc bounded by φ̂(∂Q). This Jordan disc is contained in intD
since K is full. Since ∂D ⊂ ∂K, D is a component of intK.

Step 4: The map φ̂ : D̄→ K is continuous.

Given zn → z ∈ D̄, we want to show that φ̂(zn) → φ̂(z) . By the above
discussion (Steps 2-3), we only need this check it in case zn ∈ Qn where the

Qn are distinct gaps. Since areaQn → 0, there exist points z′n ∈ ∂Qn ⊂ T̂

such that dist(zn, z
′
n) → 0, so z′n → z as well. By Step 2, φ̂(z′n) → φ̂(z). But

dist(φ̂(zn), φ̂(z
′
n) ≤ diam φ̂(Qn) → 0 by Proposiation 1.124. The conclusion fol-

lows.

Step 5: The map φ̂ : D̄ → K is onto. Here we will make use of the exterior of
D̄. Let us consider some circle TR with R > 1 and the corresponding equipotential
ER = φ(TR). It goes once around K, so by the Topological Argument Principle

(Proposition 1.50) all values in K must be assumed by φ̂ �

7. Appendix: Potential theory

Harmonic and subharmonic functions is a very important subject on its own
right that penetrates deeply into analysis, geometry, and probability theory. From
our perspective, their outstanding role comes from the fact that they lay down a
foundation for a proof of the Uniformization Theorem. For readers’ convenience,
here we will briefly review needed basics of the theory.
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7.1. Harmonic functions and differentials. Recall that a function u : U →
R on a domain U ⊂ C is called harmonic if u ∈ C2(U) and Δu = 0 where Δ =
∂2x + ∂2y is the usual Euclidean Laplacian. The real and imaginary parts of any
holomorphic function f = u+ iv on U are harmonic, which is readily seen from the
Cauchy-Riemann equations

∂xu = ∂yv, ∂yu = −∂xv.
They are called conjugate harmonic functions.

Vice versa, any harmonic function u can locally be represented as the real part
of a holomorphic function. Indeed, Δu = 0 gives the integrability condition for
the Cauchy–Rieamann equations that allow one to recover locally the conjugate
function v.

This can be nicely expressed in terms of the Hodge ∗ operator. Let V ≈ R2

be the oriented 2D Euclidean space. By self-duality, we identify vector fields
τ = a∂x + b∂y with 1-forms ω = adx + bdy. The Hodge ∗-operator is defined as
π/2-rotation of ω or τ , i.e. ∗ω = −bdx+ ady.

Then the Cauchy–Riemann equations can be written as

(7.1) dv = dcu, where dc := ∗d, while ddcu = Δu dz ∧ dy.
So, u is harmonic if and only if the form dcu is closed, and then (7.1) can be locally
integrated:

(7.2) v(z) =

∫ z

z0

dcu =

∫
γ

∂u

∂n
ds,

where γ is a smooth (oriented) path connecting z0 to z (within a small disk), ds
is the length element on γ and n is the unit normal vector to γ rotated clockwise
from the corresponding tangent vector to γ.

Globally, the integral (7.2) depends on the homotopy class of the path γ (rel the
endpoints), so it defines a multi-valued harmonic function v and the corresponding
multivalued holomorphic function f = u + iv. The monodromy for this function
along a cycle γ depends only on the homology class of γ and is given by the periods
of dcu:

fγ(z)− f(z) = i

∫
γ

dcu = i

∫
γ

∂u

∂n
ds,

where fγ is the result of analytic continuation of f along along γ. In particular, if
a is an isolated singularity for u, then the monodromy if f as we go around a little
circle γ = Sr := {|z − a| = r} is equal to

fγ(z)− f(z) = i

∫
Sr

∂u

∂r
(ζ) dθ.

Relation between harmonic and holomorphic functions makes the notion of
harmonicity manifestly invariant under holomorphic changes of variable: if u is
harmonic then so is u ◦ φ for any holomorphic map φ. Thus, harmonicity is well-
defined on an arbitrary Riemann surface S. This can also be seen from the original
definition by expressing the Laplacian in terms of the differential operators ∂ and
∂̄ (see §1.8). Indeed, we have:

(7.3) ∂ =
1

2
(d+ idc), ∂̄ =

1

2
(d− idc).

so,
Δu dx ∧ dy = ddc u = 2i ∂∂̄ u.
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Remark 1.8. Expressions (7.3) show that d and dc are (twice) the real and
imaginary parts of the operators ∂ and ∂̄.

A C1 differential 1-form ω = adx + bdy is called harmonic if it is locally the
differential of a harmonic function. It is called co-closed if d(∗ω) = 0. It is straight-
forward to check that a form ω is harmonic if and only if it is closed and co-closed.

Another characterization is that harmonic 1-forms are real part of Abelian
differentials. Namely, the differential α = ω + iη is holomorphic if and only if ω
is is harmonic and η = ∗ω. (Note tht unlike the case of functions, this relation is
global.)

7.2. Basic properties. Given a domain U on a Riemann surface S, let H(U)
stand for the space of harmonic functions in U , and letH(Ū) stand for the subspace
of H(U) consisting of functions that admit continuous extension to Ū .

Mean Value Property. A C2 function u on a domain U ⊂ C is harmonic
is and only if for any disk D(a, r) ⊂ U , we have

u(a) =Mu(a, r) :=
1

2π

∫ 2π

0

h(a+ reiθ) dθ;

Proof. The mean value property for harmonic functions immediatedly follows
from the correposnidng property for holomorphic ones. The inverse follows from
the second order Taylor expansion at z averaged over a little circle:

(7.4) Mu(z, r)− u(z) =
1

4
Δu(z)r2 + o(r2).

�

The Mean Value Property implies in a standard way (as for holomorphic func-
tions):

Maximum/Minimum Principle. If a harmonic function u on a Riemann sur-
face U has a local maximum or minimum in U then it is constant.

Corollary 1.127. Let U � S be a compactly embedded domain in a Riemann
surface S, and let u ∈ H(Ū). Then u attains its maximum and minimum on ∂U .

Corollary 1.128. Under the above circumstances, u is uniquely determined
by its boundary values, u| ∂U .

7.3. Poisson Formula. The Poisson Formula allows us to recover a harmonic
function h ∈ H(D̄) from its boundary values:

Proposition 1.129. For any harmonic function h ∈ H(D̄) in the unit disk,
we have: formula: the following Poisson representation:

h(z) =
1

2π

∫ 2π

0

h(ζ)P (z, ζ) dθ, z ∈ D, ζ = eiθ ∈ T,

with the the Poisson kernel

P (z, ζ) =
1− |z|2
|z − ζ|2 .
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Proof. For z = 0, this formula amounts to the Mean Value Property:

h(0) =
1

2π

∫ 2π

0

h(eiθ) dθ.

It implies the formula at any point z ∈ D by making a Möbius change of variable

φz : D̄→ D̄, ζ �→ ζ − z
1− z̄ζ

that moves z to 0. Since h ◦ φ−1
z ∈ H(D̄), we obtain:

h(z) = (h ◦ φ−1
z )(0) =

1

2π

∫ 2π

0

h ◦ φ−1
z dθ =

1

2π

∫ 2π

0

h dθz,

where

dθz = (φz)
∗(dθ) = |(φz)′(θ)| dθ,

and the latter derivative is equal to the Poisson kernel P (z, ζ) (check it!).
Uniqueness of the extension follows from the Maximum Principle. �

The Dirichlet problem (in some domain D ⊂ Ĉ) is the problem of recovery of
a harmonic function h ∈ H(D̄) from its boundary values on ∂D. The Poisson
formula provides us with an explicit solution of this problem in the unit disk:

Proposition 1.130. Any continuous function g ∈ C(T) on the unit circle
admits a unique harmonic extension h ∈ H(D̄) to the unit disk (so that g = h|T).
This extension is given by the Poisson formula:

h(z) =
1

2π

∫ 2π

0

g(ζ)P (z, ζ) dθ, z ∈ D, ζ = eiθ ∈ T.

Proof. The Poisson kernel P (z, ζ) as a function of ζ ∈ T and z ∈ D has the
following properties:

(i) P (z, ζ) > 0, and for any z ∈ D, we have
1

2π

∫
T

P (z, ζ) dθ = 1;

(ii) For any ζ ∈ T, the kernel P (z, ζ) is harmonic in z ∈ D;

(iii) For any ζ0 ∈ T and any ε > 0, we have:

Pz(ζ)→ 0 as z → ζ0 uniformly in ζ ∈ T � D(ζ0, ε).

Property (i) follows from the Poisson representation of the function h(z) ≡ 1
in D̄.

To check (ii), notice that P (·, ζ) is the pullback of the function Imu on the
upper half-plane to the unit disk under the Móbius transformation

φζ : D→ H, φζ : z �→ i
ζ + z

ζ − z .

Exercise 1.131. Check this using that φz is a hyperbolic isometry.

The last propery is obvious (it corresponds to the fact the the function Imu
vanishes on R).

Properties (i) and (iii) imply that P (z, eiθ) dθ, viewed as measures on T weakly
converge to δζ0 . This implies that g gives the boundary values of h. Property (ii)
implies harmonicity of h in D. �
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7.4. Harnak Inequality and normality. This inequality allows one to con-
trol a positive harmonic function by its value at one point. Let us begin with the
case of disk:

Lemma 1.132. For any r ∈ (0, 1), there exists a constant C(r) > 1 such that
for any positive harmonic function u ∈ H(D̄), we have:

C(r)−1 u(0) ≤ h(z) ≤ C(r)u(0), |z| ≤ r.

Proof. It immediately follows from the Poisson representation since

C(r)−1 ≤ P (z, ζ) ≤ C(r) (|ζ| = 1, |z| ≤ r) with C(r) =
1 + r

1− r
and the Mean Value Property. �

Let us now consider the general case. By a coordinate disk D(a, ε) we mean
a domain lying within some local chart and equal to the disk D(z(a), ε) in this
cordinate.

Theorem 1.133. Let S be a (connected) Riemann surface, and let z0 ∈ U ,
K � U . Then there exists a constant CK > 1 such that for any positive harmonic
function u ∈ H(U), we have:

C−1
K u(z0) ≤ u(z) ≤ CK u(z0), for any z ∈ K.

Proof. We can find finitely many coordinate disks D(zi, εi) whose union
∪D(zi, εi/2) is connected and covers K ∪ {z0}. Applying the Lemma 1.132 consec-
utively to these disks, we obtain the desired inequlities. �

Similarly to holomorphic functions, bounded families of harmonic functions
are normal (i.e., precompact in the topology of uniform convergence on compact
subsets):

Proposition 1.134. A bounded family of harmonic functions on U is normal.

Proof. The Poisson formula gives a bound on the partial derivatives of u ∈
H(u) on a compect subset K � U in terms of the bound on u (and the set K). By
the Ascoli-Arcela, our family is precompact in the space of consinuous funcitons on
U (in topology of uniform convergence on compact subsets). But the Mean Value
Property survives under taking locally uniform limits. Hence harmonicity survives
as well. �

Corollary 1.135. Let un ∈ H(U) be an increasing sequence of harmonic
functions, and let un(z0) ≤ C at some point z0 ∈ U . Then the un converge,
uniformly on compact subsets of U , to a harmonic function u ∈ H(U).

Proof. Subtracting u0 from the un, we see that our functions can be assumed
positive. By the Harnak Inequality, the un are uniformly bounded on compact
subsets. So, their pointwise limit u(z) is finite. Moreover, by Proposition 1.134,
they form a normal sequence, and hence u is harmonic. �



74 1. CONFORMAL GEOMETRY

7.5. Subharmonic functions. Harmonic functions are analytic and hence
rigid: they cannot be locally modified. Subharmonic functions are much more
flexible, but at the same time, they still possess good compactness properties (an
a priori upper bound is sufficient). This combination makes them very useful.

The basic example of a subharmonic function is u = log |f(z)| where f is a
holomorphic function. In fact, this function is harmonic everewhere except for
zeros of f where it assumes value −∞ (“poles”of u). This suggests that in general
subharmonic functions should also be allowed to have poles. Of course, [−∞,∞)
is naturally endwed with topology of a half-open interval.

Definition 1.136. A function u : D → [−∞,∞) on a domain D ⊂ C is called
subharmonic if it is not identically equal to −∞12 and satisfies the following two
conditions:

• Mean Value Property (subharmonic): For any disk D(z, r) � D,

(7.5) u(z) ≤Mu(z, r)

• u is upper-semicontinuous.

Remark 1.9. Notice that the two conditions in the above defintion make the
value of a subharmonic function well determined at a point by its values nearby.
In fact, below we will be dealing only with continuous subharmonic functions, and
mostly, assuming only finite values. However, the following basic subharmonic
function does have a pole:

Example 1.1. Let u(z) = log |z|. This function is harmonic in C∗, so the
MVP is satisfied on an any disk D(a, r) � C∗. It is also obviously satisfied on Dr

as −∞ < Mu(0, r).
Let us check it for the disk D(a, r) � 0. Making an affine change of variable, we

can consider instead the Mean Value Property on D for a function v(z) = log |z−c|,
c ∈ D∗. Then we have:

1

2π

∫
T

u(z) dθ =
1

2π

∫
T

(
u(z) + log

∣∣∣∣1− c̄zz − c

∣∣∣∣
)
dθ

=
1

2π

∫
T

log |1− z̄c| dθ = 0 > log |c| = v(0).

For the disk D(a, |a|) whose boundary passes through 0, MVP follows by continuity.

Remark 1.10. The above estimate is a particular case of the Jenssen formula:

1

2π

∫
T

log |f(ζ)|d θ = log |f(0)|+
∑

log
1

|ai|
,

where f is a holomorhic function in D, continuous up to the boundary, that does
not vanish on T and at 0.

We let SH(U) stand for the space of continuous subharmonic functions in U .
Obviously, the set of subharmonic functions is invariant under addition and

multiplication by positive numbers, so it is a cone. Also, Maximum of finitely
many subharmonic functions is subharmonic. For instance, the function log+ |z| =
max{log |z|, 0} is subharmonic.

As for harmonic functions, the Subharmonic Mean Value Property implies:

12This convention is not competely standartized.
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Maximum Principle. If a subharmonic function u on a Riemann surface U
has a local maximum in U then it is constant.

However, the Minimum Principle is not any more valid for subharmonic func-
tions.

More generally, we can majorant a subharmonic function by a harmonic one:

Lemma 1.137. Let D be a bounded domain in C, and let u and h be respec-
tively harmonic and a continuous subharmonic funcions on D, both admitting a
continuous extensions to D̄. If u ≤ h on ∂D then u ≤ h in D.

Vice versa, if a function u is continuous in a domain U ⊂ C and the above
property is satisfied for any domain D � U and any harmonic h ∈ H(U), then u is
subharmonic.

Proof. To check the former assertion, apply the Maximum Principle to u−h.
To check the latter, let us consider a coordinate disk D and let h solves the

Dirichlet Problem in D with the boundary values h| ∂D = u| ∂D. Then u|D ≤
h|D. Evaluating it at the center of D, we obtain the Mean Value Property for
subharmonic functions. �

This lemma shows that the notion of subharmonicity is bi-holomorphically in-
variant (at least for continuous functions13, and hence is well defined on an arbitrary
Riemann surface.

Also, let us consider a function

ũD(z) = u(z) for z ∈ U �D, and u(z) = h(z) for z ∈ D,
where h is a harmonic function in D defined in the second part of Lemma 1.137.
We call ũd the harmonic majorant of u rel ∂D. The first part of Lemma 1.137
implies that the harmonic majorant of u is subharmonic.

A function u is called superhamonic if −u is subharmonic. Properties of such
functions follow immediately form the corresponding properties of subharmonic
ones.

7.6. Perron method. A (non-empty) family P of continuous subharmonic
functions on a Riemann surface U is called Perron if it satisfies the following prop-
erties:

(i) If u, v ∈ P then max(u, v) ∈ P;
(ii) For any u ∈ P and any coordinate disk D � U , the harmonic majorant

ũD also belongs to P.
Proposition 1.138. If P is a Perron family on U then the function

h(z) := sup
P
u(z)

is either harmonic or identicaly equal to ∞.

Proof. Since harmonicity is a local property, it is enough to check it within
coordinate disks D � U . Fix such a disk D. Since u ≤ ũ ∈ P, we have
h(z) := sup

P
ũ(z). So, without loss of generality we can assume that all the functions

u ∈ P are harmonic in D.

13It is still true in general, but we will not need it
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Take a countable dense subset X ⊂ D. By means of the diagonal procedure,
we can select a sequence of functions un ∈ P such that h(z) = supun(z) for any
z ∈ X. Let vn be the harmonic majorant (rel ∂D) of the function max(u1, . . . , un),
n ∈ Z+. This is a monotonically inreasing sequence of functions of the family P,
harmonic on D, and such that vn(z) → h(z) on X. By Corollary 1.135, vn → φ
locally uniformly on D, where φ is either harmonic, or else φ ≡ ∞. In either case,
we have:

φ(z) = h(z) ≥ u(z) for any z ∈ X, u ∈ P.
Since both φ and u are continuous, we conclude that φ ≥ u everywhere on D; hence
φ ≥ h everywhere on D. On the other hand, since φ = h on the dense set X and h
is upper semicontinuous (as sup of a family of continuous functions), we conclude
that φ ≤ h everywhere on D. Thus φ ≡ h on D. �

7.7. Dirichlet barriers. We will now apply the Perron method to solve the
Dirichlet problem in an arbitrary domain (for which it is solvable at all).

Let U � S be a domain in a Riemann surface S, and let g be a continuous fun-
cion on ∂U . Let us consider the following Perron family of subharmonic functions:

P ≡ PU (g) = {u ∈ SH(U) : lim sup
ζ→z

u(ζ) ≤ g(z) ∀z ∈ ∂U}.

By Proposition 1.138, the function hg := supP u is harmonic in U . To study its
boundary values, we will introduce the following notions:

A barrier ba at a boundary point a ∈ ∂U is a subharmonic function ba(z)
defined on a relative neighborhood D of a in U , continuous up to ∂D,14 and such
that ba(a) = 0 while ba(z) < 0 for any z �= a. A point a ∈ ∂U is called Dirichlet
regular if it has a barrier.

Example 1.2. If ∂U near a is an arc of a smooth curve then a is regular.
Indeed, then there is a wedge

W = {| arg(z − a)− α| < ε, 0 < |z| < 2π ε}
which is disjoint from Ū . The complementary wedge can be mapped conformally
onto the lower half-plane (by a branch of the power function φ(z) = eiθ(z−a)γ with
appropriate γ ∈ (0, 1) and θ. The function b = Imφ(z) restricts to a barrier at a
on U .

Exercise 1.139. Show that the same is true is ∂U near a is a Jordan arc.

Theorem 1.140. Let U � S be a domain in a Riemann surface S, and let
g be a continuous funcion on ∂U . Let us consider the harmonic function h = hg
constructed above by means of the Perron method. Then for any Dirichlet regular
point a ∈ ∂U , we have: h(z)→ g(a) as z → a.

Proof. Without loss of generality, we can assume that g(a) = 0.
Let us first show that

(7.6) lim inf
z→a

h(z) ≥ 0.

Take a small r > 0 such that the barrier b(z) = ba(z) is wel defined in Dr :=
D(a, 2r)∩U . Let ξ be the supremum of b on Sr := {|z− a| = r}∩U . By definition
of the barrier, ξ < 0.

14This condition can be relaxed, but it is sufficient for our purposes. In fact, harmonic

barriers would also be good enough for us.
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The function ˆ̂b(z) := max(b(z), ξ) is a continuous subharmonic function in
D(a, r)∩U equal to ξ on Sr. Hence it extends to a continuous subharmonic function

in in U by letting b̂ ≡ ξ in U �Dr.
Let now

η = inf{g(z) : z ∈ ∂U �Dr}, −ε = inf{g(z) : z ∈ ∂U ∩Dr} < 0,

and consider

β(z) =
η

ξ
b̂(z)− ε.

This is a subharmonic function in U with

lim
z→p

β(z) = η for p ∈ ∂U �Dr; lim inf
z→p

β(z) ≤ −ε for p ∈ ∂U ∩Dr,

so β belongs to the Perron family P.
It follows that h ≥ β and hence

lim inf
z→a

h(z) ≥ −ε.

Since ε→ 0 as r → 0, we obtain (7.6).

To obtain the opposite estimate, let us consider the negative barrier −b(z). It
allows us to construct, for any ε > 0, a superharmonic function α in U such that

lim inf
z→p

α(z) ≥ g(p) ∀p ∈ U. and lim sup
z→a

α(z) ≤ ε.

By the Maximum Principle, u ≤ α for any u ∈ P, and hence h ≤ α as well. It
fllows that

lim sup
z→a

h(z) ≤ ε,

and we are done. �

We say that a domain U � S has a Dirichlet regular boundary if ∂U is non-
empty and all points of ∂U are regular.

Corollary 1.141. Let U � S be a domain with Dirichlet regular boundary.
Then the Dirichlet problem is solvable in U for any continuous boundary values.

7.8. Harmonic measure. Let U � S be a domain with Dirichlet regular
boundary. Then any continuous function g ∈ C(∂U) admits a harmonic extension
ĝ ∈ H(Ū) to U . Endow H(Ū) with uniform topology on the whole Ū . It is a
Banach space ismorphic to C(∂U) by means of the natural restriction and the
above extension operators.

For a given z ∈ U , evaluation ĝ(z) is a bounded linear functional on C(∂U)
and hence it is represented by a Borel measure μz on ∂U :

ĝ(z) =

∫
∂U

g dμz.

This measure is called the harmonic measure for U at z. For instance, in the unit
disk, we have dμz = P(z, ζ) dθ where P is the Poisson kernel.

If ∂U is disconnected and K ⊂ ∂U is a clopen subset then μz(K) is a harmonic
function on U with boundary values 1 on K and 0 on ∂U � K. This function
itself is sometimes referred to as the “harmonic measure of K” (which may sound
confusing).
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7.9. Green function. We will restrict our discussion to domains U � S with
Dirichlet regular boundary. The Green function G = Gp on U with pole at p ∈ U
is a harmonic function such that

(Gr1) G(z)→ 0 as z → ∂U ;
(Gr2) In a local coordinate z near p such that z(p) = 0, we have:

G(z) = log
1

|z| +O(1) near p.

For instance, the Green function in D with pole at 0 is − log |z|.
Remark 1.11. Obviously, existence of such a function G implies the Dirichlet

regularity of U as −G provides a barrier at any boundary point. In the non-regular
case, condition (Gr1) can be relaxed so that the Green function still exists as long
as ∂U has positive capacity.

Remark 1.12. The Green function has a clear electrostatical meaning as the
potential of the unit charge placed at p in a domain bounded by a conducting
material with the ground potential 0.

The level sets of the Green function Gp are called equipotentials, its gradient
lines are called rays (eminated from p). They form two orthogonal foliations on
U � {p} with singularities at the critical points of Gp

Theorem 1.142. Let U � S be a domain in a Riemann surface S with Dirichlet
regular boundary. Then for any p ∈ U , there exists a unique Green function Gp

with pole at p.

Proof. Let us consider the following family P = PU [p] of functions on U�{p}:
(i) lim sup

z→∂U
u(z) ≤ 0;

(ii) In a local coordinate z near p such that z(p) = 0, we have:

u(z) = log
1

|z| +O(1).

Obviously, it is a Perron family, so the function G = supP u is harmonic in
U � {p} unless it is identically equal to ∞. We will show that this function is
actually finite, and it is the desired Green function.

First, P is non-empty. Indeed, for a small r > 0, the function u0 := log+(r/|z|)
(equal to log(|z|/r) on the coordinate disk D(p, r) and extended by 0 the whole U)
is in P. Thus,

(7.7) G(z) ≥ log+
|z|
r
≥ 0.

Let us show that G is finite. Let Sr be the coordiate circle centered at p of
radius r, and let ‖u‖r be the sup-norm of a function u on Sr. Let us fix two small
radii 0 < r < R and compare ‖u‖r and ‖u‖R for u ∈ P.

First, let us look at u from “inside”. Take a small ε > 0 and let

uε(z) = u(z) + (1 + ε) log |z|.
This function is subharmonic in D(p,R)� {p} and equal to −∞ at p (by property
(ii) of the family P). Hence it is subharmonic on the whole disk D(p,R). By the
Maximum Principle, ‖uε‖r ≤ ‖uε‖R, so

‖u‖r ≤ ‖u‖R + (1 + ε) log
R

r
.
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Letting ε→ 0, we obtain

(7.8) ‖u‖r ≤ ‖u‖R + log
R

r
.

On the other hand, we can look at u from “outside”. The Maximum Principle
in S �D(z, r) implies that for any u ∈ P
(7.9) ‖u‖R < ‖u‖r,
but we want to have a definite drop:

(7.10) ‖u‖R ≤ λ ‖u‖r
with some λ < 1 independent of u. Together with (7.8), this would imply

‖u‖r ≤
1

1− λ log
R

r

that would prove finitness of G on Sr and hence everywhere on U .
To prove (7.10), let us consider the solution v of the Dirichlet problem in

U �D(z, r) with boundary values 1 on Sr and 0 on ∂U (the “harmonic measure”
of Sr). Since the boundary of ∂U is regular by assumtion and Sr is regular as
a smooth curve, such a v exists (Corollary 1.141). By the Maximum Principe,
λ := ‖v‖R < 1.

Furthermore, the function u(z) is asymptotically majorated by ‖u‖r v(z) near
the boundary of S �D(p, r). By the Maximum Principle,

(7.11) u(z) ≤ ‖u‖r v(z), z ∈ �D(p, r).

Taking its sup on SR, we obtain (7.10).
The required properties of the Green function also follow from the above esti-

mates. Indeed, (7.7) and (7.11) imply (Gr1), while (7.7) and (7.8) imply (Gr2).
�

Notice in conclusion that the Green functiom extends subharmonically to the
whole Riemann surface S by letting G ≡ 0 on S � U .

Exercise 1.143. The Green funcion has a critical point in U if and only if U
is not simply connected.





CHAPTER 2

Quasiconformal geometry

11. Analytic definition and regularity properties

11.1. Linear discussion.
11.1.1. Teichmüller metric on the space of conformal structures. Let V ≈ R2 be

a real two-dimensional vector space. A conformal structure μ on V is a Euclidean
structure (v, w)μ up to scaling. Equivalently, it is an ellipse Eμ = {‖w‖μ = 1}
centered at the origin, up to scaling (here ‖w‖μ is the associted Euclidean norm).
Let Conf(V ) stand for the space of conformal structures on V .

Let us consider two Euclidean structures, (v, w)μ and (v, w)ν representing con-
formal structures μ and ν. We define the Teichmüller distance between μ and ν as
the distortion of one Euclidean norm with respect to the other:

distT(μ, ν) = log

(
max
w∈V ∗

‖w‖μ
‖w‖ν

: min
w∈V ∗

‖w‖μ
‖w‖ν

)
where V ∗ = V � {0}.

Note that it is independent of the the choice of Euclidean structures representing
μ and ν.

Exercise 2.1. Check that distT is a metric on Conf(V ).

If we simultaneously diagonalize the Euclidean structures so that

‖w‖2ν = x2 + y2, ‖w‖2μ = x2/a2 + y2/b2, where w = (x, y), a ≥ b > 0,

then

distT(μ, ν) = log(a/b) ≡ logK.

The ratio K = a/b of the axes of the ellipse Eμ is called the dilatation of μ relative

ν. Informally we can say that the Teichml̈ler distance measures the relative shape
of the ellipses representing our conformal structures.

An invertible linear operator A : V ′ → V induces a natural pullback opera-
tor A∗ : Conf(V ) → Conf(V ′): If (v, w)μ is the Euclidean structure representing
μ ∈ Conf(V ) then the pullback A∗μ is represented by (Av,Aw)μ. It follows imme-
diately from the definitions, that the Teichmüller metric is preserved by the pullback
transformations.

In particular, the group GL(V ) of invertible linear automorphisms of V iso-
metrically acts on Conf(V ) on the right: μA = A∗μ. Let us restrict this action to
the group GL+(V ) of orientation preserving automorphisms. Since this action is
transitive, it turns Conf(V ) into a GL+(V )-homogeneous space.

To understand this space, let us fix some reference conformal structure σ and
select coordinates (x, y) on V that bring it to the standard form x2 + y2. Then
GL+(V ) gets identified with GL+(2,R), and the isotropy group of σ gets identified

81
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with the group Sim(2) of similarities. Hence

(11.1) Conf(V ) ≈ Sim(2)\GL+(2,R) = SO(2)\SL(2,R).
Recall that in §1.5 we endowed the symmetric space SO(2)\SL(2,R) with an in-
variant metric.

Exercise 2.2. This invariant metric coincides with the Teichmüller metric on
Conf(V ).

But according to Exercise 1.8, the hyperbolic plane H is naturally isometric to
the symmetric space

PSL(2,R)/PSO(2) ≈ SL(2,R)/SO(2).

Since the left and right symmetric spaces are equivariantly isometric by the inversion
A �→ A−1, we conclude:

Proposition 2.3. The space Conf(V ) endowed with the Teichmüller metric is
equivariantly isometric to the hyperbolic plane H.

In concusion, let us give one more interpretation of the isomorphism (11.1). It
is obtained by associating to an operator A ∈ GL+(2,R) the conformal structure
μ represented by the Euclidean structure (v, w)μ = (Av,Aw) (where (v, w) is the
standard Euclidean structure on R2). The coresponding ellipse Eμ is the pullback
of the standard round circle: Eμ = A−1(T).

Making use of the polar decompositions of linear operators, we can uniquely
represent A as a product of a positive self-adjoint operator P and a rotation O,
A = O · P . Let σmax ≥ σmin > 0 stands for the eigenvalues of P . The operator A
is a similarity if and only if P is scalar, i.e., σmax = σmin. Otherwise we have two
orthogonal (uniquely defined) eigenlines lmax and lmin corresponding to σmax and
σmin respectively. These lines give the directions of maximal and minimal expansion
for the operator A. Moreover, the ellipse Eμ = A−1(T) = P−1(T) has the big axis
of length 1/σmin on lmin and the small axis of length 1/σmax on lmax.The dilatation
of this ellipse (equal to σmax/σmin) will be also called the dilatation of A, DilA.picture

Exercise 2.4. Show that Dil(AB) ≤ DilA DilB with equality attained iff the
eigenlines of A and B−1 coincide.

11.1.2. Beltrami coefficients. Let now V = CR be the decomplixified C. It is
endowed with the standard conformal structure σ (represented by the Euclidean
metric |z|2) and with the standard orientation (such that {1, i} is positively ori-
ented). Let A : CR → CR be an invertible R-linear operator (which can be also
viewed as a C-valued R-linear form on V ).

Let us describe the conformal structure A∗σ in coordinates z, z̄ of CR. The
operator A can be represented as

(11.2) z �→ az + bz̄ = az(1 + μ
z̄

z
),

where μ = b/a is called the Beltrami coefficient of A. Let μ = |μ|e2iθ, where
θ ∈ R/πZ.

Exercise 2.5. A is conformal iff μ = 0. A is invertible iff |μ| �= 1. A is
orientartion preserving iff |μ| < 1.
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In what follows we assume that A is an invertible orientation preserving oper-
ator, i.e., |μ| < 1. If we have another form A′ = a′z + b′z̄ on V then A/A ≡ const
iff μ = μ′. Thus, the conformal structures A∗σ are in one-to-one correspondence
with the Beltrami coefficient μ ∈ D, so Conf(V ) ≈ D.

Let us now describe the shape of the ellipse A−1(T) in terms of μ. The
maximum of |Az| on the unit circle T = {z = eiφ} is attained at the direc-
tion φ = θ modπZ, while the minimum is attained at the orthogonal direction
θ + π/2 modπZ. These are the eigenlines lmax and lmin of the positive part P of
A. The corresponding eigenvalues are equal to

σmax = |a|(1 + |μ|) = |a|+ |b|, σmin = |a|(1− |μ|) = |a| − |b|.
Thus

(11.3) DilA =
1 + |μ|
1− |μ| , detA = |a|2 − |b|2 = σmin DilA.

This gives is a description of the dilatation and orientation of the ellipse E = A−1(T)
are described in terms |μ| and argμ respectively.

Exercise 2.6. Show that the correspondence Conf(V ) ≈ D is a hyperbolic

isometry equivariant with respect to the standard actions of SL#(2,R) on CR and
D.

Under conformal changes of variable, z = Aζ = αζ (α ∈ C∗) the Beltrami
coefficients is rotated: ν := A∗μ = (ᾱ/α)μ, while the (-1,1)-form

μ
z̄

z
= ν

ζ̄

ζ

does not change. It shows that the Betrami coefficients in various conforml coordi-
nates represent a single (-1,1)-“Beltrami form”.

In what follows we will feel free to identify confomal structures with the corre-
sponding Beltrami forms (and in a particualr coordinate, with the corresponding
Beltrami coefficients). We will often use the same notation for these objects.

11.1.3. Infinitesimal notation. Let us now interprete the above discussion in
infinitesimal terms. Consider a map h : U → C on a domain U ⊂ C differentiable
at a point z ∈ U , and apply the above considerations to its differential Dh(z) :
TzU → ThzC. In the (dz, d̄z)-coordinates of the tangent spaces, it assumes the
form

∂h+ ∂̄h = ∂zh dz + ∂z̄h d̄z,

where the partial derivatives ∂z and ∂̄z and the operators ∂ and ∂̄ are defined in
§1.8. Moreover,

Dh(z) = ∂zh(z) dz

(
1 + μh(z)

dz

dz̄

)
,

where μh = ∂z̄h/∂zh is the Beltrami coefficient of h at z. In fact, as was explained
above, these coefficients represent a (−1, 1)-form

∂̄h/∂h = μh
dz̄

dz

called the Beltrami differential of h at z. However, in what follows we will not
make a notational difference between the Beltrami differential and the coefficient
(and will usually use notation ∂, ∂̄ for the partial deriatives ∂z, ∂z̄).
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Assume that Dh(z) is non-singular and orientation preserving, i.e., |μh| < 1.
The map h is conformal at z if and only if μh(z) = 0, which is equivalent to the
Cauchy-Riemann equation ∂̄h(z) = 0.

Let us consider an infinitesimal ellipse

(11.4) Eh(z) ≡ Dh(z)−1(Thz) ⊂ TzU,

where Thz is a round circle in the tangent space ThzU . If h is not conformal at
z, then Eh(z) is a genuine (not round) ellipse with the small axis in the direction
arg(μh(z))/2 mod π and the shape

(11.5) Dil(h, z) =
1 + |μh(z)|
1− |μh(z)|

.

Moreover, by the second formula of (11.3), we have:

(11.6) Jac(h, z) = |∂h(z)|2 − |∂̄h(z)|2 = σmin(z) Dil(h, z),

where Jac(h, z) ≡ detDh(z) and σmin(z) = inf
|v|=1

Dh(z) v.

11.2. Measurable conformal structures. A (measurable) conformal struc-
ture on a domain U ⊂ C is a measurable family of conformal structures in the
tangent planes TzU , z ∈ U . In other words, it is a measurable family E of infinites-
imal ellipses E(z) ⊂ TzU defined up to scaling by a measurable function ρ(z) > 0,
z ∈ U . (As always in the measurable category, all the above objects are defined
almost everywhere.) According to the linear discussion, any conformal structure
is determined by its Beltrami coefficient μ(z), z ∈ U , a measurable function in
z assuming its values in D, and vice versa. Thus, conformal structures on U are
described analytically as elements μ from the unit ball of L∞(U). We say that a
conformal structure has a bounded dilatation if the dilatations of the ellipses E(z)
are bounded almost everywhere. In terms of Beltrami coefficients, it means that
‖μ‖∞ < 1 since

Dilμ = ‖DilE(z)‖∞ =
1 + ‖μ‖∞
1− ‖μ‖∞

.

The standard conformal structure σ is given by the family of infinitesimal cir-
cles. The corresponding Beltrami coefficient vanishes almost everywhere: μ = 0 in
L∞(U).

The space of conformal structures on S with bounded dilatation is endowed
with the Teichmüller metric:

distT(μ, ν) = ‖distT(μ(z), ν(z))‖∞.
Denote by D̄+(U, V ) (standing for “differentiable homeomorphisms”) the space

of orientation preserving homeomorphisms f : U → V , which are differentiable
almost everywhere with a non-singular differential Df(z) measurably depending
on z.1 Consider some homeomorphism h ∈ D̄+(U, V ) between two domains in C.
Then by the above linear discussion we obtain a measurable family E of infinitesimal
ellipses Eh(z) = Dh(z)−1(Thz) ⊂ TzU that determines a (measurable) conformal
structure μh = h∗σ on U . Analytically this structure can be described as thepicture

1If we do not need to specify the domain and the range of h we write simply h ∈ D̄+; if we

do not assume that f is orientation preserving, we skip “+”.
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Beltrami coefficient μh(z) = ∂̄h(z)/∂h(z) of h. We say that h has a bounded
dilatation if the corresponding conformal structure h∗σ does. In this case we let

Dilh := ‖Dil(h, z)‖∞ =
1 + ‖μh‖∞
1− ‖μh‖∞

= distT(h
∗σ, σ).

Obviously, the pullback structure h∗σ does not change if we postcompose h with
a conformal map φ. If we precompose h with a conformal map φ then the Beltrami
coefficient will be transformed as follows:

μh◦φ =
φ′

φ′
μh,

so that the Beltrami coefficients in various local charts represent a single (-1,1)-form
μdz̄/dz called the Beltrami differential of h (compare §11.1.3).

This allows us to generalize the above discussion to arbitrary Riemann surfaces.
A (measurable) conformal structure on a Riemann surface S is a measurable family
E of infinitesimal ellipses E(z) defined up to scaling. Analytically it is described as
a measurable Beltrami differential μ with |μ(z)| < 1 a.e. To any homeomorphism
h ∈ D̄+(S, S′) between two Riemann surfaces corresponds the pullback structure
h∗σ represented by the field of ellipses Eh(z) = Dh(z)−1(Tr).

2 The corresponding
Beltrami differential μh = ∂̄h/∂h (where ∂̄h and ∂h are now viewed as 1-forms).

Remark. A key problem is whether any conformal structure E is associated to
a certain map h. This problem has a remarkable positive solution in the category
of quasiconformal maps (see §2.34 below).

Let us consider a smaller class AC+(S, S′) ⊂ D̄+(S, S′) of absolutely continu-
ous orientation preserving homeomorphisms between Riemann surfaces S and S′.3

Then we can naturally pull back any measurable conformal structure μ′ on S′ to
obtain a conformal structure μ = h∗(μ′) on S. If h−1 is also absolutely continuous
then we can push forward the structures: μ′ = h∗(μ).

More generally, let us consider a (non-invertible) map f : U → V which locally
belongs to class AC+ outside a finite set of “critical points”. For such maps the
push-forward operation is not well-defined, but the pullback ν = f∗μ is still well-
defined. The fact that f has critical points does not cause any troubles since we need
to know μ only almost everywhere. The property that Dil(f∗μ) ≤ Dil(f) ·Dil(μ) is
obviously valid in this generality.

11.3. Distributional derivatives and absolute continuity on lines. Let
U be a domain in C ≡ CR. All functions below are assumed to be complex valued. A
test function φ on U is an infinitely differentiable function with compact support.
One says that a locally integrable function f : U → C has distributional partial
derivatives of class L1

loc if there exist functions h and g of class L1
loc on U such that

for any test function φ,∫
U

f · ∂φdm = −
∫
U

hφdm;

∫
U

f · ∂̄φdm = −
∫
U

gφdm,

wherem is the Lebesgue measure. In this case h and g are called ∂ and ∂̄ derivatives
of f in the sense of distributions. Clearly this notion is invariant under smooth

2Note that the ellipses Eh(z) are defined only up to scaling since the round circles Tr on S′

are (as there is no preferred metric on S′).
3Reminder: h is absolutely continuous if for any set X of zero Lebesgue measure, the preimage

h−1X has also zero measure.
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changes of variable, so that it makes sense on any smooth manifold (and for all
dimensions).

Exercise 2.7. Prove that a function f on the interval (0, 1) has a destributional
derivative of class L1

loc if and only if it is absolutely continuous. Moreover, its
classical derivative f ′(x) coincides with the distributional derivative.

There is a similar criterion in the two-dimensional setting. A continuous func-
tion f : U → C is called absolutely continuous on lines if for any family of parallel
lines in any disk D � U , f is absolutely continuous on almost all of them. Thus,
taking a typical line l of the above family, the curve f : l→ C is rectifiable. Clearly
such functions have classical partial derivatives almost everywhere.

Proposition 2.8. Consider a homeomorphism f : U → V between two do-
mains in the complex plane. It has distributional partial derivatives of class L1

loc if
and only if it is absolutely continuous on lines.

In fact, in the proof of existence of distributional partial derivatives (the easy
direction of the above Proposition), just two transversal families of parallel lines are
used. Thus one can relax the definition of absolutele continuity on lines by taking
any two directions (“horizontal” and “vertical”).

Proposition 2.9. Consider a homeomorphism f : U → V which is absolutely
continuous on lines. Then for almost any z ∈ U , f is differentiable at z in the
classical sense, i.e., f ∈ D̄.

This result can be viewed as a measurable generalization of the elementary fact
that existence of continuous partial derivatives implies differentiability.

11.4. Definition. We are now ready to give a definition of quasiconformal-
ity. An orientation preserving homeomorphism f : S → S′ between two Riemann
surfaces is called quasi-conformal if

• It has locally integrable distributional partial derivatives;
• It has bounded dilatation.

Note that the second property makes sense because the first property implies
that f is differentiable a.e. in the classical sense (by the results of §11.3).

We will often abbreviate “quasiconformal” as “qc”. A qc map f is called K-qc
if Dil(f) ≤ K.

A map f : S → S′ is called K- quasiregular if for any z ∈ S there exist K-qc
local charts φ : (U, z) → (C, 0) and ψ : (V, f(z)) → (C, 0) such that ψ ◦ f ◦ φ−1 :
z �→ zd. Sometimes we will abbreviate K-quasiregular maps as “K-qr”. A map is
called quasiregular if it is K-qr for some K.

Exercise 2.10. Show that any quasiregular map f : S → S′ can be decomposed
as g ◦ h, where h : S → T is a qc map to some Riemann surface T and g : T → S′

is holomorphic. In particular, if S = S′ = Ĉ then also T = C and g : Ĉ → Ĉ is a
rational map.

11.5. Absolute continuity and Sobolev class H. We will now prove sev-
eral important regularity properties of quasi-conformal maps. Let us define a
Sobolev class H = H(U) as the space of uniformly continuous functions f : U → C

whose distributional partial derivatives on U belong to L2(U). The norm on H
is the maximum of the uniform norm of f and L2-norm of its partial derivatives.
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Infinitely smooth functions are dense inH. This can be shown by the standard regu-
larization procedure: convolute f with a sequence of functions φn(x) = n2φ(n−1x),
where φ is a non-negative test function on U with

∫
φ dm = 1 (see [?, Ch V, §2.1]

or [LV, Ch. III, Lemma 6.2]).

Proposition 2.11. Quasiconformal maps are absolutely continuous with re-
spect to the Lebesgue measure, and thus for any Borel set X ⊂ U ,

m(fX) =

∫
X

Jac(f, z) dm.

The partial derivatives ∂f and ∂̄f belong to L2
loc.

Proof. Since both statements are local, we can restrict ourselves to home-
omorphisms f : U → U ′ between domains in the complex plane. Consider the
pull-back of the Lebesgue measure on U ′, μ = f∗m. It is a Borel measure defined
as follows: μ(X) = m(fX) for any Borel set X ⊂ U . Let us decompose it into
absolutely continuous and singular parts: μ = h ·m+ ν. By the Lebesgue Density
Points Theorem, for almost all z ∈ U , we have:

1

πε2

∫
D(z,ε)

h dm→ h(z);
1

πε2
ν(D(z, ε))→ 0 as ε→ 0.

Summing up we obtain:

m(f(D(z, ε))

m(D(z, ε))
=

μ(D(z, ε)

m(D(z, ε)
→ h(z) as ε→ 0.

But if f is differentiable at z then the left hand-side of the last equation goes
to Jac(f, z). Hence Jac(f, z) = h(z) a.e. It follows that for any Borel set X,

(11.7)

∫
X

Jac(f, z) dm =

∫
X

h dm ≤ μ(X) = m(fX).

But Jac(f, z) = |∂̄f(z)|2 − |∂f(z)|2 ≥ (1− k2) |∂f(z)|2, where k = ‖μf‖∞. Thus

(11.8)

∫
X

|∂f |2 dm ≤ 1

1− k2 m(fX);

∫
X

|∂̄f |2 dm ≤ k2

1− k2 m(fX),

and we see that the partial derivatives of f are locally square integrable.
What is left is to prove the opposite to (11.7). As we have just shown, f locally

belongs to the Sobolev class H. Without loss of generality we can assume that
it is so on the whole domain U , i.e., f ∈ H(U). Let us approximate f in H(U)
by a sequence of C∞ functions fn. Take a domain D � U with piecewise smooth
boundary (e.g., a rectangle).

Let Vn ⊂ fnD be the set of regular values of fn. By Sard’s Theorem, it has
full measure in fnD. Let R = f−1

n Vn ∩D. Note that the
∫
Rn

Jac fn dm is equal to

the area of the image of fn|Rn counted with multiplicities:∫
Rn

Jac(fn, z) dm =

∫
Vn

card(f−1
n ζ) dm ≥ m(Vn) = m(fnD).

Since fn → f uniformly on D, lim infm(fnD) ≥ m(fD). Since Jac(fn) → Jac(f)
in L1(U), ∫

R

Jac(fn, z) dm→
∫
R

Jac(f, z) dm ≤
∫
D

Jac(f, z) dm.

Putting the last estimates together, we obtain the desired estimate for D.
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For an arbitrary Borel set X ⊂ U , the result follows by a simple approximation
argument using a covering of X by a union of rectangles Di with disjoint interiors
such that m(∪Di �X) < ε. �

12. Geometric definitions

Besides the analytic definition given above, we will give two geometric defini-
tions of quasi-conformality, in terms of quasi-invariance of moduli, and in terms of
bounded circular dilatation (or, “quasi-symmetricity”).

12.1. Quasi-invariance of moduli. In this section we will show, by the
length-area method, that the moduli of annuli are quasi-invariant under qc maps.
This will follow from a more general result on quasi-invariance of extremal length:

Lemma 2.12. Let h : U → Ũ be a K-qc map. Let Γ and Γ̃ = f(Γ) be two
families of rectifiable curves in the respective domains such that h is absolutely
continuous on all curves of Γ. Then L(Γ) ≤ KL(Γ̃).

Proof. To any measurable metric ρ on U , we are going to associate a metric
ρ̃ on Ũ such that h∗(ρ̃) ≥ ρ while h∗(mρ̃) ≤ Kmρ (so, the map h is expanding with
respect to these metrics, with area expansion bounded by K). Then ρ(γ̃) ≥ ρ(γ) for

any γ ∈ Γ and γ̃ = f(γ) ∈ Γ̃, while mρ̃(Ũ) ≤ Kmρ(U). Hence Lρ̃(Γ̃) ≥ K−1Lρ(Γ).
Taking the supremum over all metrics ρ, we obtain the desired estimate.

To define correspondence ρ �→ ρ̃, recall formula (11.6) relating the Jacobian and
the minimal expansion. Letting ρ̃(hz) = ρ(z)/σmin(z), we obtain for a.e. z ∈ U
and any unit tangent v ∈ TzU :

|h∗(dρ̃) v| = ρ̃(hz)|Dh(z)v| ≥ dρ (v)

and

h∗(dmρ̃) = ρ̃(hz)2 Jach(z) dxdy = K(z)ρ(z)2dxdy ≤ Kdmρ,

which are the required properties of the metrics. �

Proposition 2.13. Consider a K-qc map h : A → Ã between two topological
annuli. Then

K−1 mod(Ã) ≤ mod(A) ≤ Kmod(Ã).

Proof. Let Γ̃ be the family of genuinely vertical paths on Ã on which h−1 is
absolutely continuous, and let Γ = h−1(Γ̃). By Proposition 1.59, mod Ã = L(Γ̃),
while modA ≤ L(Γ). By Lemma 2.12, L(Γ) ≤ KL(Γ̃), which yields the desired
right hand-side estimate. The left-hand side estimate is obtained by replacing h
with h−1. �

Exercise 2.14. Show that the moduli of rectangles are quasi-invariant in the
same sense as for the annuli.

Exercise 2.15. Prove that C and D are not qc equivalent.



12. GEOMETRIC DEFINITIONS 89

12.2. Macroscopic and upper dilatation. According to the original ana-
lytic definition of qc maps, they have bounded infinitesimal dilatation a.e. It turns
out that this property can be substantially strengthened: in fact, qc maps have
bounded macroscopic dilatation in sufficiently small scales everywhere.

Let h : U → V be a homeomorphism between two domains, and let D :=
D(z, ρ) ⊂ U . Then we can define the macroscopic dilatation Dil(h, z, ρ) as the
shape of h(D) around h(z) (as for conformal maps in §4.4). Recall also from §4.4
the definitions of the inner and outer radii of a pointed domain.

Lemma 2.16. Let h : U → V be a K-qc homeomorphism. Let D = D(z, ρ) ⊂ U
and D(h(z), R) ⊂ V , where R is the outer radius of h(D). Then

Dil(h, z, ρ) ≤ expCK,

where C an absolute constant.

Proof. For notational convenience, let us normalize h so that z = h(z) = 0,
and let r be the inner radius of h(D). Let a and b be two points on the circle Tρ

for which |h(a)| = r and |h(b)| = R. Let us consider the annulus A′ = A(r,R) ⊂ V
and let A = h−1(A′). The inner component of C�A contains points 0 and a ∈ Tρ,
while its outer component of C � A contains b ∈ Tρ. By Lemma 1.62, modA is
bounded by an absolute constant C. By Lemma 2.13,

1

2π
log

R

r
= modA′ ≤ KmodA ≤ KC,

and we are done. �

The upper dilatation of h at z is defined as

Dil(h, z) = lim sup
ρ→0

Dil(h, z, ρ).

(Of course, if h is differentiable at z then Dil(h, z) = Dil(h, z).) We define the upper
dilatation of h as

Dil(h) = sup
z∈U

Dil(h, z).

Lemma 2.16 immeadiately implies:

Proposition 2.17. Any K-qc map U → V has a bounded upper dilatation:

Dil(h) ≤ expCK,

where C is an absolute constant.

12.3. Quasisymmetry.
12.3.1. Generalities. We will now give a characterization of qc maps that can

be applied in a very general setting. For a triple of points (x, y, z) in a metric space
X, let the brackets

[y, z]x :=
dist(z, x)

dist(y, x)

denote the distance ratio centered at x.
Let η : R+ → R+ be a function such that η(t) → as t → 0. An embedding

h : X → Y between two metric spaces is called η-quasisymmetric (“η-qs”) if for
any triple of points (x, y, z) in X we have:

(12.1) [y, z]x ≤ t =⇒ [h(y), h(z)]h(x) ≤ η(t).
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A map h is called quasisymmetric if it is η-qs for some η. Such an h distorts the
ratios in a controlled way.

The function η(t) is called the qs dilatation of h.

Exercise 2.18. Show that the dilatation function η can be selected as a home-
omorphism R+ → R+.

For instance, bi-Lipschitz homeomorphisms with constant L are η-qs with linear
dilatation η(t) = L2t. However, the class of qs maps is much bigger:

Exercise 2.19. The power homeomorphisms of R, x �→ sign(x)|x|δ, are qua-
sisymmetric. What are their qs dilatations?

Qs maps can surve as morphisms of the category of metric spaces:

Exercise 2.20. The compositions and the inverse of qs maps are qs. Calculate
their qs diltations.

In particular, qs maps X → X form a group.

12.3.2. Qc vs qs. The most important value of the dilatation function η(t) is
η(1) that controls macroscopic dilatation of h on the balls and (as we will see
momentarily) often controls the full η(t).

Lemma 2.21. An embedding h : Rm → Rn is η-qs if and only if (quantitatively)
it has L-bounded macroscopic dilatation: Dil(h, z, ρ) ≤ L for all discs D(z, ρ).

Proof. Obviously, quasisymmetry implies that macroscopic dilatation is bounded
by L = η(1). Vice versa, bounded macroscopic dilatation implies (12.1) with a
function η(t) = O(tα) as t → ∞, where the exponent α ≥ 1 depends only on the
dilatation.

Exercise 2.22. Prove this assertion and calculate η(t) in terms of L = η(1).

What is more subtle is to show that η(t)→ 0 as t→ 0.
Let us take a triple of points x, y, z, and let x′, y′, z′ stand for their images

under h (in what follows, the images of points under h will be marked with the
“prime” as well). Property (12.1) implies:

(12.2) [z, y]x ≥ 1 =⇒ [z′, y′]x′ ≥ ε = 1/L > 0.

By making affine changes of variable in the domain and the target, we can
normalize the situation so that x = x′ = 0, |y| = |y′| = 1, z = R ∈ R, z′ = r ∈ R.
Of course, we can assume that R > 1. We want to show that r → ∞ as R → ∞.
Let us partition the interval [0, z] by points zn = z/2n, n = 0, 1, . . . , N , where N is
selected so that zN ∈ [1, 2). So, N ≥ log2R− 1→∞ as R→∞.

Applying (12.2) to the triple of points (0, 1, zN ), we obtain: |z′N | ≥ ε. Then
applying it inductively (backwards) to the triples (zn, 0, zn−1) (centered at zn−1),
we conclude that

|z′n − z′n−1| ≥ ε|z′n−1| ≥ ε2,

so the net of points z′n is ε2-separated. On the other hand, applying (12.2) to the
triple (0, zn, z), we conclude that |z′| ≥ ε|z′n|, so that all the points z′n belong to the
disc Dr/e. Hence the discs of radius ε2/2 centered at the zn are pairwise dosjoint
and are contained in the disc D2r/e. It follows that

N ≤ areaD2r/ε

areaDε2/2
=

16

ε6
r2,



12. GEOMETRIC DEFINITIONS 91

and hence r ≥ c
√
logR with c > 0 depending only on L. �

In the light of the above result, embeddings h : Rw → Rn with L-bounded
macroscopic dilatation will also be referred to as “L-qs”. (We hope that this slight
terminological inconsistency will not cause confusion).

Putting together Propositions 2.16 and 2.21, we obtain:

Proposition 2.23. There is an L depending only on K such that:

(i) Any K-qc homeomorphism h : C→ C is L-qs (in the Euclidean metric);
(ii) Any K-qc homeomorphism h : C̄ → C̄ fixing 0, 1 and ∞ is L-qs (in the

spherical metric).

Exercise 2.24. Without normalization, the last assertion would fail.

12.4. Back to the analytic definition.

Proposition 2.25. If a homeomorphism h : U → V between domains U and
V has an L-bounded circular dilatation then it is L-qc.

Proof. Since the L-bounded circular dilatation implies the L-bounded infini-
tesimal dilatation at any point of differentiability, all we need to show is that h has
the required regularity, i.e., it is absolutely continuous on almost all parallel lines.
Since this is a local property, we can assume that U us the unit square, and that
the parallel lines in question are horizontal.

Let Ub = {z ∈ U : Im z ≤ b}. Since the area function

μ : b �→ area(h(Ub))

is monotonic, it is differentiable for a.e. b. Let us take such a point b where
μ is differentiable, and prove absolute continuity of h on the corresponding line
γb = {z : Im z = b}.

For K ∈ N, let XK = {z ∈ γb : Lh(x, ε) ≤ K/2 for ε ≤ 1/K}. Since the
dilatation of h is bounded4, we have:

⋃
XK = γb. Hence it is enough to prove that

h|XK is absolutely continuous.
Let Q ⊂ XK be a set of zero length. We want to show that h(Q) has zero

length as well. By approximation, it is sufficinet to show for closed sets. Then Q
can be covered with finitely many disks Di = D(zi, ε) (zi ∈ γb, i = 1, . . . , n) with
intersection multiplicity at most 2 and an arbitrary small total length. Hence for
any δ > 0, we have nε ≤ δ once ε is sufficiently small.

Let Mi = Mh(zi, ε) and mi = mh(zi, ε). Then Mi ≤ kmi, l(hX) ≤∑Mi, and
by the Cauchy-Bunyakovsky inequality,

l(hX)2 ≤ n
∑

M2
i ≤ nK2

∑
m2

i ≤
K2δ

π
· area(h ∪Di))

ε
.

But the last ratio is bounded by

μ(b+ ε)− μ(b− ε)
ε

→ 1

2
μ′(b) as ε→ 0,

and the desired conclusion follows. �

4For the regularity purposes, it is sufficient to assume that the circular dilatation is finite

everywhere.
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13. Further important properties of qc maps

13.1. Weyl’s Lemma. This lemma asserts that a 1-qc map is conformal. In
other words, if a qc map is infiniesimally conformal on the set of full measure (i.e.,
∂̄h(z) = 0 a.e.), then it is conformal in the classical set. Since ∂̄h(z) = 0 is just the
Cauchy-Riemann equation, this statement is classical for smooth maps.

Let us formulate a more general version of Weyl’s Lemma:

Weyl’s Lemma (Weyl’s Lemma). Assume that a continuous function h : U →
C has distributional derivatives of class L1

loc. If ∂̄h(z) = 0 a.e., then h is holomor-
phic.

Proof. By approximation, Weyl’s Lemma can be reduced to the classical
statement. Since the statement is local, we can assume without loss of general-
ity that the partial derivatives of h belong to L1(U). Convoluting h with smooth
bump-functions we obtain a sequence of smooth functions hn = h∗θn converging to
h uniformly on U with derivatives converging in L1(U). Let us show that ∂̄hn = 0.
For a test function η on U , we have:∫

∂̄hn(z) η(z) dm(z) = −
∫
hn(z) ∂̄η(z) dm(z)

= −
∫
h(ζ) dm(ζ)

∫
θn(z − ζ)∂̄η(z) dm(z)

=

∫
h(ζ) dm(ζ)

∫
∂̄θn(z − ζ)η(z) dm(z)

=

∫
η(z) dm(z)

∫
h(ζ) ∂̄θn(z − ζ) dm(ζ)

=

∫
η(z) dm(z)

∫
∂̄h(ζ) θn(z − ζ) dm(ζ) = 0

Here the first and the third equalities are the classical integration by parts, the
next to the last one comes from the definition of the distributional derivative, and
the intermediate ones come from the Fubini Theorem.

It follows that the smooth functions hn satisfy the Cauchy-Riemann equations
and hence holomorphic. Since uniform limits of holomorphic functions are holo-
morphic, h is holomorphic as well. �

13.2. Devil Staircase. The following example shows that Weyl’s Lemma is
not valid for homeomorphisms of class D̄ (i.e., differentiable a.e.). The technical
assumption that the classical derivative can be understood in the sense of distribu-
tions (which allows us to integrate by parts) is thus crucial for the statement.

Take the standard Cantor set K ⊂ [0, 1] and construct a devil staircase h :
[0, 1] → [0, 1], i.e., a continuous monotone function which is constant on the com-
plementary gaps to K.

Exercise 2.26. Do the construction. (Topologically it amounts to showing that
by collapsing the gaps to points we obtain a space homeomorphic to the interval.)

Consider a strip S = [0, 1] × R and let f : (x, y) �→ (x, y + h(x)). This is a
homeomorphism on S which is a rigid translation on every strip G×R over a gap
G ⊂ [0, 1] � K. Since m(K × R) = 0, this map is conformal a.e. However it is
obviously not conformal on the whole strip P .
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Clearly f in not absolutely continuous on the horizontal lines: it translates
them to devil staircases.

13.3. Quasiconformal Removability and Gluing. A closed set K ⊂ C is
called qc removable if any homeomorphism h : U → C defined on an neighborhood
U of K, which is quasiconformal on U �K, is quasiconformal on U .

Remark. We will see later on (§??) that qc removable sets have zero measure
and hence Dil(f |U) = Dil(f |U �K).

Exercise 2.27. Show that isolated points are removable.

Proposition 2.28. Smooth Jordan arcs are removable.

Proof. Let us consider a smooth Jordan arc Γ ⊂ U and a homeomorphism
f : U → C which is quasi-conformal on U�Γ. We should check that f is absolutely
continuous on lines near any point z ∈ Γ. Take a small box B centered at z whose
sides are not parallel to TzΓ. Then any interval l in B parallel to one of its sides
intersects Γ at a sinle point ζ. Since for a typical l, f is absolutely continuous on
the both sides of l� {ζ}, it is absolutely continuous on the whole interval l as well.

Moreover, Dil(f) is obviously bounded since it is so on U � Γ and Γ has zero
measure. �

The above statement is simple but important for holomorphic dynamics. It
will allow us to construct global qc homeomorphisms by gluing together different
pieces without spoiling dilatation.

Let us now state a more delicate gluing property:

Bers’ Lemma. Consider a closed set K ⊂ C̄ and two its neighborhoods U and
V . Assume that we have two quasi-conformal maps f : U �K → Ĉ and g : V → Ĉ

that match on ∂K, i.e., the map

h(z) =

{
f(z), z ∈ U �K
g(z), z ∈ K

is continuous. Then h is quasi-conformal and μh(z) = μg(z) for a.e. z ∈ K.

Proof. Consider a map φ = f−1 ◦ h. It is well-defined in a neighborhood Ω
of K, is identity on K and is quasi-conformal on Ω � K. Let us show that it is
quasi-conformal on Ω. Again, the main difficulty is to show that h is abosultely
continuous on lines near any point z ∈ K.

Take a little box near some point z ∈ K with sides parallel to the coordinate
axes. Without loss of generality we can assume that z �= ∞ and φB is a bounded
subset of C. Let ψ denote the extension of ∂φ/∂x from B �K onto the whole box
B by 0. By (11.8), ψ is square integrable on B and hence it is square integrable
on almost all horizontal sections of B. All the more, it is integrable on almost all
horizontal sections. Take such a section I, and let us show that φ is absolutely
continuous on it.

Let Ij ⊂ I be a finite set of disjoint intervals; Δφj denote the increment of φ
on Ij . We should show that

(13.1)
∑

|Δφj | → 0 as
∑

|I|j → 0.
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Take one interval Ij and decompose it as L ∪ J ∪ R where ∂J ⊂ K and intL and
intR belong to B �K. Then

|Δφj | ≤ |J |+
∫
L∪R

g dx ≤ |Ij |+
∫
Ij

g dx.

Summing up the last estimates over j and using integrability of g on Ij , we obtain
(13.1).

Absolute continuity on the vertial lines is treated in exactly the same way. �

13.4. Weak topology in L2. Before going further, let us briefly recall some
background in functional analysis. Consider the space L2 = L2(X) on some mea-
sure space (X,m). A sequence of functions hn ∈ L2 weakly converges to some
function h ∈ L2, hn →

w
h, if for any φ ∈ L2,

∫
hnφ dm →

∫
hφ dm. The main

advantage of this topology is the property that the balls of L2 are weakly compact
(see e.g., [?, ]). Note also that vice versa, any weakly convergent sequence belongs
to some ball in L2 (Banach-Schteinhaus [?, ]).

However, one should handle the weak topology with caution: for instance,
product is not a weakly continuous operation:

Exercise 2.29. Show that sinnx→
w

0 in L2[0, 2π], while sin2 nx→
w

1/2.

At least, the weak topology respects the order:

Exercise 2.30. Let hn →
w
h.

• If hn ≥ 0 then h ≥ 0;
• If hn = 0 a.e. on some subset Y ⊂ X, then h = 0 a.e. on Y ;
• After selecting a further subsequence,

(hn)+ →
w
h+ and (hn)− →

w
h−, so that |hn| →

w
|h|.

Here h+(z) = max(h(z), 0), h(z) = min(h(z), 0).

13.5. Compactness. We will proceed with the following fundamental prop-
erty of qc maps:

Theorem 2.31. The space of K-qc maps h : Ĉ → Ĉ fixing 0, 1 and ∞ is
compact in the topology of uniform convergence on Ĉ

Proof. It will be more convenient to consider the space X of K-qc maps h
such that h{0, 1,∞} = {0, 1,∞}. First, we will show that the family of maps
h ∈ X is equicontinuous. Otherwise we would have an ε > 0, a sequence of maps
hn ∈ X , and a sequence of points zn, ζn ∈ Ĉ such that such that d(zn, ζn) → 0
while d(hnzn, hnζn) ≥ ε, where d stands for the sperical metric. By compactness

of Ĉ, we can assume that the zn, ζn ∈ Ĉ converge to some point a and the hn(a)
converge to some b. Postcomposing or/and precomposing if necessary the maps
hn’s with z �→ 1/z, we can make |a| ≤ 1, |b| ≤ 1.

Consider a sequence of annuli An = {z : rn < |z − a| < 1/2} where rn =
max(|zn − a|, |ζn − a|) → 0. Since the disk D(a, 1/2) does not contain one of the
points 0 or 1, its images hn(D(a, 1/2)) have the same property. Hence the Euclidean
distance from the point hn(a) (belonging to the inner complement of hn(An)) to the
outer complement of that annulus is eventually bounded by 3. On the other hand,
the diameter of the inner complement of hn(An) is bounded from below by ε > 0.
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By Lemma 1.62, mod(hn(An)) is bounded from above. But mod(An) = 1/rn → 0
contradicting quasi-invariance of the modulus (Proposition 2.13).

Hence X is precompact in the space of continuous maps Ĉ → Ĉ. Since X
is invariant under taking the inverse h �→ h−1, and the composition is a con-
tinuous operation in the uniform topology, X is precompact in Homeo(Ĉ). Since

Homeo+(Ĉ) is closed in Homeo(Ĉ), X is precompact in the former space as well.

To complete the proof, we should show that the limit functions are also K-qc
homeomorphisms. Let a sequence hn ∈ X uniformly converges to some h. Given
a point a ∈ Ĉ, we will show that in some neighborhood of a, f has distributional
derivatives of class L2. Without loss of generality we can assume that a ∈ C.
Take a neighborhood B � a such that h(B) is a bounded subset of C. Then the
neighborhoods hn(B) are eventually uniformly bounded. By (11.8), the partial
derivatives ∂hn and ∂̄hn eventually belong to a fixed ball of L2(D). Hence they
form weakly precompact sequences, and we can select limits along subsequences
(without changing notations):

∂hn →
w
φ ∈ L2(D); ∂̄hn →

w
ψ ∈ L2(D).

It is straightforward to show that φ and ψ are the distributional partial derivatives
of h. Indeed, for any test functions η we have:

(13.2)

∫
h ∂η dm = lim

∫
hn ∂η dm = − lim

∫
∂hn η dm = −

∫
φ η dm,

and the similarly for the ∂̄-derivative.
What is left is to show that |φ(z)| ≤ k|ψ(z)| for a.e. z, where k = (K −

1)/(K + 1). To see this, select a further subsequence in such a way that |∂hn| →
w

|φ|, |∂̄hn| →
w
|ψ| and use the fact that the weak topology respects the order (see

Exercise 2.30). �

Exercise 2.32. Fix any three points a1, a2, a3 on the sphere C. A family X
of K-qc maps h : Ĉ → Ĉ is precompact in the space of all K-qc homeomorphisms
of the sphere (in the uniform topology) if and only if the reference points are not
moved close to each other (or, in formal words: there exists a δ > 0 such that
d(hai, haj) ≥ δ for any h ∈ X and i �= j, where d is the spherical metric). Consider
first the case K = 0.

We will also need a disk version of the above Compactness Theorem:

Corollary 2.33. The space of K-qc homeomorphisms f : D → D fixing 0 is
compact in the topology of uniform convergence on D.

Proof. Let Y be the space of K-qc homeomorphisms h : D→ D fixing 0, and
X be the space of T-symmetric K-qc homeomorphisms H : C→ C fixing 0 and ∞.
(To be T-symmetric means to commute with the involution τ : C→ C with respect
to the circle.) Clearly maps H ∈ X preserve the unit circle (the set of fixed points
of τ); in particular, they do not move 1 close to 0 and ∞. By Theorem 2.31 (and
the Exercise following it), X is compact.

Let us show that X and Y are homeomorphic. The restriction of a map H ∈ X
to the unit disk gives a continuous map i : X → Y. The inverse map i−1 : Y → X is
given by the following extension procedure. First, extend h ∈ Y continuously to the
closed disk D (Theorem ??), and then reflect it symmetrically to the exterior of the
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disk, i.e., let H(z) = τ ◦h ◦ τ(z) for z ∈ Ĉ� D̄. Since τ is an (orientation reversing)
conformal map, H is K-qc on C̄ � T. By Lemma 2.28, it is K-qc everywhere, and
hence belongs to X .

Hence Y is compact as well. �

14. Measurable Riemann Mapping Theorem

We are now ready to prove one of the most remarkable facts of analysis: any
measurable conformal structure with bounded dilatation is generated by a quasi-
conformal map:

Theorem 2.34 (Measurable Riemann Mapping Theorem). Let μ be a measur-
able Beltrami differential on C̄ with ‖μ‖∞ < 1. Then there is a quasi-conformal
map h : C̄ → C̄ which solves the Beltrami equation: ∂̄h/∂h = μ. This solution is

unique up to post-composition with a Möbius automorphism of Ĉ. In particular,
there is a unique solution fixing three points on Ĉ (say, 0, 1 and ∞).

The local version of this result sounds as follows:

Theorem 2.35 (Local integrability). Let μ be a measurable Beltrami differen-
tial on a domain U ⊂ C with ‖μ‖∞ < 1. Then there is a quasi-conformal map
h : U → C which solves the Beltrami equation: ∂̄h/∂h = μ. This solution is unique
up to post-composition with a conformal map.

The rest of this section will be occupied with a proof of these two theorems.

14.1. Uniqueness. Uniqueness part in the above theorems is a consequence
of Weyl’s Lemma. Indeed, if we have two solutions h and g, then the composition
ψ = g ◦ h−1 is a qc map with ∂̄ψ = 0 a.e. on its domain. Hence it is conformal.

14.2. Local vs global. Of course, the global Riemann Measurable Riemann
Theorem immediately yields the local integrability (e.g., by zero extantion of μ
from U to the whole sphere). Vice versa, the global result follows from the local
one and the classical Uniformization Theorem for the sphere . Indeed, by localref
integrability, there is a finite covering of the sphere S2 ≡ Ĉ by domains Ui and a
family of qc maps φi : Ui → C solving the Beltrami equation on Ui. By Weyl’s
Lemma, the gluing maps φi ◦ φ−1

j are conformal. Thus the family of maps {φi}
can be interpreted as a complex analytic atlas on S2, which endows it with a new
complex analytic structure m (compatible with the original qc structure). But by
the Uniformization Theorem, all complex analytic structures on S2 are equivalent,
so that there exists a biholomorphic isomorphism h : (S2,m) → Ĉ. It means that
the maps h◦φ−1

i are conformal on φiUi. Hence h is quasi-conformal on each Ui and

h∗(μ) = (h◦φ−1
i )∗σ over there. Since the atlas is finite, h is a global quasi-conformal

solution of the Beltrami equation.

14.3. Strategy. The further strategy of the proof will be the following. First,
we will solve the Beltrami equation locally assuming that the coefficient μ is real
analytic. It is a classical (and elementary) piece of the PDE theory. By the Uni-
formization Theorem, it yields a global solution in the real analytic case. Approxi-
mating a measurable Beltrami coefficient by real analytic ones and using compact-
ness of the space of normalized K-qc maps, we will complete the proof.
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14.4. Real analytic case. Assume that μ is a real analytic Beltrami coeffi-
cient in a neighborhood of 0 in R2 ≡ CR with |μ(0)| < 1. Then it admits a complex
analytic extension to a neighborhood of 0 in the complexification C2. Let (x, y) be
the standard coordinates in C2, and let u = x+ iy, v = x− iy. In these coordinates
the complexified Beltrami equation assumes the form:

(14.1)
∂h

∂v
− μ(u, v)∂h

∂u
= 0.

This is a linear equation with variable coefficients, which can be solved by the
standard method of characteristics. Namely, let us consider a vector fieldW (u, v) =
(1,−μ(u, v)) near 0 in C2. Since the left-hand side of (14.1) is the derivative of h
along X, we come to the equation Wh = 0. Solutions of this equation are the first
integrals of the ODE ẇ = W . But since W is non-singular at 0, this ODE has
a non-singular local first integral h(u, v). Restricting h to R2, we obtain a local
solution h : (R2, 0) → C of the original Beltrami equation. Since h is non-singular
at 0, it is a local (real analytic) diffeomorphism.

By means of the Uniformization Theorem, we can now pass from local to
global solutions of the Beltrami equation with a real analytic Beltrami differential
μ(z)dz̄/dz on the sphere (see §14.2). Note that the global solution is real analytic
as well since the complex structure generated by the local solutions is compatible
with the original real analytic structure of the sphere (as local solutions are real
analytic).

Exercise 2.36. For a real analytic Beltrami coefficient

μ(z) =
∑

an,mz
nz̄m

on C, find the condition of its real analyticity at ∞.

There is also a “semi-local” version of this result:
If μ is a real analytic Beltrami differential on the disk D with ‖μ‖∞ < 1, then

there is a quasi-conformal (real analytic) diffeomorphism h : D → D solving the
Beltrami equation ∂̄h/∂h = μ.

To see it, consider the complex structure m on the disk generated by the local
solutions of the Beltrami equation. We obtain a simply connected Riemann surface
S = (D,m). By the Uniformization Theorem, it is conformally equivalent to ei-
ther the standard disk (D, σ) or to the complex place C. But S is quasi-conformally
equivalent to the standard disk via the identical map id : (D,m)→ (D, σ). By Exer-
cise 2.15, it is then conformally equivalent to the standard disk, and this equivalence
h : (D,m)→ (D, σ) provides a desired solution of the Beltrami equation.

By §14.1 Such a solution is unique up to a postcomposition with a Möbius
automorphism of the disk.

14.5. Approximation. Let us consider an arbitrary measurable Beltrami co-
efficient μ on a disk D with ‖μ‖ < ∞. Select a sequence of real analytic Beltrami
coefficients μn on D with ‖μn‖∞ ≤ k < 1, converging to μ a.e.

Exercise 2.37. Construct such a sequence (first approximate μ with continuous
Beltrami coefficients).

Applying the results of the previous section, we find a sequence of quasi-
conformal maps hn : (D, 0)→ (D, 0) solving the Beltrami equations ∂̄hn/∂hn = μn.
The dilatation of these maps is bounded by K = (1 + k)/(1 − k). By Corollary
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2.33, they form a precompact sequence in the topology of uniform convergence on
the disk. Any limit map h : D → D of this sequence is a quasi-conformal homeo-
morphism of D. Let us show that its Beltrami coefficient is equal to μ.

By (11.8), the partial derivatives of the hn belong to some ball of the Hilbert
space L2(D). Hence we can select weakly convergent subsequences ∂hn → φ, ∂̄hn →
ψ. We have checked in (13.2) that φ = ∂h and ψ = ∂̄h. What is left is to check that
ψ = μφ. To this end, it is enough to show that μn ∂hn → μφ weakly (to appreciate
it, recall that the product is not weakly continuous, see Exercise 2.29). For any
test function η ∈ L2(D), we have:∣∣∣∣

∫
(ημφ− etaμn ∂hn) dm

∣∣∣∣ ≤
≤
∣∣∣∣
∫
ημ(φ− ∂hn) dm

∣∣∣∣+
∫
|η(μ− μn) ∂hn| dm.

The first term in the last line goes to 0 since the ∂hn weakly converge to φ. The
second term is estimated by the Cauchy-Schwarz inequality by ‖η(μ−μn)‖2‖∂hn‖2,
which goes to 0 since μn → μ a.e. and the ∂hn belong to some Hilbert ball. This
yields the desired.

It proves the Measurable Riemann Mapping Theorem on the disk D, which
certainly implies the local integrability. Now the global theorem on the sphere
follows from the local integrability by §14.2. This completes the proof.

14.6. Conformal and complex structures. Let us discuss the general rela-
tion between the notions of complex and conformal structures. Consider an oriented
surface S endowed with a qs structure, i.e., supplied with an atlas of local charts
ψi : Vi → C with uniformly qc transit maps ψi ◦ ψ−1

j (“uniformly qc” means “with

uniformly bounded dilatation”). Note that a notion of a measurable conformal
structure with bounded dilatation makes perfect sense on such a surface (in what
follows we call it just a “conformal structure”).

Endow S with a complex structure compatible with its qs structure. By defini-
tion, it is determined by an atlas φi : Ui → C on S of uniformly qc maps such that
the transit maps are complex analytic. Then the conformal structures μi = φ∗i (σ)
on Ui coincide on the intersections of the local charts and have uniformly bounded
dilatations. Hence they glue into a global conformal structure on S.

Vice versa, any conformal structure μ determines by the Local Integrability
Theorem a new complex structure on the surface S compatible with its qc structure
(see §14.2).

Thus the notions of conformal and complex structures on a qc surface are equiv-
alent. In what follows we will not distinguish them either conceptually or notation-
ally.

Fixing a reference complex structure on S (so that S becomes a Riemann sur-
face), complex/conformal structures on S get parametrized by measurable Beltrami
differentials μ on S with ‖μ‖∞ < 1.

14.7. Moduli spaces. Consider some qc surface S (with or without bound-
ary, possibly marked or partially marked).

The moduli space M(S), or the deformation space of S is the space of all
conformal structures on S compatible with the underlying qc structure, up to the
action of qc homeomorphisms perserving the marked data. In other words, M(S)
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is the space of all Riemann surfaces qc equivalent to S, up to conformal equivalence
relation (respecting the marked data).

If we fix a reference Riemann surface S0, then its deformations are represented
by qc homeomorphisms h : S0 → S to various Riemann surfaces S. Two such
homeomorphisms h and h̃ represent the same point of the moduli space if there
exists a conformal isomorphism A : S → S̃ such that the composition H = h̃−1 ◦
A ◦ h : S0 → S0 respects all the marked data. In particular, H = id on the marked
boundary. In the case when the whole fundamental group is marked, H must be
homotopic to the id relative to the marked boundary.

For instance, if S has a finite conformal type, i.e., S is a Riemann surface of
genus g with n punctures (without marking), then M(S) is the classical moduli
spaceMg,n. If S is fully marked thenM(S) is the classical Teichmüller space T g,n.
This space has a natural complex structure of complex dimension 3g − 3 + n for
g > 1. For g = 1 (the torus case), dimT 1,0 = 1 (see §1.6.2) and dimT 1,n = n − 1
for n ≥ 1. For g = 0 (the sphere case), dimT 0,n = 0 for n ≤ 3 (by the Riemann-
Koebe Uniformization Theorem and 3-transitivity of the Möbius group action) and
dimT 0,n = n− 3 for n > 3.

Exercise 2.38. What is the complex modulus of the four punctured sphere?

There is a natural projection (fogetting the marking) from T g,n onto Mg,n.
The fibers of this projection are the orbits of the so called “Teichmüller modular
group” acting on T g,n (it generalizes the classical modular group PSL(2,Z), see
§1.6.2).

By the Riemann Mapping Theorem, the disk D does not have moduli. However,
if we mark its boundary T, then the space of moduli, M(D,T), becomes infinitely
dimensional! By definition, M(D,T) is the space of all Beltrami differentials μ on
D up to the action of the group of qc homeomorphisms h : D→ D whose boundary
restrictions are Möbius: h|T ∈ PSL(2,R). It is called the universal Teichmüller
space, since it contains all other deformation spaces. This space has several nice
descriptions, which will be discussed later on. It plays an important role in
holomorphic dynamics.

14.8. Dependence on parameters. It is important to know how the solu-
tion of the Beltrami equation depends on the Beltrami differential. It turns out
that this dependence is very nice. Below we will formulate three statements of this
kind (on continuous, smooth and holomorphic dependence).

Proposition 2.39. Let μn be a sequence of Beltrami differentials on C with
uniformly bounded dilatation, converging a.e. to a differential μ. Consider qc so-
lutions hn : Ĉ → Ĉ and h : Ĉ → Ĉ of the corresponding Beltrami equations fixing
0, 1 and ∞. Then the hn converge to h uniformly on C.

Proof. By Theorem 13.5, the sequence hn is precompact. Take any limit map
g of this sequence. By the argument of §14.5, its Beltrami differential is equal to
μ. By uniqueness of the normalized solution of the Beltrami equation, g = h. The
conclusion follows. �

Consider a family of Beltrami differentials μt depending on parameters t =
(t1, . . . , tn) ranging over a domain U ⊂ Rn. This family is said to be differentiable at
some t ∈ U if there exist Beltrami differentials αi

t of class L
∞(C) (but not necessarily



100 2. QUASICONFORMAL GEOMETRY

in the unit ball of this space) such that for all sufficiently small ε = (ε1, . . . , εn) ∈ Rn,
we have:

μt+ε − μt =
n∑

i=1

αi
tεi + |ε|β(t, ε),

where the norm ‖βt,ε‖∞ stays bounded and βt,ε(z)→ 0 a.e. on C as ε→ 0.
Assume additionally that the family μt is differentiable at all points t ∈ U , that

the norms ‖αi
t‖ are locally bounded, and that the αi

t(z) continuously depend on t
in the sense of the convergence a.e. Then the family μt is said to be smooth.

Let us now consider a family of qc maps ht : C→ C depending on parameters
t ∈ U . Considering these maps as elements of the Sobolev space H, we can define
differentiabilty and smoothness in the usual way. This family is differentiable at
some point t ∈ U if there exist vector fields vit on C of Sobolev class H such that

ht+ε − ht =
n∑

i=1

εiv
i
t + |ε|gt,ε,

where gt,ε → 0 in the Sobolev norm as ε → 0 (in particular gt,ε → 0 uniformly on
the sphere). If additionally the vit depend continuously on t (as elements of H),
then one says that ht smoothly depends on t. Of course, in this case, any point
z ∈ C smoothly moves as parameter t changes, i.e., ht(z) smoothly depends on t.

Theorem 2.40. If μt, t ∈ U ⊂ Rn, is a smooth family of Beltrami differentials,
then the normalized solutions ht : C → C of the corresponding Beltrami equations
smoothly depend on t.

Let us finally discuss the holomorphic dependence on parameters. Let U be
a domain in Cn and let B be a complex Banach space. A function f : U → B is
called holomorphic if for any linear functional φ ∈ B∗, the function φ ◦ f : U → C

is holomorphic. Beltrami differentials are elements of the complex Banach space
L∞, while qc maps h : C → C are elements of the complex Sobolev space H. So,be careful here!
it makes sense to talk about holomorphic dependence of these objects on complex
parameters t = (t1, . . . , tn) ∈ U . Note that if ht depends holomorphically on t,
then any point z ∈ C moves holomorphically as t changes (in fact, holomorphic
dependence on parameters is often understood in this weak sense).

Theorem 2.41. If the Beltrami differential μt holomorphically depends on pa-
rameters t ∈ U , then so do the normalized solutions ht : C→ C of the corresponding
Beltrami equations.

The proofs of the last two theorems can be found in [AB].
14.8.1. Simple conditions.

Lemma 2.42. Let B be a Banach space, and let {fλ}, λ ∈ Dρ, be a uniformly
bounded family of linear functionals on B such that for a dense linear subspace L
of points x ∈ B, the function λ �→ fλ(x) is holomorphic in λ. Then {fλ} as an
element of the dual space B∗ depends holomorphically on λ.

Proof. For x ∈ L, we have a power series expansion

fλ(x) =
∑

an(x)λ
n

convergent in Dρ. By the Cauchy estimate,

|an(x)| ≤
C‖x‖
ρn

, x ∈ L,
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where C is an upper bound for the norms ‖fλ‖, λ ∈ Dρ. Clearly, the an(x) linearly
depend on x ∈ L. Hence, an are bounded linear functionals on L; hence they
admit an extension to bounded linear functionals on B. Moreover, ‖an‖ ≤ Cρ−n.
It follows that the power series

∑
anλ

n converges in the dual space B∗ uniformly
in λ over any disk Dr, r < ρ. Hence it represents a holomorphic function Dρ �→ B∗,
which, of course, coincides with λ �→ fλ. �

For further applications, let us formulate one simple condition of holomorphic
dependence:

Lemma 2.43. Let ρ > 0 and let U ⊂ C be an open subset in Ĉ of full measure.
Let μλ ∈ L∞(C), λ ∈ Dρ, be a family of Beltrami differentials with ‖μλ‖∞ ≤ 1
whose restriction to U is smooth in both variables (λ, z) and is holomorphic in λ.
Then {μλ} is a holomorphic family of Beltrami differentials.

Proof. Let us first assume that U = Ĉ. Then

μλ(z) =
∑

an(z)λ
n, λ ∈ Dρ,

where the an are smooth functions on Ĉ, and the series converges uniformly over
Ĉ×Dr for any r < ρ. It follows that the series

∑
anλ

n in L∞ converges uniformly
over Dr and hence represents a holomorphic function Dr → L∞.

Let us now consider the general case; put K = Ĉ � U . Consider a sequence
of smooth functions χl : Ĉ → [0, 1] such that χl = 0 on K and for any z ∈ U ,
χl(z)→ 1 as l→∞.

Consider smooth Beltrami differentials μl
λ = χlμλ. By the above consideration,

they depend holomorphically on λ. Moreover, since K has zero area, χlμλ → μλ

a.e. as l→∞. Note also that ‖μl
λ‖∞ ≤ 1.

Take any smooth test function φ on Ĉ and let

gl(λ) =

∫
μl
λφdA; g(λ) =

∫
μλφdA,

where dA is the (normalized) area element on Ĉ. The family {gl} is uniformly
bounded: |gl(λ)| ≤ ‖φ‖∞ By the Lebesgue Bounded Convergence Theorem, gl(λ)→
g(λ) as l→∞

By the previous discussion, functions gl are holomorphic functions on Dρ. By
the Little Montel Theorem, this family is normal. Hence we can select a subsequence
conveging to g uniformly on compact subsets of Ĉ. It follows that g is holomorphic
on Dρ.

Since smooth functions are dense in L1, Lemma 2.42 can be applied. It implies
the assertion. �

By Lemma ?? from Appendix 14.9, we have:

Corollary 2.44. A family of Beltrami differentials μλ with ‖μ‖∞ < 1 is
holomorphic if and only if for a.e. z, the function λ �→ muλ(z) is holomorphic.

Corollary 2.45. If hλ : U → Uλ is a holomorphic motion of a domain XU
then the Beltrami differential μλ = ∂̄hλ/dihλ depends holomorphically on λ.

Exercise 2.46. Let f : S → T be a holomorphic map between two Riemann
surfaces, and let {μλ} be a holomorphic family of Beltrami differentials on T . Then
f∗(μλ) is a holomorphic family of Beltrami differentials on S.
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14.9. Appendix: Holomorphic maps between Banach spaces.
14.9.1. Definition. In this section, all Banach spaces are assumed to be com-

plex. Given a Banach space B, let B(x, r) stand for the ball in B of radius r centered
at x, and let Br ≡ B(0, r). The dual space to B is denoted by B∗.

Let U be a domain in B, and let B′ be another Banach space. A continuous
map f : B → B′ is called holomorphic if for any complex line L = {x + λv}λ∈C

(where x, v ∈ B) and any linear functional φ ∈ (B′)∗, the restrictin φ ◦ f | L ∩ U is
holomorphic in λ. (As we see, this is essentially one-dimensional notion.)

14.9.2. Smoothness.

Lemma 2.47. Any holomorphic map is differentiable:

f(z + v) = f(z) +Dfz(v) + o(‖v‖).
Corollary 2.48. A map f : (Dr, 0) → (B, 0) is holomorphic if and only it

admits a power series representation

f(λ) =
∞∑

n=0

anλ
n,

where an ∈ B and ‖an‖ ≤ Cρn for any ρ > 1/r (with C depending on ρ).

14.9.3. Space L∞.

Lemma 2.49. Let μλ be a family in L∞(S) over a domain D ⊂ C. It is
holomorphic in λ if and only if it is locally bounded and the functions λ �→ μλ(z)
are holomorphic in λ for a.e. z.

Proof. Without loss of generality we can assume that D = D is the unit disk.
Assume λ �→ μλ is holomorphic over D. Then by Corollary 2.48, it admits a

power series representation

(14.2) μλ(z) =

∞∑
n=0

μn(z)λ
n,

where μn ∈ L∞ and ‖μn‖∞ ≤ Cρn for any ρ > 1. Hence there exists a subset
X ⊂ S of full measure such that for any ρ > 1 we have:

μn(z) ≤ Cρn

It follows that for any z ∈ X, the function λ �→ μλ(z) is holomorphic over D.

Vice versa, assume that for a.e. z ∈ S, the function λ �→ μλ(z) is holomorphic
over D. Then (14.2) holds for a.e. z ∈ S, with

μn(z) =
1

2πi

∫
|λ|=r

μλ(z)dλ

(−λ)n+1

(for any r ∈ (0, 1)). But since λ �→ μλ is continuous over D, it is bounded on the
circle {|λ| = r}, implying that

μn(z) ≤
C

rn
,

with C = C(r) independent of z. Hence ‖μn‖∞ = O(r−n), and the map λ �→ μλ is
holomorphic by Corollary 2.48. �

Lemma 2.50. If hλ is a holomorphic motion then the corresponding Beltrami
differential μλ = ∂̄hλ/∂hλ depends holomorphically in λ.
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15. One-dimensional qs maps, quasicircles and qc welding

15.1. Quasisymmetric 1D maps.
15.1.1. Qs maps of the line. Let us first consider the rel line R in the Euclidean

metric. According to Lemma 2.21, L-qs maps h : R→ R can be defined as in terms
of bounded macroscopic dilatation. Namely, for any two adjacent intervals I, J ⊂ R

of equal length, we require:

(15.1)
|f(I)|
|f(J)| ≤ L.

It looks at first glance that the class of 1D qs maps is a good analogue of the
class of 2D qc maps. However, this impression is superficial: two-dimensional qc
maps are fundamentally better than one-dimensional qs maps. For instance, qc
maps can be glued together without any loss of dilatation (Lemma 2.28), while qs
maps cannot:

Exercise 2.51. Consider a map h : R → R equal to id on the negative axis,
and equal to x �→ x2 on the positive one. This map is not quasi-symmetric, though
its restrictions to the both positive and negative axes are.

Another big defficiency of one-dimensional qs maps is that they can well be
singular (and typically are in the dynamical setting - see ??), while 2D qc maps are
always absolutely continuous (Proposition 13.1).

These advantages of qc maps makes them much more efficient tool for dy-
namics than one-dimensional qs maps. This is a reason why complexification of
one-dimensional dynamical systems is so powerful.

15.1.2. Qs circle maps. Of course, an L-qs circle homeomorphism h : T → T

can be defined is the same way as in the case of R, with understanding of (??) in
terms of the circle metric. However, there is a subtle difference between these two
cases. Namely, in the line case, the group of 1-qs maps coincides with the group of
affine maps x �→ ax+ b, which equal to the group of Möbius automorphisms of R.
On the other hand, in the circle case, only rotations are 1-qs, and in fact,

Exercise 2.52. The group of Möbius automorphisms of the circle T is not
uniformly qs.

Exercise 2.53. A metric space is called geodesic if any two points in it can be
joined with an isometric image of a real interval [x, y]. Assume that X is geodesic
and h : X → Y is κ-qs. Then for any L > 0 there exists an M =M(κ, L) > 0 such
that

dist(a, c) ≤ Ldist(a, b)⇒ dist(h(a), h(c)) ≤M dist(h(a), h(b)).

15.2. Ahlfors-Beurling Extension.
15.2.1. Extension from R. As we know, the class of orientation preserving qs

maps on the plane coincides with the class of qc maps (Propositions 2.23 and 2.25).
In particular, if we consider a quasi-conformal map h : C → C preserving the real
line R, it restricts to a quasi-symmetric map on the latter. Remarkably, the inverse
is also true:

Theorem 2.54. Any L-qs orientation preserving map h : R→ R extends to a
K(L)-qc map H : C → C. Moreover, this extension can be selected to be affinely
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equivariant (i.e, so that it commutes with the action of the affine group z �→ az+ b,
a ∈ R+, b ∈ R).

Proof. �

15.2.2. Extension from T.
15.2.3. Interpolation in A. Let us now state an Interpolation Lemma in an

annulus:

Lemma 2.55. Let us consider two round annuli A = A[1, r] and Ã = A[1, r̃],

with 0 < ε ≤ modA ≤ ε−1 and ε ≤ mod Ã ≤ ε−1. Then any κ-qs map h : (T,Tr)→
(T̃, T̃r̃) admits a K(κ, ε)-qc extension to a map H : A→ Ã.

Proof. Since A and Ã are ε2-qc equivalent, we can assume without loss of
generality that A = Ã. Let us cover A by the upper half-plane, θ : H → A,

θ(z) = z
− log ri

π , where the covering group generated by the dilation T : z �→ λz, with

λ = e
2π2

log r . Let h̄ : (R, 0)→ (R, 0) be the lift of h to R such that h̄(1) ∈ [1, λ) ≡ Iλ
and h̄(1) ∈ (−λ,−1] (note that R+ covers Tr, while R− covers T). Moreover, since
deg h = 1, it commutes with the deck transformation T .

A direct calculation shows that the dilatation of the covering map θ on the
fundamental intervals Iλ and −Iλ is comparable with (log r)−1. Hence h̄ is C(κ, r)-
qs on this interval. By equivariance it is C(κ, r)-qc on the rays R+ and R−.

It is also quasi-symmetric near the origin. Indeed, by the equivariance and
normalization,

(1 + λ)−1|J | ≤ |h̄(J)| ≤ (1 + λ)|J |
for any interval J containing 0, which easily implies quasi-symmetry.

Since the Ahlfors-Börling extension is affinely equivariant, the map h̄ extends
to a K(κ, r)-qc map H̄ : H → H commuting with T . Hence H̄ descends to a
K(κ, r)-qc map H : A→ A. �

15.3. Quasicircles.
15.3.1. Geometric definition. Let us start with an intrinsic geometric definition

of quasicircles:

Definition 2.56. A Jordan curve γ ⊂ C is called a κ-quasicircle if for any two
points x, y ∈ γ there is an arc δ ⊂ γ bounded by these points such that

(15.2) diam δ ≤ κ|x− y|.
A curve is called a quasicircle if it is a κ-quasicircle for some κ. The best possible

κ in the above definition is called the geometric dilatation of the quasicircle. Let
us emphasice that this notion is global in the sense that (15.2) should be satisfied
in all scales. However, it can be localized as follows:

Exercise 2.57. If (15.2) is satisfied for all pairs of points with |x−y| ≤ ε, then
γ is a κ′-quasicircle with κ′ depending only on κ and N , where N is the number of
arcs of diam ε needed to cover γ.

A Jordan disk (either open or closed) is called (κ-)quasidisk if it is bounded by
a (κ-)quasicircle.

Exercise 2.58. A Jordan disk D is a κ-quasidisk if and only if the Eulidean
path metric on D̄ is κ-Lipcshitz equivalent to the Euclidean chordal metric.
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A C-quasicenter of a Jordan curve γ (or, of the corresponding Jordan disk D)
is a point a ∈ D such that D has a C-bounded shape around a:

RD(a)

rD(a)
≤ C.

(Here RD(a) and rD(a) are outer and inner radii of D around a, see §4.4.)

Exercise 2.59. Any κ-quasidisk has a C(κ)-quasicenter.

The shape bound C(κ) will often be implicit in our discussion, and sometimes
we will even say that D is “centered at a”.

15.3.2. Quasirectangles and the cross-ratios. Given four points a, b, c, d on a
Jorda curve γ, let Πγ(a, b, c, d) stand for the corresponding quadrilateral. In case
when γ is a quasicircle, this quadrilateral will be called a quasirectangle.

Lemma 2.60. The modulus of a quasirectangle, mod(Πγ(a, b, c, d)), is controlled
by the cross-ratio R := [a, b, c, d]. More precisely,

0 < θ1(R) ≤ modΠγ(a, b, c, d) ≤ θ2(R),

where the functions θi depend only on the geometric dilatation of γ, and θ1(R)→∞
as R→∞.

15.3.3. Quasitriangles and ratios. A Jordan domain D with four marked points
a, b, c, d such that a, b, c ∈ γ = ∂D while d ∈ intD is called a pointed topological
triangle Δγ(a, b, c; d). Let as define modΔγ(a, b, c; d) as the extremal length of the
family of proper paths γ ⊂ D connecting [a, b] to [c, a] and separating d from [b, c].
In case when γ is a quasicircle centered at d, Δγ(a, b, c; d) will be called pointed
quasitriangle.

Lemma 2.61. The modulus of a quasitriangle, modΔγ(a, b, c; d), is controlled
by the ratio R := |b− c|/|b− a|, in the same sense as above.

15.3.4. The Riemann mapping.

Proposition 2.62. A pointed domain (D, a) is a κ-quasicicle centered at a if
and only if the Riemann mapping φ : (D, 0)→ (D, a) is L-qs.

15.3.5. The main criterion. What makes quasicircles so important is their char-
acterization as qc images of the circle:

Theorem 2.63. Let a be a quasicenter of a κ-quasidisk D, and let φ : (D, 0)→
(D, a) be the normalized Riemann mapping. Then φ admits a K(κ)-qc extension
to the whole complex plane.

Vice versa, let (D, a) be a pointed Jordan disk such that there exists a K-qc
map h : (C,D, 0)→ (C, D, a). Then D is a κ-quasidisk with a quasicenter a.

Proof. The last assertion follows immediated from the fact that h has L(K)-
bounded macroscopic dilatation (by Proposition 2.16). �
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15.3.6. Compactness in the space of quasicircles. Let QDκ,r, r > 0, denote the
space of pointed κ-quasidisks (D, 0) with r ≤ rD,0 ≤ RD,0 ≤ 1/r, endowed with
the Carathéodory topology.

Proposition 2.64. The space QDκ,r is compact.

Proof. Consider a quasidisk (D, 0) ∈ QDκ,r. By Theorem 2.63, the normal-
ized Riemann mapping h : (D, 0) → (D, 0) admits a K-qc extension to the whole
complex plane C, where K depends only on κ and r. Moreover, r ≤ |h(1)| ≤ 1/r.
By the Compactness Theorem (see Exercise 2.32), this family of qc maps is compact
in the uniform topology on C. Since uniform limits of κ-quasidisks are obviously
κ-quasidisks, the conclusion follows. �

A set is called “0-symmetric” if it is invariant under the reflection with respect
to the origin.

Exercise 2.65. Let γ be a 0-symmetric κ-quasicircle. Then the eccentricity of
γ around 0 is bounded by 2κ+ 1.

15.4. Douady-Earle Extension.

16. Removability

16.1. Conformal vs quasiconformal. Similarly to the notion of qc remov-
ability introduced in §13.3 we can define conformal removability:

Definition 2.66. A compact subset X ⊂ C is called conformally removable if
for any open sets U ⊃ X in C, any homeomorphic embedding h : U ↪→ C which is
conformal on U �X is conformal/qc on U .

In fact, these two properties are equivalent:

Proposition 2.67. Conformal removability is equivalent to qc removability.

Thus, we can unambiguously call a set “removable”.
It is classical that isolated points and smooth Jordan curves are conformally

removable. Proposition 2.67 implies that they are qc removable as well (which was
also shown directly in §13.3 of Ch. 2). Since qc removability is invariant under qc
changes of variable, we obtain:

Corollary 2.68. Quasicircles are removable.

.

16.2. Removability and area. The Measurable Riemann Mapping Theorem
yields:

Proposition 2.69. Removable sets have zero area.

Proof. Assume that m(X) > 0. Then there exists a non-trivial Beltrami
differential μ supported on X. Let h : C → C be a solution of the corresponding
Beltrami equation. Then h is conformal outside X but is not conformal on X. �

The reverse is false:

Example 2.1.
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16.3. Divergence property.

Definition 2.70. Let us say that a compact set X ⊂ C satisfies the divergence
property if for any point z ∈ X there exists a nest of annuli An(z) around z such
that ∑

An(z) =∞.
Without loss of generality we can assume (and we will always do so) that each
annulus in this definition is bounded by two Jordan curves.

Lemma 2.71. Compact sets satisfying the divergence property are Cantor.

Proof. Consider any connected componentX0 ofX, and let z ∈ X0. Then the
annuli An(z) are nested around X0. By Corollary 1.64 of the Grötzsch Inequality,
X0 is a single point. �

Lemma 2.72. Let X ⊂ C be a compact set satisfying the divergence property.
Then for any neighborhood U ⊃ X, any qc embedding h : U � X ↪→ C admits a
homeomorphic extension through X.

Proof. Let h : U �X ↪→ C be a K-qc embedding. If X ⊂ U ′ � U then h(U ′)
is bounded in C. So, without loss of generality we can assume that h(U) is bounded
in C.

For z ∈ X, let us consider the nest of annuli h(An(z)). Since h is quasiconfor-
mal, ∑

modh(An(z)) ≥ K−1
∑

modAn(z) =∞.
Let Δn(z) be the bounded component of C� h(An(z)), and let

Δ∞(z) =
⋂
n

Dn(z).

By Corollary 1.64 of the divergence property, Δ∞(z) is a single point ζ = ζ(z). Let
us extend h through X by letting h(z) = ζ.

This extension is continuous. Indeed, let Dn(z) be the bounded component of
C � An(z). Then by Corollary 1.64, diamDn(z) → 0, so that Dn(z) is a base of
(closed) neighborhoods of z. But

diamh(Dn(z)) = diamΔn(z)→ 0,

which yields continuity of h at z.
Switching the roles of (U,X) and (h(U), h(X)), we conclude that h−1 admits a

continuous extension through h(X). Hence the extension of h is homeomorphic. �

It is worthwhile to note that, in fact, general homeomorphisms extend through
Cantor sets:

Exercise 2.73. (i) Let us consider two Cantor sets X and X̃ in C and their

respective neighborhoods U and Ũ . Then any homeomorphism h : U �X → Ũ � X̃
admits a homeomorphic extension through X.

(ii) It was essential to assume that both sets X and X̃ are Cantor! For any
compact set X ⊂ C, give an example of an embedding h : C �X ↪→ C which does
not admit a continuous extension through X.

Lemma 2.74. Compact sets satisfying the divergence property have zero area.
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We will show now that sets satisfying the divergence property are removable,
and even in the following stronger sense:

Theorem 2.75. Let X ⊂ C be a compact set satisfying the divergence property.
Then for any neighborhood U ⊃ X, any conformal/qc embedding h : U �X ↪→ C

admits a conformal/qc extension through X.

Proof. Let h : U �X ↪→ C be a K-qc embedding. By Lemma 2.72, h extends
to an embedding U ↪→ C, which will be still denoted by h. Let us show that h
belongs to the Sobolev class H(U).

Since X is a Cantor set, it admits a nested base of neighborhoods Un such
that each Un is the union of finitely many disjoint Jordan diks. Take any μ > 0.
By the Grẗzsch Inequality, for any n ∈ N there is k = k(μ, l) > 0 such that
mod(∂Un+k, ∂Un) ≥ μ > 0. Let χn be the solution of the Dirichlet problem
in Un � Un+k vanishing on ∂Un+k and equal to 1 on ∂Un. By Theorem 1.74,
D(χn) ≤ 1/μ.

Let us continuously extend χ to the whole plane in such a way that it vanishes
on Un+k and identically equal to 1 on C � Un. We obtain a piecewice smooth
function χ : C → [0, 1], with the jump of the derivative on the boundary of the
domains Un and Un+k.

Let hn = χn h. These are piecewise smooth functions with bounded Dirichlet
integral. Indeed,

D(hn) =

∫
(|∇χn|2|h|2 + |χn|2|∇h|2)dm ≤ diam(h(U))/μ+ C(K)m(h(U)),

where C(K) = (1+ k2)/(1− k2) comes from the area estimate (area estimate). By
weak compactness of the unit ball in L2(U), we can select a converging subsequence
∂hn → φ, ∂̄hn → ψ. But hn → h pointwise on U � X, so that by Lemma 2.74,
hn → h a.e. It follows that φ and ψ are distributional partial derivatives of h (see
(13.2)).

Finally, if h is conformal on U �X then by Weyl’s Lemma it is conformal on
U . �



CHAPTER 3

Elements of Teichmüller theory

17. Holomorphic motions

17.1. Definition. Let (Λ, ∗) be a pointed complex Banach manifold1 and let
X ⊂ C̄ be an arbitrary subset of the Riemann sphere (can be non-measurable). A
holomorphic motion h over (Λ, ∗)2 is a family of injections hλ : C̄ → C̄, λ ∈ Λ,
depending holomorphically on λ (in a weak sense that the finctions z �→ hλ(z) are
holomorphic in λ for all z ∈ X) and such that h∗ = id. In this situation, we let
Xλ = hλ(X∗).

3.

Holomorphic functions φz : Λ → Ĉ, λ �→ hλ(z), are called orbits of the holo-
morphic motion. Since the functions hλ are injective, the orbits do not collide, or
equivalently, their graphs Γz ⊂ Λ × Ĉ are disjoint. Thus, a holomorphic motion
provides us with a family of disjoint holomorphic graphs over Λ. We refer to such
a family as a (trivial) holomorphic lamination. Of course, the above reasoning can
be reversed, so that, trivial holomorphic laminations give us an equivalent (dual)
way of describing holomorphic motions.

A regularity of a holomorphic motion is the regularity of the maps hλ on X. For
instance, a holomorphic motion is called continuous, qc, smooth or bi-holomorphic
if all the maps hλ, λ ∈ Λ, have the corresponding regularity on X (to make sense
of it in some cases we need extra assumptions on X, e.g., opennes).

Notice that a priori we do not impose any regularity on the maps hλ (not
even measurability!). A remarkable property of holomorphic motions is that they
automatically have nice regularity properties and that they automatically extend
to motions of the whole Riemann sphere. This set of properties are usually referred
to as the λ-lemma. It will be the subject of the rest of this section.

While dealing with a holomorphic motion of a set X, Y , etc., we let Xλ =
hλ(X), Yλ = hλ(Y ), etc. We will refer to the z-variable of a holomorphic motion
as the dynamical variable (though in general, there is no dynamics in the z-plane).
The λ-variable is naturally referred to as the parameter.

17.2. Extension to the closure and continuity.

Lemma 3.1. A holomorphic motion h of any set X ⊂ Ĉ extends to a continuous
holomorphic motion of its closure X̄.

1We will eventually deal with infinite dimensional parameter spaces, so we need to prepare

the background in this generality. However, in the first reading the reader can safely assume that

the space Λ is a one-dimensional disk (which is the main case to consider anyway).
2We will often make a point ∗ implicit in the notation and terminology.
3we will sometimes say briefly that “the sets Xλ move holomorphically” or “the set X∗ moves

holomorphically” without mentioning explicitly the maps hλ

109
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Proof. If X is finite, there is nothing to prove, so assume it is infinite (or, at
least, contains more than two points).

Let us show that the family of orbits φz, z ∈ X, of our holomorphic motion is
normal. To this end, let us remove from X three points zi ∈ X; let X ′ = X � {zi}
and let ψi be the orbits of the points zi. Since the orbits of a holomorphic motion
do not collide, the family of orbits of points z ∈ X ′ satisfies the condition of the
Refined Montel Theorem (1.87) with exceptional functions ψi, and the normality
follows.

Let Φ be the closure of the family of orbits in the spaceM(Λ) of meromorphic
functions on Λ. By the Hurwitz Theorem (see §??) the graphs of these functions
are disjoint, so they form a holomorphic lamination representing a holomorphic
motion of X̄.

Let us keep notation hλ for the extended holomorphic motion, and notation
φz, z ∈ X̄, for its orbits.

Let us show that this motion is continuous. Let λ ∈ Λ, let zn → z be a
converging sequence of points in X̄, and let φn ∈ Φ and φ ∈ Φ be their respective
orbits. We want to show that hλ(zn) → hλ(z), or equivalently φn(λ) → φ(λ).
But otherwise, the sequence φn would have a limit point ψ ∈ M(Λ) such that
ψ(∗) = φ(∗) while ψ(λ) �= φ(λ), which would contradict to the laminar property of
the family Φ. �

17.3. Extension of smooth holomorphic motions. In thi short section
we will prove a simple extension lemma for smooth holomorphic motions.

Lemma 3.2 (Local extension). Let us consider a compact set Q ⊂ C and a
smooth holomorphic motion hλ of a neighborhood U of Q over a Banach domain
(Λ, 0). Then there is a smooth holomorphic motion Hλ of the whole complex plane
C over some neighborhood Λ′ ⊂ Λ of 0 whose restriction to Q coincides with hλ.

Proof. We can certainly assume that Ū is compact. Take a smooth function
φ : C→ R supported in U such that φ|Q ≡ 1, and let

Hλ = φhλ + (1− φ) id .
Clearly H is smooth in both variables, holomorphic in λ, and identical outside U .
As H0 = id, Hλ : C → C is a diffeomorphism for λ sufficiently close to 0, and we
are done. �

17.4. Transverse quasiconformality.

Second λ-lemma. Let hλ : X → Xλ be a holomorphic motion of a set X ⊂ C

over the disk D. Then for |λ| ≤ r < 1, the maps hλ are η-quasisymmetric with
dilatation η depending only on r.

Given two complex one-dimensional transversals S and T to the lamination F
in B1 × C, we have a holonomy S → T . We say that this map is locally quasi-
conformal if it admits local quasi-conformal extensions near any point.

Given two points λ, μ ∈ B1, let us define the hyperbolic distance ρ(λ, μ) in B1

as the hyperbolic distance between λ and μ in the one-dimensional complex slice
λ+ t(μ− λ) passing through these points in B1.

Lemma 3.3. Holomorphic motion hλ of a set X over a Banach ball B1 is
transversally quasi-conformal. The local dilatation K of the holonomy from p =
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(λ, u) ∈ S to q = (μ, v) ∈ T depends only on the hyperbolic distance ρ between the
points λ and μ in B1. Moreover, K = 1 +O(ρ) as ρ→ 0.

Proof. If the transversals are vertical lines λ × C and μ × C then the result
follows from 17.4 by restricting the motion to the complex line joining λ and μ.

Furthermore, the holonomy from the vertical line λ×C to the transversal S is
locally conformal at point p. To see this, let us select a holomorphic coordinates
(θ, z) near p in such a way that p = 0 and the leaf via p becomes the parameter
axis. Let z = ψ(θ) = ε + . . . parametrizes a nearby leaf of the foliation, while
θ = g(z) = bz + . . . parametrizes the transversal S.

Let us do the rescaling z = εζ, θ = εν. In these new coordinates, the above
leaf is parametrized by the function Ψ(ν) = ε−1ψ(εν), |ν| < R, where R is a fixed
parameter. Then Ψ′(ν) = ψ′(εν) and Ψ′′(ν) = εψ′′(εν). By the Cauchy Inequality,
Ψ′′(ν) = O(ε). Moreover, ψ uniformly goes to 0 as ψ(0) → 0. Hence |Ψ′(0)| =
|ψ′(0)| ≤ δ0(ε), where δ0(ε) → 0 as ε → 0. Thus Ψ′(ν) = δ0(ε) + O(ε) ≤ δ(ε) → 0
as ε→ 0 uniformly for all |ν| < R. It follows that Ψ(ν) = 1+O(δ(ε)) = 1+ o(1) as
ε→ 0.

On the other hand, the manifold S is parametrized in the rescaled coordinates
by a function ν = bζ(1+o(1)). Since the transverse intersection persists, S intersects
the leaf at the point (ν0, ζ0) = (1, b)(1 + o(1)) (so that R should be selected bigger
than ‖b‖). In the old coordinates the intersection point is (θ0, z0) = (ε, bε)(1+o(1)).

Thus the holonomy from λ × C to S transforms the disc of radius |ε| to an
ellipse with small eccentricity, which means that this holonomy is asymptotically
conformal. As the holonomy from μ×C to T is also asymptotically conformal, the
conclusion follows. �

Quasiconformality is apparently the best regularity of holomorphic motions
which is satisfied automatically.

18. Moduli and Teichmüller spaces of punctured spheres

18.1. Definitions. Let us consider the Riemann sphere with a tuple of n
marked points P = (z1, . . . , zn) (or, equivalently, n punctures). The punctures
are considered to be “coloured”, or, in other words, the set P is ordered. Two
such spheres (C,P) and (C,P ′) are considered to be equivalent if there is a Möbius
transformation φ : (C,P) → (C,P ′) (preserving the colors of the punctures, i.e.,
φ(zi) = z′i). The space of equivalence classes is called the moduli space Mn.

If n ≤ 3 then the moduli space Mn is a single point. If n ≥ 4, we can place
the last three points to (0, 1,∞) by means of a Möbius transformation. With this
normalization (C,P) ∼ (C,P ′) if and only if P = P ′, and we see that

Mn = {(z1, . . . , zn−3) : zi �= 0, 1; zi �= zj}.
This shows that Mn an (n− 3)-dimensional complex manifold.

Let us fix some reference normalized tuple P◦ = (a1, . . . an−3, 0, 1,∞). Then we
can also define Mn as the space of homeomorphisms h : (C,P◦) → C normalized
by h(0) = 0, h(1) = 1, up to equivalence: h ∼ h′ if h(P◦) = h′(P◦).

Let us now refine this equivalence relation by declaring that h � h′ if h is
homotopic (or, equivalently, isotopic) to h′ rel P◦, and let [h] stand for the cor-
responding equivalence classes. It inherits the quotient topology from the space
of homeomorphisms (endowed with the uniform topology). This quotient space
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is called the Teichmüller space Tn. Since the equivalence relation � is obviously
stronger than ∼ we have a natural projection π : Tn →Mn.

18.2. Spiders. The homotopy class [h] can be visualised as the punctured
sphere marked with a “spider”. A spider S on the punctured sphere (C,P) is a
family of disjoint paths σi connecting zi to ∞, i = 1, . . . n − 1. We let [S] be the
class of isotopic spiders (rel P).

Lemma 3.4. There is a natural one-to-one correspondence between points of Tn
and classes of isotopic spiders, (C,P, [S]).

Proof. Let us fix a reference spider (C,P◦,S◦). Then to each homeomorphism
h ∈ Tn we can assossiate a spider S = h(S◦). Isotopy ht rel P◦ induces isotopy of
the corresponding spiders rel P. Hence we obtain a map [h] �→ [S].

Vice versa, let us have a spider (C,P,S). Then there exists a homeomorphism
h : (C,P◦,S◦)→ (C,P,S). If (C,P,S ′) is an isotopic spider then the isotopy St rel
P, 0 ≤ t ≤ 1, lifts to an isotopy ht rel P0. Given any parametrizing homeomorphism
h′ : S◦ → S ′, we can isotopy h1 so that it will coincide with h′ on S◦. Since two
homeomorphisms of a topological disk coinciding on the boundary are isotopic rel
the boundary, we are done. �

18.3. Universal covering. The spiders can be labeled by tuples of n − 1
elments of the fundamental group π1(C � P) ≈ Fn−1 (where the latter stands for
the free group in n − 1 generators). Indeed, let us consider a bouquet of circles
∧n−1
i=1 Ci in Ci � P based at some point a ∈ C � P and such that the circle Ci

surrounds zi but not the other points of P. These circles oriented anti-clockwise
represent generators of the fundamental group π1(C�P, a). Accordingly, any loop
in ∧Ci is homotopic to a concatenation of the loops Ci and their inverse. Let us
select an arc γ∞ connecting a to ∞ in the complement of ∧Ci, and n− 1 arcs γi in
the disks bounded by the Ci. Since ∧Ci is a homotopy retract for C � P, any arc
connecting zi to ∞ is homotopic to the concatenation of the γi, a loop in ∧Ci, and
γ∞. Thus, any spider leg is labeled by an element of π1(C� P, a).

Proposition 3.5. The natural projection π : Tn →Mn is the universal cover-
ing over Mn.

Proof. Let us first show that π is a covering. Take some base tuple P◦ =
(z◦1 , . . . z

◦
n−1) ∈ Mn, and consider a bouquet of circles Ci and the paths γ◦i , γ

◦
∞ in

C � P as above. Consider a neighborhood U1 × · · · × Un−3 of P◦ in Mn, where
the Ui are little round disks around z◦i fully surrounded by the circle Ci. Let us
connect any point zi ∈ Ui to z

◦
i with a straight interval. Concatentating them with

γ◦i , we obtain a path γi connecting zi to a and continuously depending on zi ∈ Ui.
Select now any element τ ∈ π(C� P, a). �

18.4. Infinitesimal theory. A tangent vector to the moduli space Mn at
point z = (z1 . . . , zn−3, 0, 1,∞) can be represented as a tuple

v = (v(z1), . . . v(zn−3))

of tangent vectors to C at points zi. Since the natural projection Tn → Mn is a
covering, tangent vectors to Tn can be represented in the same way.

Any such tuple of vectors admits an extension to a smooth vector field v van-
ishing at points (0, 1,∞) (such vector field will be called “normalized”). So, we can
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view the tangent space to Mn (and Tn) as the space Vect of smooth normalized
vector fields modulo equivalence relation: v ∼ w if v(zi) = w(zi), i = i, . . . , n− 3.

With this in mind, we can give a nice description of the cotangent space to
Mn and Tn. Let us consider the space Q = Q(Ĉ � P) of integrable quadratic

differentials φ = φ(z)dz2 on Ĉ � P. Such differentials must have at most simple
poles at the punctures (at ∞ it amounts to φ(z) = O(1/|z3|)).

Exercise 3.6. Show that this space Q of quadratic differentials has complex
dimension n−3. Moreover, the map φ �→ (λ1, . . . , λn−3), where λi = Reszi φ, is an
isomorphism between Q and Cn−3.

It turns out that it is not an accident that dimQ = dimMn.

Proposition 3.7. The space Q(Ĉ � P) of quadratic differentials is naturally
identified with the cotangent space to Mn (and Tn). The pairing between a cotan-
gent vector φ ∈ Q and a tangent vector v ∈ Vect is given by the formula:

(18.1) < φ, v >=
1

2πi

∫ ∫
φ ∂̄v.

Proof. Let us first note that this pairing is well defined. Indeed, as we saw
in §1.8, ∂̄v can be interpreted as a Beltrami differential, and the product φ ∂̄v as
an area form. Moreover, this area form is integrable since φ is integrable and ∂v is
bounded.

Let us now calculate this integral. Since φ is holomorphic, we have:

φ∂z̄v dz ∧ dz̄ = ∂z̄(φ v) dz ∧ dz̄ = −∂̄(φ v dz) = −d(φ v dz).
Let γε(zi) be the ε-circles centered at finite points of P, i = 1, . . . , n− 1, and let Γε

be the ε−1-circle centered at 0 (where all the circles are anti-clockwise oriented), and
let Dε be the domain of C bounded by these circles. Then by the Stokes formula

− 1

2πi

∫ ∫
Dε

d(φ vdz) =
1

2πi

∑∫
γε(zi)

φ vdz − 1

2πi

∫
Γε

φ vdz

But near any zi ∈ C we have:

φ v =
λiv(zi)

z − zi
+O(1),

where λi = Reszi φ. Hence

1

2πi

∫
γε(zi)

φ v dz → λiv(zi) as ε→ 0.

Note that these integrals asymptotically vanish at zn−2 = 0 and zn−1 = 1 since v
vanishes at these points. The integral over Γε asymptotically vanishes as well since
φ(z) = O(|z|−3) while v(z) = o(|z|2) near ∞ (as the vector field v/dz vanishes at
∞).

Finally, we obtain:

1

2πi

∫ ∫
φ∂z̄v dz ∧ dz̄ =

n−3∑
i=1

λiv(zi)

So, the pairing (18.1) depends only on the values of v at the points z1, . . . , zn−3,
and hence defines a functional on tangent space TMn. This gives an isomorphism
between Q and the cotangent space T∗Mn since (λ1, . . . , λn−3) are global coordi-
nates on the both spaces (see Exercise 3.6). �
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18.5. General Teichmüller spaces.
18.5.1. Marked Riemann surfaces. The previous discussion admits an exten-

sion to an arbitrary qc class QC of Riemann surfaces that we will outline in this
section. Take some base Riemann surface S0 ∈ QC (without boundary), and let
S̄0 be the ideal boundary compactification of S0. Given another Riemann surface
S ∈ QC (with compactification S̄), a marking of S is a choice of a qc homeomor-
phism φ : S̄0 → S̄ (parametrization by S0) up to the following equivalence relation.
Two parametrized surfaces (S, φ) and (S′, φ′) are equivalent if there is a conformal
isomorphism h : S → S′ that makes the following diagram homotopically com-
mutative rel the ideal boundary (i.e., there is a qc homeomorphism φ̃ : S0 → S

homotopic to φ rel ∂S̄0 such that h ◦ φ̃ = φ′). A marked Riemann surfaces is
an equivalence class τ = [S, φ] of this relation. The space of all marked Riemann
surfaces is called the Teichmüller space T (S0).

Remark 3.1. Fixing a set Δ0 of generators of π1(S0) and parametrizations of
the boundary components of ∂S̄0 by the standard circle T, we naturally endow any
marked Riemann surface [S, φ] with a set of generators of π1(S) (up to an inner
automolrphism of π1(S)) and with a parametrization of the components ∂S by T.
Thus, we obtain a marked surface in the sense of §1.1.5.

18.5.2. Representation variety. Let us now uniformize the base Riemann sur-
face S0 by a Fuchsian group Γ0. The (Fuchsian) representation variety Rep(Γ0)
is the space of faithful4 Fuchsian representations i : Γ0 → PSL(2,R) up to conju-
gacy in PSL(2,R) endowed with the algebraic topology. In this topology in → i
if after a possible replacement of the in with conjugate representations, we have:
in(γ)→ i(γ) for any γ ∈ Γ0.

Lemma 3.8. There is a natural embedding e : T (S0)→ Rep(S0).

Proof. Let φ : S0 → S be a qc parametrization of some Riemann surface S ∈
QC, and let Γ be a Fuchsian group uniformizing S. Then φ lifts to an equivariant
qc homeomorphism Φ : (H,Γ0) → (H,Γ), so there is an isomorphism i : Γ0 → Γ
such that Φ ◦ γ0 = γ ◦ Φ for any γ0 ∈ Γ0 and γ = i(γ0).

If we replace Φ with another lift T ◦ Φ, where T ∈ Γ, then i will be replaced
with a conjugate representation γ0 �→ T−1 ◦ i(γ0) ◦ T .

If we replace φ with a homotopic parametrization φ̃ : S0 → S then the induced
representation Γ0 → Γ will not change. Indeed, a homotopy φt connecting φ to φ̃
lifts to an equivariant homotopy Φt : (H,Γ0)→ (H,Γ) inducing a path of represen-
tations it : Γ0 → Γ. Then for any γ0 ∈ Γ0, the image it(γ0) ∈ Γ moves continuously
with t. Since Γ is discrete, it(γ) cannot move at all.

If we further replace φ̃ with h◦ φ̃, where h : S → S′ is a conformal isomorphism
then the representation i : Γ0 → Γ will be replaced with a conjugate by T : H→ H

where T ∈ PSL(2,R) is a lift of h.
Thus, we obtain a well defined map e : T (S0) → Rep(S0) that associates to

a marked surface [S, φ] the induced representation i : Γ0 → Γ up to conjugacy in
PSL(2,R).

Let us now show that e is injective. Let φ : S0 → S and φ′ : S0 → S′ be
two parametrizastions whose lifts Φ and Φ′ to H induce two representations i and

4i.e., injective
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i′ of Γ0 that are conjugate by T ∈ PSL(2,R). Then Φ and Ψ = T−1 ◦ Φ are two
equivariant homeomorphisms (H,Γ0)→ (H,Γ) that induce the same representation
i : Γ0 → Γ. We need to show that they are equivariantly homotopic.

To this end let us consider the following diagram encoding equivariance of Φ
and Ψ:

Let δ(x) be the hyperbolic geodesic connecting Φ(x) to Ψ(x). Since γ is a
hyperbolic isometry, it isometrically maps δ(x) to δ(γ0x). Let t �→ Φt(x) be a
uniform motion along δ(x) from Φ(x) to Ψ(x) with such a speed that at time t = 1
we reach the destination (in other words, Φt(x) is the point on δ(x) on hyperbolic
distance t disthyp(Φ(x),Ψ(x)) from Φ(x)). Then γ(Φtx) = Φt(γ0x), and we obtain
a desired equivariant homotopy. �

18.5.3. Teichmüller metric. Let us endow the space T (S0) with the following
Teichmüller metric. Given two marked surfaces τ = [S, φ] and τ ′ = [S′, φ′], we let
distT(τ, τ

′) be the infimum of dilatations of qc maps h : S → S′ that make diagram
(??) homotopically commutative.

Lemma 3.9. distT is a metric.

Proof. Triangle ineaquality for distT follows from submultiplicativity of the
dilatation under composition. So, distT is a pseudo-metric. Let us show that it
is a metric, Indeed, if distT(τ, τ

′) = 0 then there exists a sequence hn : S → S′

of qc maps in the right homotopy class with Dil(hn) → 0. Let Hn : H → H be
the lifts of the hn that induce the same isomorphism between Γ and Γ′. Then the
Hn is a sequence of qc maps with uniformly bounded dilatation whose extensions
to R = ∂H all coincide. Now Compactness Theorem 2.31 implies that the Hn

uniformly converge to an equivariant conformal isomorphism T : (H,Γ0)→ (H,Γ).
It descends to a conformal isomorphism h : S → S′ in the samehomotopy class as
the hn. �

Exercise 3.10. Show that the embedding e : T (S0) → Rep(Γ0) is continuous.
(from the Teichmúller metric to the algebraic topology).

19. Bers Embedding

19.1. Schwarzian derivative and projective structures.
19.1.1. Definition. The fastest way to define the Schwarzian derivative Sf is

by means of a mysterious formula:

(19.1) Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

However, there is a bit longer but much better motivated approach.
Let us try to measure how a function f at a non-critical point z deviates from a

Möbius transformation. Möbius transformations depend on three complex param-
eters. So, one expects to find a unique Möbius transformation Az that coincides
with f to the second order. Then

f(ζ)−Az(ζ) ∼
b

6
(ζ − z)3

near z, and we let Sf(z) = b/f ′(z).
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Remark 3.2. Division by f ′(z) ensures scaling invariance of the Schwarzian
derivative: S(λf) = Sf . Coefficient 1/6 provides a convenient normalization sug-
gested by the Taylor formula: it makes Sf = f ′′′ for a normalized map f(ζ) =
ζ +O(|ζ − z|3).

The best Möbius approximation to f is easy to write down explicitly. Let
f(ζ) = a0 + a1(ζ − z) + a2(ζ − z)2 + . . . near z with a1 = f ′(z) �= 0. Then

Az(ζ) = a0 +
a1(ζ − z)

1− β(ζ − z) with β =
a2
a1
,

the 3d Taylor coefficient of f −Az is (a3 − a22/a1), and (19.1) follows.

19.1.2. Chain rule.

Lemma 3.11. Let f be a holomorphic function on a domain U . Then Sf ≡ 0
on U if and only if f is a restrictin of a Möbius map to U .

Proof. Sufficiency is obvious from the definition: If f is a Möbius map then
Az = f at any point z, and Sf(z) = 0.

Vice versa, assume Sf ≡ 0 on U . Then f is a solution of a 3d order analytic
ODE

f ′′′ =
3

2

(f ′′)2

f ′

on U �Cf , where Cf is the critical set of f . Such a solution is uniquely determined
by its 2-jet5 at any point z ∈ U � Cf . Hence f = Az. �

Similarly, one can prove:

Exercise 3.12. Let f and g be two holomorphic functions on a domain U .
Then Sf ≡ Sg on U if and only if f = A ◦ g for some Möbius map A.

Lemma 3.13 (Chain Rule).

(19.2) S(f ◦ g) = (Sf ◦ g) · (g′)2 + Sg.

Proof. Since the Schwarzian derivative is translationally invariant on both
sides (i.e., S(T1 ◦ f ◦ T2) = Sf for any translations T1 and T2), it is sufficient
to check (19.2) at the origin and to assume that g(0) = f(0) = 0. Furthermore,
by Exercise 3.12, postcomposition of f with a Möbius transformation would not
change either side of (19.2). In this way, we can bring f to a normalized form:

(19.3) f(ζ) = ζ +
Sf(0)

6
ζ3 + . . .

and then painlessly check (19.2) by composing (19.3) with the 3-get of g. �

In particular, for a Möbius transformation A, we have:

(19.4) S(f ◦A) = (Sf ◦A) · (A′)2,

which coincides with the transformation rule for quadratic differentials. It suggests
that the Schwarzian should be viewed not as a function but rather as a quadratic
differential Sf(z)dz2. This point of view is not quite right on Riemann surfaces,
but it becomes exactly correct on projective surfaces.

5Recall that a n-jet of a function f at z is its Taylor approximant of order n at z.
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19.1.3. Projective surfaces. A projective structure on a Riemann surface S is
an atlas of holomorphic local charts with Möbius transit maps. A surface endowed
with a projective structure is called a projective surface. Projective morphisms are
defined naturally, so that we can refer to isomorphic projective surfaces.

Of course, the Riemann sphere C̄ has a natural projective structure, and any
domain U ⊂ C̄ inherits it. If we have a group Γ of Möbius transformations acting
properly discontinuously and freely on U then the quotient Riemann surface V =
U/Γ inherits a unique projective structure that makes the quotient map π : U → V
projective. In particular, any Riemann surface S is endowed with the Fuchsian
projective structure coming from the uniformization π : H→ V .

Given a meromorphic function f on a projective surface V , the Chain Rule
(19.4) tells us that the local expressions Sf(z)dz2 determine a global quadratic
differential on V .

Exercise 3.14. Check carefully this assertion.

More generally, let us consider two projective structures f and g on a Rie-
mann surface V given by atlases {fα} and {gβ} respectively. Then the Chain
Rule (more specifically, Exercises 3.12 and 3.14) tell us that the local expressions
S(fα ◦ g−1

β )(z) dz2 determine a global quadratic differential on V endowed with the

g-structure. This differential is denoted S{f, g}. It measures the distance between
f and g.

In particular, given a holomorphic map f : V → W between two projective
surfaces, we obtain a quadratic differential S{f∗(W ), V } on6 V . Writing f in pro-
jective local coordinates (ζ = f(z)), we obtain the familiar expression, Sf(z) dz2,
for this differential.

6Here we notationally identify surfaces with their projective structures
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CHAPTER 4

Dynamical plane

20. Glossary of Dynamics

This glossary collects some basic notions of dynamics. Its purpose is to fix
terminology and notation and to comfort a reader who has a little experience in
dynamics.

20.1. Orbits and invariant sets. Consider a continuous endomorphism
f : X → X of a topological space X. The n-fold iterate of f is denoted by
fn, n ∈ N. A topological dynamical system (with discrete positive time) is the
N-action generated by f , n �→ fn. The orbit or trajectory of a point x ∈ X is
orb(x) = {fnx}n∈N. The subject of topological dynamics is to study qualitative
behavior of orbits of a topological dynamical system.

Here is the simplest possible behavior: a point α is called fixed if fα = α.
More generally, a point α is called periodic if it has a finite orbit, i.e., there exists
a p ∈ Z+ such that fpα = α. The smallest p with this property is called the period
of α. The orbit of α (consisting of p permuted points) is naturally called a periodic
orbit or a cycle (of period p). We will write periodic orbits in bold: α = orbα,
β = orbβ, etc. The sets of fixed and periodic points are denoted Fix(f) and Per(f)
respectively.

A subset Z ⊂ X is called (forward) invariant under f if f(Z) ⊂ Z (or equiv-
alently, f−1(Z) ⊃ Z). It is called backward invariant if f−1(Z) ⊂ Z. If Z is
simultaneously forward and backward invariant (so that f−1(Z) = Z), it is called
completely invariant.

A set Z is called wandering if fnZ ∩ fmZ = ∅ for any n > m ≥ 0. It is called
weakly wandering1 if f−n(Z) ∩ Z = ∅ for any n > 0.

Exercise 4.1. Show that wandering sets are weakly wandering but not the other
way around (in general). Show that Z is weakly wandering if and only if either of
the following properties is satisfies:

• f−n(Z) ∩ f−m(Z) = ∅ for any n > m ≥ 0.
• No point z ∈ Z returns back to Z under iterates of f .

The asymptotical behavior of an orbit can be studied in terms of its limit set.
The ω-limit set ω(x) of a point x is the set of all accumulation points of orb(x). It
is a closed forward invariant subset of X, so its complement is an open backward
invariant subset. If X is compact then ω(x) is a non-empty compact subset of
X. We say that the orbit of x converges to a cycle (of a periodic point α) if
ω(x) = orb(α).

A point x is called recurrent if ω(x) � x. Existence of non-periodic recurrrent
points is a feature of non-trivial dynamics.

1Actually, in literature these sets are usually referred to as just “wandering”.

121
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The set

Orb(z) =
⋃
n≥0

f−n(orb(z))

is called the grand orbit of a point z. It is an equivalence class of the following
equivalence relation:

z ∼ ζ if fnz = fmζ for some m,n ∈ N.

Note that the usual forward orbits orb z are not classes of any equivalence relation.
In fact, the grand orbits relation is the minimal one generated by the forward orbits.

There is a smaller equivalence relation

z ∼ ζ if fnz = fnζ for some n ∈ N.

These equivalence classes are called small orbits of f .

Given a connected set U and a point z such that fnz ∈ intU for some n ≥ 0,
let V be the connected component of f−nU containing z. It is called i the pullback
of U (along the n-rbit of z).

20.2. Equivariant maps. Two dynamical systems f : X → X and g : Y →
Y are called topologically conjugate (or topologically equivalent) if there exists a
homeomorphism h : X → Y such that h ◦ f = g ◦h, i.e., the following commutative
diagram is valid:

X −→
f

X

h ↓ ↓ h

Y −→
g

Y

Classes of topologically equivalent dynamical systems (within an a priori spec-
ified family) are called topological classes. If X and Y are endowed with an extra
structure (e.g., smooth, conformal, quasi-conformal etc.) respected by h, then
f and g are called smoothly/conformally/quasi-conformally conjugate (or equiva-
lent). The corresponding equivalence classes are called smooth/conformal/quasi-
conformal classes.

Topological conjugacies respect all properties which can be formulated in terms
of topological dynamics: orbits go to orbits, cycles go to cycles of the same period,
ω-limit sets go to ω-limit sets, converging orbits go to converging orbits etc.

A homeomorphism h : X → X commuting with a dynamical system f : X → X
(i.e., conjugating f to itself) is called an automorphism of f .

A continuous map which makes the above diagram commutative is called equi-
variant (with respect to the actions of f and g). A surgective equivariant map is
called a semi-conjugacy between f and g. In this case g is also called a quotient of
f .

It will be convenient to extend the above terminology to partially defined maps.
Let f and g be partially defined maps on the spaces X and Y respectively (i.e., f
maps its domain Dom(f) ⊂ X to X, and similarly does g). Let A ⊂ X. A map
h : A → Y is called equivariant (with respect to the actions of f and g) if for any
x ∈ A ∩ Dom(f) such that fx ∈ A we have: hx ∈ Dom(g) and h(fx) = g(hx).
(Briefly speaking, the equivariance equation is satisfied whenever it makes sense.)

20.3. Elements of ergodic theory.



20. GLOSSARY OF DYNAMICS 123

20.4. Invertible one-dimensional maps.
20.4.1. Invertibel interval maps. are the simplest dynamical examples:

Exercise 4.2. Let f : I → I be a continuous monotone map of an interval.
Its set of fixed points, Fix(f), is a non-empty closed set.

(i) If f is increasing than any orbit converges to a fixed point.

(ii) If f is decreasing than Fix(f) is a sigleton, Fix(f) = {α}, and any orbit either
converges to α or it converges to a cycle of period 2.

Here is zigzag pictures illustrating the above types of behavior:

20.4.2. Circle homeomorphisms.

20.5. Bernoulli map.

20.6. Doubling map. The doubling map is just the squaring map D : z �→ z2

on the unit circle T. Passing to the annular coordinate θ ∈ R/Z, where z = e2πiθ,
we obtain the map θ �→ 2θ modZ, which justifies the term “doubling”. We can
also view it as a map D : θ �→ 2θ mod 1 on the unit interval [0, 1], i.e.,

D(θ) = 2θ, for θ ∈ [0, 1/2] and D(θ) = 2θ − 1, for θ ∈ [1/2, 1],

with understnding that the endpoints must be undentified. We will use the same
notation D for all these models.

The doubling map has a unique fixed point z = 1, i.e., θ = 0. The preimages
of this point under Dn are diadic rationals θ = p/2n, p = 0, 1, . . . , 2n − 1. They
divide the circle into (closed) diadic intervals

Ji0...in−1
=

{
θ =

i0
2
+
i1
4
+ · · ·+ in−1

2n
+

θn
2n+1

, where θn ∈ [0, 1]

}
,

consisting of angles whose diadic expansion begins with [i0, . . . , in−1] (and may end
with the infinite number of “1”’s, to make the interval closed). Note that

Ji0...in−1
= Ji0...in−1,0 ∪ Ji0...in−1,1, and D(Ji0...in−1

) = Ji1...in−1
.

It follows that Dn(Jn
ī
) = T for any diadic interval, and this map is one-to-one,

except that it glues the endpoints of Jn
ī
to z = 1.

Exercise 4.3. The map φ : Σ+
2 → [0, 1] that associates to a diadic sequence

ī = [i0, i1, . . . , ] the angle θ with this diadic expansion, is a semiconjugacy between
the Bernoulli shift σ : Σ+

2 → Σ+
2 and the doubling map.

Exercise 4.4. Show that Jn
i0...in−1

= {θ : Dkθ ∈ J1
ik
, k = 0, . . . , n− 1}.

Exercise 4.5. Periodic points of the doubling map are rationals θ = p/q with
odd denominator. Pre-periodic points are rationals θ = p/q with even denominator
(in the irreducible representation).

Proposition 4.6. There are no non-trivial orientation preserving hoemomor-
phisms h : T→ T commuting with the doubling map.

Proof. Since θ = 0 is the unique fixed point of D, it must be also fixed by
h. Since θ = 1/2 is the only D-preimage of 0 different from 0, it must be fixed
by h as well. Hence the diadic intervals J1

0 = [0, 1/2] and J1
1 = [1/2, 1] are either

h-invariant or are permuted by h (fixing the endpoints). But in the latter case, h
would be orientation reversing, so both intervals are invariant.
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Each of them contains one D-preimage of 1/2, respectively θ = 1/4 and θ = 3/4,
so these points must also be fixed by h. Hence all the diadic intervals J2

i0i1
of level

2 are h-invariant (with the endpoints fixed).
Assume inductively that all the diadic intevals Jn

i0...in−1
of level n are h-invariant

(with the endpoints fixed). Since each of them contains one diadic point of next
level, p/2n+1 ∈ D−n+1(0) with odd p, all these points must be fixed, and hence all
the diadic intervals of level n+ 1 are h-invariant.

We concude by induction that all the diadic points p/2n, n ∈ N, are fixed by
h. By continuity, h = id. �

The doubling map, and its quotients, will serve as the main dynamical model
for quadratic polynomials on their Julia sets.

20.7. Markov chains.

20.8. Holomorphic equivalence relations. Holomorphic equivalence rela-
tions provide an adequate general set-up for various situations we will face. How-
ever, we will not make a serious use of it exploiting it only as a convenient language.
And even in this capacity, it will not be used until §26.2.

Let S be a Riemann surface, and let R be an equivalence relation on S with
countable classes. We say that R is holomorphic if there exists a countable family
Φ of holomorphic functions φn(z, ζ) in two variables such that two points z, ζ ∈ S
are R-equivalent if and only if φn(z, ζ) = 0 for some φn ∈ Φ. The functions φn are
called the local sections of R. We will assume that local sections φn are primitive
in the sense that they are not powers of other holomorphic functions, φn �= ψk for
k ≥ 2.

For instance, orbits of a discrete subgroup Γ ⊂ AutS (e.g., consider a Fuchsian
group acting on D) form a holomorphic equivalence relation. For the context of this
book, the most important type of a holomorphic equivalence relation is the grand
orbit relation generated by a holomorphic map f , e.g., by a rational endomorphism
of the Riemann sphere Ĉ (but we will also deal with partially defined maps).

Remark 4.1. More generally, one can consider relations generated by holo-
morphic pseudo-groups or pseudo-semigroups. One can also consider algebraic
equivalence relations.

A critical point of R is a point z◦ such that ∂zφn(z◦) = 0 for some local section
φn ∈ Φ. A critical equivalence class is a class contaning a critical point. Since the
local sections are primitive, the critical points of any section are isolated, and hence
altogether there are at most countably many critical points. Non-critical points are
called regular.

Any equivalence relation on S can be restricted to a subset D ⊂ S. An open
subset D is called the fundamental domain for R if the restriction R to D is trivial
(in other words, D contains at most one point of any equivalence class) while its
restriction to the closure D̄ is complete (i.e., any equivalence class crosses D̄). Under
these circumstances, the closure D̄ will also be referred as a “(closed) fundamental
domain” for R as long as meas ∂D = 0.

The R-saturation D̃ of a set D ⊂ S is the union of all equivalence classes that
cross D.
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Terms “fundamental domain for f”, “f -saturation of D” etc. mean the cor-
responding objects for the grand orbit equivalence relation generated by f . For

instance, f -saturation of a set X is its grand orbit
⋃
n∈N

f−n(orbX).

Exercise 4.7. A domain D ⊂ S is a fundamental domain for a map f re-
stricted to the f -saturation of D if and only if D is wandering and the iterates
fn|D are injective, n ∈ N.

Exercise 4.8. Show that the saturation of an open subset by a holomorphic
equivalence relation is open.

21. Holomorphic dynamics: basic objects

Below

f ≡ fc : z �→ z2 + c

unless otherwise is stated. Dynamical objects will be labeled by either f or c what-
ever is more convenient in a particular situation (for instance, Df (∞) ≡ Dc(∞),
J(fc) ≡ Jc by default). Moreover, the label can be skipped altogether if f is not
varied.

21.1. Critical points and values. First note that fn is a branched covering
of C over itself of degree 2n. Its critical points and values have a good dynamical
meaning:

Exercise 4.9. The set of finite critical points of fn is

n−1⋃
k=0

f−k(0). The set of

critical values of fn is {fk0}nk=1.

Note that there are much fewer critical values than critical points!
We let

(21.1) Crit(f) =

n−1⋃
k=0

f−k(0)

be the set of all critical points of iterated f .
Thus, fn is an unbranced covering over the complement of {fk0}nk=1.

Corollary 4.10. Let V be a topological disk which does not contain points fk0,
k = 1, 2, . . . , n. Then the inverse function f−n has 2n single-values branches f−n

i

that univalently map V onto pairwise disjoint topological disks Ui, i = 1, 2, . . . , 2n.

These simple remarks explain why the forward orbit of 0 plays a very special
role. We will have many occasions to see that this single orbit is responsible for the
complexity and variety of the global dynamics of f .

However, f has one more critical point overlooked so far:

21.2. Looking from infinity. Extend f to an endomorphism of the Riemann

sphere
¯̂
C. This extension has a critical point at ∞ fixed under f . We will start

exploring the dynamics of f from there. The first observation is that Ĉ � D̄R is f -
invariant for a sufficiently big R, and moreover fnz →∞ as n→∞ for z ∈ Ĉ�D̄R.
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This can be expressed by saying that C�DR belongs to the basin of infinity defined
as the set of all escaping points:

Df (∞) = {z ∈ Ĉ : fnz →∞ as n→∞} =
∞⋃

n=0

f−n(Ĉ � D̄R).

Proposition 4.11. The basin of infinity Df (∞) is a completely invariant do-
main containing ∞.

Proof. The only non-obvious statement to check is connectivity of Df (∞).

To this end let us show inductively that the sets Un = f−n(Ĉ� D̄R) are connected.
Indeed, assume that Un is connected while Un+1 is not. Consider a bounded com-
ponent V of Un+1. Then the restriction f : V → Un is proper and hence surjective
(Corollary 1.47). In particular f would have a pole in V – contradiction. �

21.3. Basic Dichotomy for Julia sets. We can now introduce the funda-
mental dynamical object, the filled Julia set

K(f) = Ĉ �Df (∞).

Proposition 4.11 implies that K(f) is a completely invariant compact subset of C.
Moreover, it is full, i.e., it does not separate the plane (since Df (∞) is connected).

Exercise 4.12. (i) The filled Julia set consists of more than one point.
(ii) Each component of intK(f) is simply connected.

The filled Julia set and the basin of infinity have a common boundary, which is
called the Julia set, J(f) = ∂K(f) = ∂Df (∞). Figures in this section show several
representative pictures of the Julia sets J(fc) for different parameter values c.

*** Figures inserted***
Generally, topology and geometry of the Julia set is very complicated, and it

is hard to put a hold on it. However, the following rough classification will give us
some guiding principle:

Theorem 4.13 (Basic Dichotomy). The Julia set (and the filled Julia set) is
either connected or Cantor. The latter happens if and only if the critical point
escapes to infinity: fn(0)→∞ as n→∞.

Proof. As in the proof of Proposition 4.11, let us consider the increasing
sequence of domains Un = f−n(Ĉ � D̄R) exhausting the basin of infinity. Assume
first that the critical point does not escape to ∞. Then f : Un+1 → Un is a
branched double covering with the only branched point at ∞. By the Riemann-
Hurwitz formula, if Un is simply connected then Un+1 is simply connected as well.
We conclude inductively that all the domains Un are simply connected. Hence
their union, Df (∞), is simply connected as well, and its complement, K(f), is
connected. But the boundary of a full connected compact set is connected. Hence
J(f) is connected, too.

Assume now that the critical point escapes to infinity. Then 0 belongs to some
domain Un. Take the smallest n with this property. Adjust the radius R in such
a way that the orbit of 0 does not pass through TR = ∂U0. Then 0 �∈ ∂Un−1,
and hence ∂Un−1 is a Jordan curve. Let us consider the complimentary Jordan
disk D ≡ D0 = C � Ūn−1. Since f(0) ∈ Un−1, f is unbranched over D. Hence
f−1D = D1

0 ∪ D1
1, where the D1

i � D are disjoint topological disks conformally
mapped onto D.
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21.5.2. Invariant interval and fixed points. We say that a fixed point β of a real
map f is orientation preserving if it has a positive multiplier: f ′(β) > 0. Similarly,
it is orientation reversing if the multiplier is negative.

Exercise 4.19. For c ∈ [−2, 1/4], the map fc has an invariant interval. The
maximal invariant interval has a form Ic = [−βc, βc], where βc is an orienta-
tion preserving fixed of fc. Moreover, this point is either repelling or neutral, i.e.
f ′c(βc) ≥ 1 (it is neutral only for c = 1/4). The orbits of x ∈ R � Ic escape to ∞.
Finally, Ic is the real slice of the Julia set: Ic = Jc ∩ R.

The quadratic maps fc : Ic → Ic, c ∈ [−2, 1/4], give us examples of unimodal
interval maps. A unimodal interval map f : I → I is a continuous map that
has exactly two intervals of monotonicity (and hence, it has exacly one extremum
o ∈ int I). In this book we will assume, unless otherwise is explicitly stated that a
unimodal map f under consideration is smooth, o is its only critical point, and a
is non-degenerate: f ′′(o) �= 0.

We say that a unimodal map f is proper if f(∂I) ⊂ ∂I, i.e., one of the boundary
points of I is fixed, while the other is its preimage. (More pedantically, this means
that the map f : int I → int I is proper in the usual sense). Note that the fixed
boundary point must have a positive multiplier.

A proper unimodal map has a dynamical symmetry: σ : x �→ x′, where f(x) =
f(x′). We will be mostly dealing with even unimodal maps, so o = 0 and σ is the
usual central symmetry x �→ −x. In fact, in what follows we will assume that f is
even unless otherwise is explicitly stated.

Let us now return to the quadratic family. The boundary parameter values
c = 1/4 and c = −2 play a special role in one-dimensional dynamics (both real and
complex).

Exercise 4.20. The map f ≡ f1/4 : z �→ z2 + 1/4 is singled out among
the quadratic maps fc, c ∈ C, by the property that it has a multiple fixed point
α = β = 1/2, i.e., f(β) = β, f ′(β) = 1. In this case, fnx→ β for all x ∈ I (where
I = Ic is the in

The Julia set of f1/4 is a Jordan curve depicted on Figure ... (see §?? for an
explanation of some features of this picture). It is called the cauliflower, and the
map fc : z �→ z2 + 1/4 itself is sometimes called the cauliflower map.

Let take a look at what happens as c crosses 1/4:

Exercise 4.21. For any c < 1/4, the map fc has two fixed points αc < βc.
The point αc is attracting for c ∈ (−3/4, 1/4), and repelling for c < −3/4. It is
orientation preserving for c ∈ (0, 1/4), and orientation reversing for c < 0.

Moreover, the multiplier σ : c �→ f ′c(α) is an orientation preserving diffeomor-
phism [−3/4, 1/4]→ [−1, 1].

One says that the saddle-node bifurcation occured at c = 1/4 and the superat-
tracting bifurcation occured at c = 0.

21.5.3. Chebyshev map and the saw-like map. The latter map (c = −2) is
specified by the property that the second iterate of the critical point is fixed under
fc: 0 �→ −2 �→ 2 �→ 2 (see Figure ...). This map is called Chebyshev or Ulam-
Neumann. The Julia set of this map is unusually simple:

Exercise 4.22 (Chebyshev map). Let f ≡ f−2 : z �→ z2 − 2.
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• The interval I = [−2, 2] is completely invariant under f , i.e., f−1I = I.
• J(f) = I. (To show that all points in C � I escape to ∞, use Montel’s

Theorem.)
• Consider the the saw-like map

g : [−1, 1]→ [−1, 1], g : x �→ 2|x| − 1.

Show that the map h : x �→ 2 sin π
2x conjugates g to f |I.

• The map f |I is nicely semi-conjugate to the one-sided Bernoulli shift σ :
Σ → Σ. Namely, there exists a natural semi-conjugacy h : Σ → I such
that cardh−1x = 1 for all x ∈ I except countable many points (preimages
of the fixed point β = 2 under iterates of f). For these special points,
cardh−1(x) = 2.

21.5.4. Real Basic Dichotomy. Let us finish with a statement which will com-
plete our discussion of the Basic Dichotomy for real parameter values:

Exercise 4.23. For c ∈ (−∞, 1/4), the map fc has two real fixed points αc <
βc. (We have already observed that these two points collide at 1/2 when c = 1/4.)
Point βc is always repelling. Moreover, for c ∈ [−2, 1/4] we have:

(i) The interval Ic = [−βc, βc] is invariant under fc, and it is the maximal
fc-invariant interval on the real line.

(ii) The critical point is non-escaping and hence the Julia set Jc is connected.
Moreover, the interval Ic is the real slice of the Julia set: Ic = Jc ∩ R.

(iii) For c < 0, the interval Tc = [c, f(c)] is the minimal f−invariant interval
containing the critical point.

The above fixed points, αc and βc, will be called α- and β-fixed points respec-
tively. As one can see from the second item of the above Exercise, they play quite
a different dynamical role. In §?? a similar classification of the fixed points will be
given for any quadratic polynomial with connected Julia set.

Let us summarize Exercises 4.18 and 4.23:

Proposition 4.24. For real c, the Julia set Jc is connected if and only if
c ∈ [−2, 1/4].

21.5.5. Period doubling bifurcation.

Exercise 4.25. For parameters c < −3/4 near −3/4, the map fc has an at-
tracting cycle γc of period 2. This attracting cycle persits on the parameter interval
(−5/4,−3/4) and its multiplier is an orientation preserving diffeomorphism from
this interval onto (−1, 1).

Exercise 4.26. For c ∈ [−5/4, 0), the interval Tc = [−αc, αc] is a periodic
interval of period 2, i.e., f2c (Tc) ⊂ Tc, and moreover, fc(Tc) ∩ Tc = {αc}. The
restriction f2c |Tc is a unimodal map. Any orbit in int Ic eventually lands in Tc,
i.e., for any x �= ±βc, we have fnx ∈ Tc for some n ∈ N. [In fact, the periodic
interval Tc persists until much smaller parameter c∗ < −5/4 – which one?]

This gives us the first glimplse of a fundamental phenomenon that would play
a central role throughout this book.

Let us conclude with a useful remark:
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Exercise 4.27. Assume a proper unimodal map f has neither attracting fixed
points in int I, nor attracting cycles of period two with non-negative multiplier.
Then the critical point 0 lies in between f(0) and f2(0), and the interval [f(0), f2(0)]
is invariant. Thus, this is the smallest invariant interval containing 0.

21.5.6. Formation of monotnicity intervals. Let us consider a real quadratic
polynomial f ≡ fc with c ∈ [−2, 1/4], and let I ≡ Ic be it invariant interval from
Exercise 4.23. For n ∈ Z+ and x ∈ I � Crit(fn), let Ln(x) ⊂ R be the maximal
interval containing x on which fn is monotone. The boundary points of Ln(x)
belong to Crit(fn) ∪ ∂I. By (21.1), for each endpoint a ∈ ∂Ln(x), there exists an
integer k ∈ [0, n − 1] such that fka = 0, so the interval fkL “grabs” the critical
point 0 and “carries it forward” to the image Mn(x) := fnLn(x).

21.5.7. Inverse branches. For an interval M ⊂ R we let I◦ be its interior rel
the real line.

CMn(x) := C� (R�M◦
n(x))

be the complex plane slit by two rays that complement Mn(x). By Corollary 4.10,
there is a well defined inverse branch f−n : CMn(x)→ C that mapMn(x) to Ln(x).

Lemma 4.28. The image of the half-plane H+ under the above branch of f−n is
contained in one of the half planes H+ or H− (depending on whether fn : Ln(x)→
Mn(x) is orientation preserving or reversing). Similarly for the half-plane H−.

Proof. Since fn(R) ⊂ R, we have f−n(C � R) ⊂ C � R. All the more, any
inverse branch of f−n maps the half-plane H+ inside C � R. The orinetation rule
comes from the fact that fn preserves orientation of C. �

There is a nice way to visualize these branches. Let us color the half-plane H+

in black while keeping H− white. Then the complement C � f−n(C � R) assumes
the chess-board cloloring as on Figure ??.

21.6. Fatou set. The Fatou set is defined as the complement of the Julia set:

F (f) = Ĉ � J(f) = Df (∞) ∪ intK(f).

Since K(f) is full, all components of intK(f) are simply connected. Only one of
them can contain the critical point. Such a component (if exists) is called critical.

Let U be one of the components of intK. Since intK is invariant, it is mapped
by f to some other component V . Moreover, f(∂U) ⊂ ∂V since the Julia set is
also invariant. Hence f : U → V is proper, and thus surjective. Moreover, since
V is simply connected, f : U → V is either a conformal isomorphism (if U is not
critical), or is a double branched covering (if U is critical).

The Fatou set can be also characterized as the set of normality (and was actually
classically defined in this way):

Proposition 4.29. The Fatou set F (f) is the maximal set on which the family
of iterates fn is normal.

Proof. On Df (∞), the iterates of f locally uniformly converge to∞, while on
intK(f) they are uniformly bounded. Hence they form a normal family on F (f).
On the other hand, if z ∈ J(f), then the orbit of z is bounded while there are
nearby points escaping to∞. Hence the family of iterates is not normal near z. �
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21.7. Postcritical set. Let Of = cl{fn(0)}∞n=1 stand for the postcritical set
of f . It is forward invariant and contains the critical value c of f . The map
f is tremendously contracting near the critical point 0, and under iteration this
contraction propagates through the postcritical set. The following lemma is the
first indication that otherwise, the map f tends to be expanding:

Lemma 4.30. Let c �= 0. Then the complement C � Of is hyperbolic2. Let Ω
be a component of C � Of that intersects f−1(Of ) � Of . Then f on Ω is strictly
expanding with respect to this hyperbolic metric, i.e, for any z ∈ Ω � f−1(Of ),
‖Df(z)‖hyp > 1.

Proof. If C�Of is not hyperbolic, then Of consists of a single point, c. But
then f(c) = c and hence c = 0.

Let ρ and ρ′ be the hyprebolic metrics on C�Of and C�f−1(Of ) respectively.
Since the map f : C � f−1Of → C � Of is a covering, it is a local isometry from
ρ′ to ρ.

Let Ω′ be the component of C � f−1(Of ) containing z. Since Of is forward
invariant, Ω′ ⊂ Ω, and by the assumption of the lemma, Ω′ is strictly smaller than
Ω. By the Schwarz Lemma, the natural emebdding i : Ω′ → Ω is strictly contracting
from ρ′ to ρ. Thus, the inverse map i−1|Ω′ is strictly expanding from ρ to ρ′, and
we conclude that the composition f ◦ i−1 : Ω′ → C�Of is strictly expanding with
respect to ρ. �

21.8. Preimages of points.

Proposition 4.31. Let f : z �→ z2 + c. If c �= 0, then for any neighborhood U
intersecting J(f) we have:

orbU :=

∞⋃
n=0

fnU = C.

If c = 0 and U �� 0 then orbU = C∗.

Proof. By the Montel Theorem, C � orbU contains at most one point. If
there is one, a, then f−1a = {a}. Hence a is the critical point of f , i.e., a = 0.
Moreover, f(a) = a, so c = 0. �

This result immediately yields:

Corollary 4.32. For any point z ∈ C, except z = 0 in case f : z �→ z2, we
have:

cl

∞⋃
n=0

f−nz ⊃ J(f).

Corollary 4.33. If J ′ ⊂ J(f) is a non-empty backward invariant closed subset
of J(f) then J ′ = J(f). If K ′ ⊂ K(f) is a non-empty full backward invariant closed
subset of K(f) then K ′ = K(f).

2Meaning that each component of C �Of is hyperbolic.



22. PERIODIC MOTIONS 135

21.9. Higher degree polynomials. The above basic definitions and results
admit a straightforward extension to higher degree polynomials

f : z �→ a0z
d + a1z

d−1 + · · ·+ ad, d ≥ 2, a0 �= 1.

The following point should be kept in mind though: the Basic Dichotomy is not
valid any more in the higher degree case. Instead, there is the following partial
description of the topology of the Julia set:

• The Julia set J(f) (and the filled Julia set K(f)) is connected if and only all
the critical points ci are non-escaping to ∞, i.e., ci ∈ K(f).

• If all the critical points escape to ∞, then J(f) is a Cantor set.

However, the Basic Dichotomy is still valid in the case of unicritical polyno-
mials, that is, the ones that have a single critical point. (Note that any such
polynomial is affinely conjugate to z �→ zd + c.)

Note also that the exceptional cases in Proposition 4.31 are polynomials affinely
conjugate to z �→ zd.

Exercise 4.34. Work out the basic dynamical definitions and results in the
case of higher degree polynomials.

In the theory of quadratic maps fc, higher degree polynomials still appear as
the iterates of fc. It is useful to know that they have the same Julia set:

Exercise 4.35. Show that K(fn) = K(f) for any polynomial f .

In the higher degree, we will keep notation

(21.2) Critf =

i⋃
k=0

nfty
⋃
i

f−k(ci)

for the set of critical points of all iterates of f .

22. Periodic motions

“Peirodic solutions is the only openning through which we can try to penetrate
to the domain that was viewed unaccessible” (Poincaré [Poi, §36].

22.1. Rough classification of periodic points by the multiplier. Con-
sider a periodic point α of period p. The local dynamics near its cycle α =
{fnα}p−1

n=0 depends first of all on its multiplier

σ = (fp)′(z) =

p−1∏
n=0

f ′(fnα).

The point (and its cycle)3 is called attracting if |σ| < 1, A particular case of an
attracting point is a superattracting one when σ = 0. In this case, the critical point
0 belongs to the cycle α. (When we want to emphasize that an attracting periodic
point is not superattracting, we call it simply attracting.)

A periodic point is called repelling if |σ| > 1, and neutral if σ = e2πiθ, θ ∈ R/Z.
In latter case, θ is called the rotation number of α. Local dynamics near a neutral
cycle depends delicately on the arithmetic of the rotation number. A neutral point is
called parabolic if the rotation number is rational, θ = r/q, and is called irrational

3All the terminology introduced for periodic points applies to their cycles, and vice versa.
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othewise. An irrational periodic point can be of Siegel and Cremer type, to be
defined below.

Let us consider these cases one by one.

22.2. Attracting cycles. Let α be an attracting cycle. The orbits of all
nearby points uniformly converge to α and, in particular, are bounded. It follows
that attracting cycles belong to F (f). The rate of convergence is exponential in
the simply attracting case and superexponential in the superattracting case.

For a simply attracting periodic point α, we say that a piecewise smooth (open)
disk P � α is a petal of α if f |P is univalent and f(P ) � P . (For instance, one can
take a small round disk D(α, ε) as a petal.) Then the annulus A = P̄ � fp(P ) is
called a fundamental annulus of α.

In the superattracting case, a petal is a smooth disk P � α such that fp :
P → fp(P ) is a branched covering of degree d (with a single critical point at α),
and f(P ) � P . (For instance, one can let P be the component of f−p(D(α, ε))
containing α.) The corresponding fundamental annulus is P̄ � fp(P ).

The basin of attraction of an attracting cycle α is the set of all points whose
orbits converge to α:

D(α) = Df (α) = {z : fnz → α as n→∞.}
Exercise 4.36. Show that the basin D(α) is a completely invariant union of

components of intK(f).

The union of components of D(α) containing the points of α is called the
immediate basin of attraction of the cycle α. We will denote it by D0 = D0

f (α).

The component of D0(α) containing α will be denoted D0(α) = D0
f (α).

Exercise 4.37. (i) The immediate basin of an attracting cycle consists of ex-
actly p components, where p is the period of α.

(ii) Show that it can be constructed as follows. Let P0 be a petal of α and let Pn be
defined inductively as the component of f−p(Pn−1) containing α. Then P0 ⊂ P1 ⊂
P2 ⊂ . . . , and

D0(α) =

∞⋃
n=0

Pn.

We will now state one of the most important facts of the classical holomorphic
dynamics:

Theorem 4.38. The immediate basin of attraction D0
f (α) of an attracting cycle

α contains the critical point 0. Moreover, if α is simply attracting then the critical
orbit orb(0) crosses any fundamental annulus A.

Remark 4.3. Of cource, the assertion is trivial when α is superattracting as
0 ∈ α in this case.

Proof. Otherwise fp would conformally map each component D of the im-
mediate basin onto itsef. Hence it would be a hyperbolic isometry of D, despite the
fact that |f ′(α)| < 1.

To prove the second assertion (which would also give another proof of the
first one), let us consider a petal P0 containing some point α of α, and let us
define Pn inductively as the component of f−p(Pn−1) containing α (compare with
Exercise 4.37 above). Then P0 ⊂ P1 ⊂ P2 ⊂ . . . . If non of these domains contains
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a critical point of fp, then the all the maps fp : Pn → Pn−1 are isomorphisms and
all the Pn are topological disks. Hence their union, P∞, is a topological disk as
well, and fp : P∞ → P∞ is an automorphism. Hence it is a hyperbolic isometry
contradicting the fact that α is attracting.

Hence some Pn contains a critical point of fp. Take the first such n (obviously,
n ≥ 1). Then Pn�Pn−1 contains a critical value of fp, which is contained in orb(0).
Applying further iterates of fp, we will bring it to the fundamental annulus. �

Corollary 4.39. A quadratic polynomial can have at most one attracting
cycle. If it has one, all other cycles are repelling.

Proof. The first assertion is immediate. For the second one, notice that
under the circumstances, the postcritical set Of is a discrete set accumulating on
the attracting cycle α. Hence it does not divide the complex plane, and 0 ∈ C�Of .
Applying Lemma 4.30, we conclude that |σ(β)| = ‖Dfq(β)‖hyp > 1 for any other
periodic point β of period q. �

Of course, the period of the attracting cycle can be arbitrary big. A quadratic
polynomial is called hyperbolic if it either has an attracting cycle, or if its Julia
set is Cantor. (The unifying property is that for hyperbolic maps, orb(0) coverges
to an attracting cycle in the Riemann sphere.) For instance, polynomials z �→ z2,
z �→ z2− 1,... (see Figure ...) are hyperbolic. Though dynamically non-trivial, it is
a well understood class of quadratic polynomials (see §23).

22.3. Parabolic cycles.
22.3.1. Leau-Fatou Flower. Let us consider a parabolic germ

f : z �→ e2πr/qz + az2 + . . .

with rotation number r/q near the origin.

Exercise 4.40. The first non-vanishing term of the expansion fq(z) = z +
bkz

k + . . . has order k = ql + 1 for some l ∈ N.

We calll l the order of degeneracy of f at 0. In the case l = 1, the parabolic
germ f is called non-degenerate.

An open Jordan disk P is called an attracting petal for f if:

• 0 ∈ ∂P ;
• fq(P ) ⊂ P and fq|P is univalent;
• 0 is the only point where ∂P and ∂(fqP ) touch;
• If z ∈ P then fqnz → 0 as n→∞4.

Given such a petal, the set P̄ � f(P ) is called an attracting fundamental crescent.
We say that a petal P has wedge γ at 0 if both local branches of the boundary

∂P � {α} have tangent lines at 0 that meet at angle γ.
Two attracting petals are called equivalent if they overlap5.

4It is convenient to impose this condition, though in fact it can be derived from the the other

properties.
5At the moment, it is not evident that this is an equivalence relation, but the following

theorem shows that it is.
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Theorem 4.41. There is a choice of disjoint lq petals Pi (one in each class)
with wedge 2π/ql at 0 such that the flower Φ =

⋃
Pi is invariant under rotation

by 2π/ql and under f . The orbits is z ∈ Φ converge to 0 locally uniformly. Vice
versa, if some orb(z) converges to 0 without direct landing at 0 then eventually it
lands in the flower Φ.

Proof. The proof will be split in several cases. The main analysis happens in
the following one:

The germ f is non-degenerate with zero rotation number. Thus f : z �→ z +
az2 + . . . , a �= 0. Conjugating f by complex scaling ζ = az we make a = 1.

Let us move the fixed point to∞ by inversion Z = −1

z
. It brings f to the form

(22.1) F : Z �→ Z + 1 +O(
1

Z
)

near ∞. It is obvious from this asymptotical expression that any right half-plane

(22.2) Qt = {Z : ReZ > t}
with t > 0 sufficiently big is invariant under F , and in fact

(22.3) F (Qt) ⊂ Qt+1−ε,

where ε = ε(t) → 0 as t → ∞. So, such a half-plane provides us with a petal with
wedge π at ∞. Moreover,

(22.4) Re(FnZ) ≥ ReZ + (1− ε)n,
so the orbits in Qt converge to ∞ locally uniformly.

Vice versa, if FnZ → ∞ without direct landing at it, then due to asymptot-
ical expression (22.1) we eventually have Re(Fn+1Z) ≥ Re(FnZ) + 1 − ε. Hence
Re(FnZ)→ +∞ and orb z eventually lands in the halh-plane Qt.

Now we would like to enlarge Qt to a petal P with wedge 2π at ∞. To this
end let us consider two logarithmic curves

Γ± = {Y = ±C log(t−X + 1) +R)}, X ≤ t, where Z = X + iY.

If R is big enough then Γ± lie in the domain where the asymptotics (22.1) applies.
If C is big enough then the half-slope of these curves is bigger (in absolute value)
than the slope of the displaycement vector F (Z)− Z. It follows that F moves the
curves Γ± to the right, and the region P bounded by these curves and the segment
of the vertical line ReZ = t in between is mapped univalently into itself. This is
the desired petal.

Let f be a general parabolic germ with zero rotation number, f : z �→ z+bzk+1+
. . . with k ≥ 1, b �= 0. Again, conjugating f by a complex scaling ζ = λz, where
λk = b, we make b = 1.

Let us now use a non-invertible change of variable ζ = zk. A formal calculation
shows that it conjugates f to a multi-valued germ g : ζ �→ ζ + ζ2 + O(|ζ|2+1/k),
where the residual term is given by a power series in ζ1/k. Making now a change of
variable Z = −1/z we come up with a multi-valued germ G : Z �→ Z+1+O(1/Z1/k)
near ∞. Let us take any single-valued branch of this germ in the slit plane C�R0.
Then the same considerations as in the non-degenerate case show that G has a
petal P with wedge 2π at ∞. Lifting this petal to the z-plane, gives us k petals of
f with wedge 2π/k. �
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Let us now consider a parabolic periodic point α with period p and rotation
number r/q. As the following exercise implies, α ∈ J(f):

Exercise 4.42. Show that (fpqn)′(α)→∞.

The basin of attraction of a parabolic cycle α is defined as follows:

Df (α) = {z : fnz → α as n→∞ but fnz �∈ α for any n ∈ N∗}.
Exercise 4.43. The basin of attraction Df (α) is a completely invariant union

of components of intK. Moreover, among these components there are pql compo-
nents permuted by f , while all others are preimages of these. (Here l comes from
Theorem 4.41 applied to fpq; compare also Exercise 4.40.)

The union of these pql components is called the immediate basin of attraction
of α. It will also be denoted as D0

f (α). Each of these components is periodic with
period pq. So, the immediate basin comprises l cycles of periodic components.

Let us take a component D of D0
f (α) and a petal P ⊂ D. The map g = fpq :

D → D maps one boundary component of the fundamental crescent P̄ � f(P )
to the other, so the quotient Cf := D/g = P/g is a topological cylinder called
Ecalle-Voronin cylinder . A priori, there are several options for the conformal
type of Cf : it can be isomorphic to an annulus A(r,R), or to the punctured disc
H/ < z + 1 >≈ D∗, or to the bi-infinite cylinder C/ < z + 1 >≈ C∗. In fact, the
latter happens:

Lemma 4.44. The Ecale-Voronin cylinder Cf is isomorphic to the bi-infinite
cylinder.

Proof. Notice first that the cylinder C = Cf := D/ < g > is independent of
the petal P , so we can make any convenient choice. Let us use for this purpose the
half-plane Qt (22.2) near ∞. Then the fundamental crescent Q̄� F (Q) becomes a
vertical strip S whose boundary curves stay ditance ∼ 1 apart, by (22.1). Moreover,
the right-hand boundary curve Y �→ F (it + Y ) is almost vertical, so each straight
interval IY := [t + iY, F (t + iY )] cuts S into two half-strips. Projecting these
intervals to the cylinder C = S/F , we obtain a horizontal foliation Γ on S by
circles that we also denote IY .

Let C± be the half-cylinders obtained by cutting C by the circle I0. It is enough
to show that

(22.5) modC± ≡ W(Γ|C±) =∞.
Let us deal with C+ for definiteness. Let us further cut the cylinder on some

big height H > 0 by the circle IH), and call the corresponding cylinder C+
H . Put

any conformal metric ρ = ρ(z)|dz| on C+
H with

(22.6)

∫
IY

ρ dlY = lρ(IY ) ≥ Lρ(Γ|C+
H) ≥ 1, Y ∈ [0, H],

where dlY is the Euclidean length element along IY . Since the circles IY are almost
horizontal, we have for the Euclidean area form dσ = dlY ∧ dY ≥ (1/2) dlY dY .
Hence, integrating (22.6) over dY gives us:∫

C+
H

ρ dσ ≥ cH,
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with c > 0 independent of ρ. By the Cauchy-Schwarz Inequality (compare (3.1)),
we obtain:

Hmρ(C
+
H) � area(C+

H)

∫
ρ2 dσ ≥

(∫
ρ dσ

)2

≥ c2H2.

So, mod(C+
H) ≥ c2H →∞ as H →∞, and we are done. �

As in the attracting case, we have:

Theorem 4.45. The immediate basin D0
f (α) of a parabolic cycle contains the

critical point. In fact, each cycle of components of D0
f (α) contains the critical

point.

Proof. Let D be a component of D0
f (α). If it does not contain critical points

of g := fpq, then g : D → D is an (unbranched) covering, and hence an automor-
phism of D (since D is simply connected). Since the orbits of g in D escape to
infinity (of D) and D ≈ D is hyperbolic, the quotient D/ < g > is isomrphic to
either an annulus A(r,R) (if g is hyprbolic) or to the punctured disc D∗ (if g is
parabolic), contradicting Lemma 4.44. �

As in the hyperbolic case, we now conclude:

Corollary 4.46. A quadratic polynomial f can have at most one parabolic
cycle. Moreover, this cycle is non-degenerate: it comprises a unique cycle of peri-
odic components (i.e. l = 1). If f has a parabolic cycle, then all other cycles are
repelling.

Such a quadratic polynomial is naturally called parabolic.

22.4. Repelling cycles. Let us now consider a repelling cycle α = {fkα}p−1
k=0.

Nearby points escape (exponentially fast) from a small neighborhood of α, which
implies that the family of iterates fn is not normal near α. Hence repelling periodic
points belong to the Julia set. In fact, as we are about to demonstrate, they are
dense in the Julia set, so that the Julia can be alternatively defined as the closure
of repelling cycles. It gives us a view of the Julia set “from inside”.

But first, let us now show that almost all cycles are repelling:

Lemma 4.47. A quadratic polynomial may have at most two non-repelling cy-
cles.

Proof. Let α◦ be a neutral periodic point of period p with multiplier σ◦ of a
quadratic polynomial f◦ : z �→ z2 + c◦. Due to Lemma 4.46, we can assume that
σ◦ �= 1. Then by the Implicit Function Theorem, the equation fp(z) = z has a
local holomorphic solution z = αc assuming value α◦ at c◦. The multiplier of this
periodic point, σc = (fpc )

′(αc) is also a local holomorphic function of c. In fact, it is
a global algebraic function. So, if it was locally constant then it would be globally
constant, and the map f0 : z �→ z2 would have a neutral cycle. Since this is not
the case, the multiplier is not constant, and hence near c◦ it assumes all values in
some neighborhood of σ◦. In particular, it assumes values with |σ| < 1. Moreover,
if near c◦

σ(c) = σ◦ + a(c− c◦)k + . . . , a �= 0,

then the set {c : |σ(c)| < 1} is the union of k sectors that asymptotically oc-
cupy 1/2 of the area of a small disk D(c◦, ε). It follows that if we take three of
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such multiplier functions, then two of them must have overlapping sectors, so that
the corresponding two cycles can be made simultaneously attracting, contradicting
Corollary 4.39. �

Theorem 4.48. The Julia set is the closure of repelling cycles.

Proof. Let us first show that any point of the Julia set can be approximated
by a periodic point. Let z ∈ J(f) be a point we want to approximate. Since the
Julia set does not have isolated points (see Corollary 4.14), we can assume that z is
not the critical value. Then in a small neighborhood U � z, there exist two branches
of the inverse function, φ1 = f−1

1 and φ2 = f−1
2 . Since the family of iterates is not

normal in U , one of the equations, fnz = z, fnz = φ1(z), or f
nz = φ2(z), has a

solution in U for some n ≥ 1 (by the Refined Montel Theorem). If it is an equation
of the first series, we find in U a periodic point of period n (maybe, not the least
one). Otherwise, we find a periodic point of period n+ 1.

Since by Lemma 4.47, almost all periodic points are repelling, we come to the
desired conclusion. �

22.5. Siegel and Cremer cycles. Irrational periodic points may or may
not belong to the Julia set (depending primarily on the Diophantine properties of
its rotaion number). Irrational periodic points lying in the Fatou set are called
Siegel, and those lying in the Julia set are called Cremer. The component of F (f)
containing a Siegel point is called a Siegel disk. Local dynamics on a Siegel disk is
quite simple:

Proposition 4.49. Let U be a Siegel disk of period p containing a periodic point
α with rotation number θ. Then fp|U is conformally conjugate to the rotation of
D by θ.

Proof. Consider the Riemann map φ : (U,α)→ (D, 0). Then g = φ ◦ fp ◦φ−1

is a holomorphic endomorphism of the unit disk fixing 0, with |g′(0)| = |λ| = 1. By
the Schwarz Lemma, g(z) = λz. �

We will see later on that a quadratic polynomial can have at most one non-
repelling cycle ( see Theorem 4.80). If it has one, it can be non-contradictory
classified as either hyperbolic, or parabolic, or Siegel, or Cremer.

Let us show that Cremer cycles indeed exist:

Proposition 4.50. In the family fθ : z �→ e2πiθz + z2, θ ∈ Z/2πZ, the origin
0 is the Cremer fixed point for a generic rotation number θ.

Proof. Let us consider the set Λ ⊂ R/2πZ of rotation numbers θ for which
0 ∈ J(fθ). We have Λ = Λp�ΛC , where Λp is the set of parabolic (i.e., is rational),
rotation numbers, while ΛC is the set of Cremer (i.e, irrational) numbers.

We will show that Λ is of type Gδ, i.e., it is the countable intersection of open
sets. Since Λp is dense, Λ is a dense Gδ, so rotation numbers θ ∈ Λ are generic
by definition. Of course, removing a countable subset preserves genericity, so the
conclusion would follow.

To prove that Λ is Gδ, let us consider a function ρ : R/2πZ → R≥0, ρ(θ) =
dist(0, J(fθ)). Then Λ is the set of zeros of ρ. We will show that ρ is upper-
semicontinuous. Since the set of zeros of a non-negative upper semicontinuous
function is of type Gδ, it will complete the proof.

�
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22.6. Periodic components. The notions of a periodic component of F (f)
and its cycle are self-explanatory. It is classically known that such a component is
always associated with a non-repelling periodic point:

Theorem 4.51. Let U = {Ui}pi=1 be a cycle of periodic components of intK(f).
Then one of the following three possibilities can happen:

• U is the immediate basin of an attracting cycle;
• U is the immediate basin of a parabolic cycle α ⊂ ∂U of some period q|p;
• U is the cycle of Siegel disks.

Proof Take a component U of the cycle U, and let g = fp. By the Schwarz-Pick
Lemma, g|U is either a conformal automorphism of U , or it strictly contracts the
hyperbolic metric disth on U . In the former case, it is either elliptic, or otherwise.
If g is elliptic then U is a Siegel disk. Otherwise the orbits of g converge to the
boundary of U .

Let us show that if an orbit {zn = gnz}, z ∈ U , converges to ∂U , then it
converges to a g-fixed point β ∈ ∂U . Join z and g(z) with a smooth arc γ, and
let γn = fnγ. By the Schwarz-Pick Lemma, the hyperbolic length of the arcs γn
stays bounded. Hence they uniformly escape to the boundary of U . Moreover,
by the relation between the hyperbolic and Euclidean metrics (Lemma 1.97), the
Euclidean length of the γn shrinks to 0. In particular,

(22.7) |g(zn)− zn| = |zn+1 − zn| → 0

as n→∞. By continuity, all limit points of the orbit {zn} are fixed under g. But g
being a polynomial has only finitely many fixed points. On the other hand, (22.7)
implies the ω-limit set of the orbit {zn} is connected. Hence it consists of a single
fixed point β.

Moreover, the orbit {ζn} of any other point ζ ∈ U must converge to the same
fixed point β. Indeed, the hyperbolic distance between zn and ζn stays bounded
and hence the Euclidean distance between these points shrink to 0.

Thus either U is a Siegel disk, or the g-orbits in U converge to a g-fixed point
β, or the map g : U → U strictly contracts the hyperbolic metric and its orbits
do not escape to the boundary ∂U . Let us show that in the latter case, g has an
attracting fixed point α in U .

Take a g-orbit {zn}, and let dn = disth(z0, zn). Since g is strictly contracting,

disth(zn+1, zn) ≤ ρ(dn) disth(zn, zn−1),

where the contraction factor ρ(dn) < 1 depends only on disth(zn, z0). Since the
orbit {zn} does not escape to ∂U , this contraction factor is bounded away from 1
for infinitely many moments n, and hence disth(zn+1, zn)→ 0. It follows that any
ω-limit point of this orbit in U is fixed under g.

By strict contraction, g can have only one fixed point in U , and hence any
orbit must converge to this point. Strict contraction also implies that this point is
attracting.

We still need to prove the most delicate property: in the case when the orbits
escape to the boundary point β ∈ ∂U , this point is parabolic. In fact, we will show
that g′(β) = 1. Of course, this point cannot be either repelling (since it attracts
some orbits) or attracting (since it lies on the Julia set). So it is a neutral point
with some rotation number θ ∈ [0, 1). The following lemma will complete the proof.
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Lemma 4.52 (Necklace Lemma). Let f : z �→ λz+ a2z
2 + . . . be a holomorphic

map near the origin, and let |λ| = 1. Assume that there exists a domain Ω ⊂ C∗

such that all iterates fn are well-defined on Ω, f(Ω) ∩ Ω �= ∅, and fn(Ω) → 0 as
n→∞. Then λ = 1.

Proof. Consider a chain of domains Ωn = fnΩ convergin to 0. Without loss
of generality we can assume that all the domains lie in a small neighborhood of
0 and hence the iterates fn|Ω are univalent. Fix a base point a ∈ Ω such that
f(a) ∈ Ω, and let

φn(z) =
fn(z)

fn(a)
.

These functions are univalent, normalized by φn(a) = 1, and do not have zeros. By
the Koebe Distortion Theorem (the version given in Exercise 1.92,b), they form a
normal family. Moreover, any limit function φ of this family is non-constant since
φ(fa) = λ �= 1 = φ(a). Hence the derivatives φ′n|Ω are bounded away from 0 and
dist(1, ∂Ωn) ≥ ε > 0 for all n ∈ N. It follows that

dist(fna, ∂Ωn) ≥ ε rn, n ∈ N,

where rn = |fna|. On the other hand, f acts almost as the rotation by θ near 0,
where θ = arg λ ∈ (0, 1). Since this rotation is recurrent and θ �= 0, there exists an
l > 0 such that

dist(fn+la, fna) = o(rn) as n→∞
The last two estimates imply that Ωn+l ∩ Ωn �= ∅ for alll sufficiently big n.

Hence the chain of domains Ωn, . . . ,Ωn+l closes up, and their union form a
“necklace” around 0. Take a Jordan curve γ in this necklace, and let D be the
disk bounded by γ. Then fn(γ) → 0 as n → ∞. By the Maximum Principle,
fN (D) � D for some N . By the Schwarz Lemma, |λ| < 1 – contradiction. �

23. Hyperbolic maps

23.1. Definition revisited. A compact f -invariant set Z ⊂ C is called ex-
panding or hyperbolic (and also, f is called expanding/hyperbolic on Z) if there
exist constants C > 0 and λ > 1 such that

|Dfn(z)| ≥ Cλn, for any z ∈ Z, n ∈ N.

Of course, we can define the expanding property with respet to another Riemannian
metric ‖·‖ on Z. The property is independent of a particular choice of the metric as
long as the two metrics are equivalent (which is the case if both metrics are defined
in a neighborhood of X).

For instance, a Cantor Julia set J(f) of a quadratic polynomial f is always
expanding, see remark 4.2.

Theorem 4.53. Let f be a quadratic polynomial with connected Julia set. Then
the Julia set J(f) is expanding on its Julia set if and only if f has an attracting
cycle α. Moreover, in this case all points z ∈ intK(f) are attracted to the cycle α.

Proof. Assume f has an attractng cycle α = {αk}p−1
k=0. Take a small invariant

neigborhood U =
⋃
Uk � F (f) of α. Let n be the first moment when fn(0) lands in

U , and moreover, let fn(0) ∈ Uk. Let Vi be the pullback (see §20) of Uk containing
f i(0), k = 0, 1, . . . , n− 1, V =

⋃
Vk, and let

Ω′ = C� (Ū ∪ V̄ ), Ω = f−1(Ω′).
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Then Ω ⊂ Ω′, Ω �= Ω′, and f : Ω → Ω′ is a covering map. By Corollary 1.75,
‖Df(z)‖ > 1 for any z ∈ Ω, in the hyperbolic metric of Ω′. Since J(f) is compactly
contained in Ω′, there exists λ > 1 such that ‖Df(z)‖ ≥ λ, z ∈ Ω, so f is expanding
on J(f) with respect to the hyperbolic metric. Since the hyperbolic metric and the
Euclidean metrics over the Julia set J(f) � Ω are equivalent, f is expanding with
respect to the latter as well. �

We see that a quadratic polynomial f is hyperbolic in the sense of §22.2 if and
only if its Julia set J(f) is hyperbolic – so, the terminology is consistent.

23.2. Local connectivity of the Julia set.

Proposition 4.54. Let f be a polynomial. If the Julia set J(f) is connected
then it is locally connected. Moreover, the uniformization B−1 : C�D̄→ C�K(f)
admits a Hölder continuous extension to the boundary.

Proof. Of course, the second assertion implies the first. And for the second,
it is enough to show that the uniformization itself is Hölder continuous.

Recall that B conjugates f ≡ fc on C�K(f) to f0 : z �→ z2 on C� D̄. Let us
use the diadic grids Δn

ī
and Dn

ī
for f0 and f respectively, where B(Dn

ī
) = Δn

ī
(see

§32.4). Then

diamΔn
ī � 2−n, diamDn

ī = O(λ−n),

where λ is the expanding factor for f on the Julia set, so

diamDn
ī = O((diamΔn

ī )
α) with α =

log λ

log 2
.

Take now any two points z, z′ ∈ C � D̄ on distance ε > 0 apart. Assume first
they are ≤ 2ε-close to T. Then they fit into the union of two adjacent diadic boxes
Δn

ī
with 2−(n+2) ≤ ε < 2−(n+1). Ther images, ζ = B−1z and ζ ′ = B−1z′, fit into

the union of two corresponding boxes Dn
ī
of size O(λ−n), so dist(ζ, ζ ′) = O(εα).

Assume now that one of the points stays ≥ 2ε-away from T, so both of them
stay distance δ ≥ ε-away from T.6 Let δ � 2−k, k ≤ n. Then fk0 (z) and fk0 (z

′)
are two points on a distance � 2−(n−k) apart and on a distance of order 1 from T

(which of course, follows from the Koebe Distorion Theorem, but is also eaily seen
by noting that f0 is just the doubling map in the logarithmic coordinate). Since
B−1 is bi-Lipschitz on any compact subset of C�D̄, the same is true for the points
B−1(fn0 z) = fnζ and B−1(fn0 z

′) = fnζ ′. But then

dist(ζ, ζ ′) = O(2−(n−k)λ−k) = O(2−αn) with the same α =
log λ

log 2
.

�

23.3. Blaschke model for the immediate basin. We can now refer to
general properties of lc hulls (Proposition 1.122) to conclude:

Corollary 4.55. Let f be a hyperbolic quadratic polinomial, and let Di be
the components on intK (arbitrary ordered). Then any Di is a Jordan disk, and
diamDi → 0.

6To conclude that B−1 is just continuous up to the boundary, we do not actually need this

consideration.
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In particular, the immediate basin D0 � 0 of α0 is a Jordan disk. Let us
uniformaze it by the unit disk, φ : (D0, α0) → (D, 0). By the Conformal Schönflis
Theorem, φ extends to a homeomorphism φ : D̄0 → D̄. Let

g = φ ◦ fp ◦ φ−1 : D̄→ D̄

Proposition 4.56. If the uniformization φ is appropriately normalized, then

g(z) = z
z + σ

1 + σ̄z
,

where σ ∈ D is the multiplier of the attracting cycle α.

Proof. Consider first an arbitrary uniformization φ : (D0, α0) → (D, 0). The
map g : D̄ → D̄ is a double branched covering of the disk fixing 0 and preserving
the unit circle T. A general form of such a map is

g(z) = λz
z − a
1− āz , with |λ| = 1.

Replacing φ with λφ results in replacing g(z) with λg(z/λ) killing the coefficient λ
in front of the Blaschke product.

Since the multiplier is invariant under conformal conjugacies, we have:

σ = g′(0) = −a.
�

Remark 4.4. In fact, we did not need to know that D0 is a Jordan disk to
concude that g is the above Blaschke product. It would follow from the property
that g : D→ D is proper.

23.4. Hubbard trees. We will now attach to any superattracting quadratic
polynomial a combinatorial object called a Hubbard tree. It will be eventually
shown that such polynomials (and there are countable many of them) are fully
classified by their Hubbard trees.

23.4.1. Definition and first properties. Let f = fc be a superattracting qua-
dratic polynomial, so its critical point 0 is periodic with some period p ∈ Z+. Let
ck = fk(0), c = {ck}, and let Dk be the component of intK(f) containing ck.
By the last part of Theorem 4.53, intK(f) coincides with the basin of α, so for
any component D of intK(f) there exists a unique n = n(D) ∈ N such that fn

univalently maps D onto D0. Let us mark in D the preimage of 0 under this map.
This allows us to consider legal paths in K(f), see §??.

Since K(f) is locally connected, any two points z, ζ in it can be connected by
a unique legal path [z, ζ]. Let us consider the legal hull H = Hf of the points ck.
When 0 is a fixed point (i.e., p = 1), then H = {0} is trivial, so in what follows we
will assume that p > 1. Then H is a topological tree called the Hubbard tree. Let
us mark on H the points ck and all the branch points bj , and let b = {bj}.

Proposition 4.57. We have:

(i) The marked Hubbard tree (H,α ∪ β) is unvariant under f ; hence all branch
points of H are (pre)periodic;

(ii) The critical value c is a vertex of H; the critical point 0 is not a branch point
of H;
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Proof. (i) First note that the image f(γ) of any legal path γ ⊂ K(f) is a
legal curve since internal rays go to internal rays under the dynamics. However,
f(γ) is not necessarily a path since it can “backtrack” if int γ passes through the
critical point. But otherwise, f(γ) is a legal path.

Let us take the legal path γk = [0, ck] ⊂ H connecting 0 to any other ck,
k = 1, . . . , p−1. Since int γk �� 0, f(γk) is a legal path connecting c1 to ck+1 (where
the index is taken mod p). Since H is “legally convex”, f(γk) ⊂ H. Since H = ∪γk,
the first assertion follows.

(ii) Since H = ∪[ck, cj ], all the vertices of H are containes in the cycle c. So,
one of the points ck must be a vertex. But if ck with k �= 0 mod p is not a vertex
then ck+1 is not either, since the map f |H near any non-critical point is a local
diffemorphism onto the image. Thus, if c ≡ c1 is not a vertex then non of the ck
are – contradiction.

Remark 4.5. This argument shows that there is an l ∈ [1, p] such that the
vertices of H are exactly the points ck, k = 1, . . . , l.

�

Proposition 4.58. Dividing H by the marked points into intervals Jk we obtain
a recurrent Markov chain.

23.5. Dynamical quasi-self-similarity. We will now show that hyperbolic
Julia sets in small scales look roughly the same as they do in moderate scales:

Lemma 4.59. Let f be a hyperbolic quadratic map. Then there is an ε0 > 0 such
that for any ε ∈ (0, ε0), z ∈ J(f) and ρ ∈ (0, ε) there is n such that fn univalently
and with bounded distortion maps the disk D(z, ρ) onto an oval of radius of order
ε and of bounded shape around fnz (where the distortion and shape bounds are
absolute, while the other constants depend on f).

Proof. Since f is hyperbolic, the postcritical set stays away from the Julia
set. Let ε0 > 0 be the distance between these two sets.

Fix some z ∈ J(f), and let zn = fn(z). Then there is a univalent branch f−n

on the disk D(zn, ε0) such that f−n(zn) = z. By the Koebe Distortion Theorem,
restriction of this branch to the half-disk D(zn, ε0/2) is a univalent map with an
absolutely bounded distortion. Hence the pullback Un := f−n(D(zn.ε0/2)) is an
oval centered at z of bounded shape. The size of this oval is comparable with
ρn = |Dfn(z)|−1. Since ρn → 0 and ρn+1 � ρn, the conclusion easily follows. �

23.6. Porousity and area of the Julia set. Let us say that a compact set
J ⊂ C is porous (in all scales) if there is a κ ∈ (0, 1) such that any disk D(z, ρ) with
z ∈ J contains a disk D(ζ, κρ) ⊂ D(z, ρ) � J . Informally speaking, J has definite
gaps in all scales.

By the Lebesgue Density Points Theorem, porous sets have zero area.

Note that all nowhere dense compact sets are porous in moderate scales:

Exercise 4.60. Let J be a nowhere dense compact subset of C. Then for any
ε > 0 there is a κ = κ(ε) ∈ (0, 1) such that any disk D(z, r) with z ∈ J and r ≥ ε
contains a gap D(ζ, κr) ⊂ D(z, r)� J .

Proposition 4.61. Any hyperbolic Julia set J(f) is porous and hence it has
zero area.
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Proof. By Lemma 4.59, any small scale disk D(z, ρ) with z ∈ J can be mapped
with bounded distortion onto a moderate scale oval of bounded shape. Since the
latter contains a definite gap, the former contains one as well. �

23.7. Dynamical qc removability of J .

Lemma 4.62. Let f and f̃ be two quadratic polynomials, let U and Ũ be neigh-
borhoods of their Julia sets, and let h : (U, J) → (Ũ , J̃) be a homeomorphism

conjugating f to f̃ near the Julia sets such that h is qc on U � J . Then h is qc.

Proof. We will use definition of quasiconformality in terms of the circular
dilatation, see Proposition 2.25. It is enough to check that the image h(D) of a
sufficiently small disk D := D(z, ρ), z ∈ J , has a bounded shape around h(z). To

this end, we will make use of the quasi-self-similarity of J and J̃ (Lemma 4.59).
According to that lemma, for all sufficiently small ε > 0 (how small is independent of
z and ρ) there exists an n (depending on z and ρ) such that fn maps D univalently
onto an oval V of size of order ε and bounded shape around zn = fnz. Since h is
a homeomorphism, h(V ) is an oval whose inner and outer radii (around h(zn)) are
squeezed in between r(ε) > 0 and R(ε) → 0 as ε → 0. If R(ε) is sufficiently small

then there exists a inverse branch f̃−n on h(V ) with bounded Koebe distortion

such that f̃−n(h(zn)) = h(z). Hence f̃−n(V ) = h(D) has a bounded shape around
h(z), and the conclusion follows. �

23.8. Rigidity. In this section we will prove that the superattracting param-
eter value c is uniquely determined by its Hubbard map. It is the first occasion of
the Rigidity Phenomenon which is a central theme of this book.

A reference to a “Hubbard map F : T → T” will mean an abstract Hubbard tree
with the marked points and piecewise affine dynamics that models fc : Tc → Tc.

Rigidity Theorem for Superattracting Maps. Two superattracting pa-
rameters c and c̃ with the same Hubbard map F : T → T must coincide: c = c̃.

We let f = fc, f̃ = fc̃; K = Kc, K̃ = Kc̃, etc.
As we know from ??, two superattracting maps f and f̃ with the same Hubbard

map are topologically conjugate by a homeomorphism h : (CK)→ (C, K̃) which is
conformal on the basin of infinity, C�K. If we showed that h is actually conformal
on the whole plane (and hence is affine), we would be done, since different quadratic
maps fc are not affinely equivalent. We will do it in two steps:

Step 1. The map h is conformal on intKc, and hence it is conformal outside the
Julia set J .

Step 2. The map h : C→ C is quasiconformal.

Since the Julia set J has zero area (Theorem ??), Weyl’s Lemma assures that
the map h is, indeed, conformal on the whole plane.

So, let us go through the above two steps.

Proof of Step 1. Let D0 be the immediate basin of 0. We know that it is a
Jordan disk (Corollary 4.55), so the Riemann mapping φ : (D0, 0)→ (D, 0) extends
to a homeomorphism clD0 → D̄ (denoted by φ as well). Moreover, φ conjugates the
return map fp : clD0 → clD0 to z �→ eiθz2 on D̄. Such a map has a unique fixed
point on the boundary, so fp has a unique fixed point γ on ∂D0. Let us normalize
φ so that φ(γ) = 1. Then θ = 0, so φ conjugates fp | clD0 to f0 : z �→ z2 on D̄.
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Similarly, the normalizaed Riemann mapping φ̃ : clD0 → D̄ conjugates f̃p| cl D̃0

to z �→ z2 on D̄. Hence the composition h0 = φ̃−1 ◦ φ : clD0 → cl D̃0 conjugates
fp | clD0 to f̃p| cl D̃0.

We claim that this map h0 continuously matches on ∂D0 with the conjugacy
h : C � intK → C � int K̃. Indeed, both of them conjugate fp| ∂D0 to f̃p| ∂D̃0.
Hence the composition h−1 ◦ h0 : ∂D0 → ∂D0 commutes with with fp| ∂D0. But
as we know, the latter map is topologically equivalent to z �→ z2 on T, which has
the trivial commutator (Proposition 4.6). Hence h−1 ◦h0 | ∂D0 = id, and the claim
follows.

Let us now consider another component D of intK. Since intK is equal to the
basin of c (Theorem 4.53), there is n = nD ∈ Z+ such that fn homeomorphically
maps clD onto clD0. Let f

−n : clD → clD0 stand for the inverse map. Then we
let

(23.1) hD = f̃n ◦ h0 ◦ f−n : clD → cl D̃.

Obviously, this map conjugates fp| clD to f̃p| cl D̃.
Moreover, hD matches continuously on ∂D with h. Indeed, since h is a conju-

gacy on the whole Julia set, we have

h| ∂D = f̃n ◦ (h| ∂D0) ◦ f−n : ∂D → ∂D̃.

Comparing this with (30.2), taking into account that h| ∂D0 = h0, yields h|D = hD.

Thus, we have externded h conformally and equivariantly to all the components
Di of intK. Since diamDi → 0, this extension is a global homeomorphism (??),
and Step 1 is accomplished.

Proof of Step 2.

24. Parabolic maps

25. Misiurewicz maps

26. Quasiconformal deformations

26.1. Idea of the method.
26.1.1. Pullbacks. Consider a K-quasi-regular branched covering f : S → S′

between Riemann surfaces (see §11.4). Then any conformal structure μ on S′ can
be pulled back to a structure ν = f∗(μ) on S. Indeed, quasi-regular maps are
differentiable a.e. on S with non-degenerate derivative so that we can let ν(z) =
(Df(z)−1)∗(μ) for a.e. z ∈ S. This structure has a bounded dilatation:

‖ν‖∞ + 1

‖ν‖∞ − 1
≤ K

‖μ‖∞ + 1

‖μ‖∞ − 1
.

If f is holomorphic then in any conformal local charts near z and f(z) we have:

f∗μ(z) =
f ′(z)

f ′(z)
μ(fz)

(since the critical points of f are isolated, this expression makes sence a.e.). An
obvious (either from this formula or geometrically) but crucial remark is that holo-
morphic pull-backs preserve dilatation of conformal structures.
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26.1.2. Qc surgeries and deformations. Consider now a qr map f : C → C

preserving some conformal structure μ on Ĉ. By the Measurable Riemann Mapping
Theorem, there is a qc homeomorphism hμ : C→ C such that (hμ)∗(μ) = σ. Then

fμ = hμ ◦ f ◦ h−1
μ is a quasi-regular map preserving the standard structure σ on Ĉ.

By Weil’s Lemma, fμ is holomorphic outside its critical points. Since the isolated
singularities are removable, fμ is holomorphic everywhere, so that it is a rational
endormorphism of the Riemann sphere. Of course, deg(fμ) = deg(f). Since hμ is
unique up to post-composition with a Möbius map, f = fμ is uniquely determined
by μ up to conjugacy by a Möbius map.

Thus, a qc invariant view of a rational map of the Riemann sphere is a quasi-
regular endomorphism f : (S2, μ) → (S2, μ) of a qc sphere S2 which preserves
some conformal structure μ. This provides us with a powerful tool of holomorphic
dynamics: the method of qc surgery. The recepie is to cook by hands a quasi-regular
endomorphism of a qc sphere with desired dynamical properties. If it admits an
invariant conformal structure, then it can be realized as a rational endomorphism
of the Riemann sphere.

It may happen that f itself is a rational map preserving a non-trivial conformal
structure μ. Then fμ is called a qc deformation of f . If f is polynomial, then let us
normalize hμ so that it fixes ∞. Then f−1

μ (∞) =∞ and hence the deformation fμ
is polynomial as well. If f : z �→ z2 + c is quadratic then let us additionally make
hμ fix 0. Then 0 is a critical point of fμ, so that

(26.1) fμ(z) = t(μ)z2 + b(μ), t ∈ C∗.

Composing hμ with complex scaling z �→ t(μ)z, we turn this quadratic polynomial
to the normal form z �→ z2 + c(μ).

26.1.3. Holomorphic dependence. Assume now that μ = μλ depends holomor-
phically on parameter λ. By Theorem 2.41, the map hλ ≡ hμ(λ) is also holomorphic

in λ. However, the inverse map h−1
λ is not necessarilly holomorphic in λ.

Exercise 4.63. Give an example.

It is a miracle that despite it, the deformation fλ ≡ fμ(λ) is still holomorphic
in λ!

Lemma 4.64. Let fλ = hλ ◦ f ◦h−1
λ , where f and fλ are holomorphic functions

and hλ is a holomorphic motion (of an appropriate domain). Then fλ holomorphi-
cally depends on λ.

Proof. Taking ∂λ̄-derivative of the expression fλ ◦ hλ = hλ ◦ f0, we obtain:

0 = ∂λ̄hλ ◦ f0 = f ′λ ◦ ∂λ̄hλ + ∂λ̄fλ ◦ hλ = ∂λ̄fλ ◦ hλ.
�

Corollary 4.65. Consider a quadratic map f : z �→ z2 + c0. Let μλ be a
holomorphic family of f -invariant Beltrami differentials on C. Normalize the solu-
tion hλ : C→ C of the corresponding Beltrami equiation so that the qc deformation
fλ = hλ ◦ f ◦ h−1

λ has a normal form fλ : z �→ z2 + c(λ). Then the parameter c(λ)
depends holomorphically on λ.

Proof. Consider first the solution Hλ : C → C of the Beltrami equation
which fixes 0 and 1. It conjugates f to a quadratic polynomial of form (26.1).
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By Lemma 4.64, its coefficients t(λ) and b(λ) depend holomorphically on λ. The
complex rescaling Tλ : z �→ t(λ)z reduces this polynomial to the normal form with
c(λ) = t(λ)b(λ), and we see that c(λ) depends holomorphically on λ as well. �

26.1.4. Invariant extensions of conformal structures. In applications, we usu-
aly start with an invariant conformal structure on a smaller Riemann surface and
extend it to an invariant conformal structure on an embient one. It can be done
under very general circumstances.

Let S be a Riemann surfaces endowed with a holomorphic equivalence relation
R, and let U be an open subset of S. Let Ũ stand for the R−saturation of U
(see §20.8). For all practical purposes, the reader can think of the grand orbit

equivalence relation for a holomorphic map f , so Ũ is just the grand orbit of U .

Lemma 4.66. Any R-invariant conformal structures μ on U ∪ (S � Ũ) admits
a unique R-invariant extension μ̃ to S. Moreover Dilμ = Dil ν.

In particular, if U is a fundamental domain for Ũ , then any conformal struc-
tures μ on U admits a unique R-invariant extension μ̃ to S, and Dilμ = Dil ν.

Proof. Since the set of critical points of R is at most countable, while the
desired conformal structure has to be only measurable, we do not need to define it
at the critical equivalence classes.

Let ζ◦ ∈ Ũ be a point in a regular equivalence class. By definition of the
saturation Ũ , it has an R-equivalent point z◦ ∈ U , hence there exists a local section
φ of R such that φ(z◦, ζ◦) = 0. Since z◦ is regular, we can locally express z as ψ(ζ)
with a holomorphic ψ, and let μ̃ = ψ∗(μ) near ζ. This definition is independent of
the choice of the local section φ since μ|U is R-invariant. �

Corollary 4.67. Any R-invariant conformal structure μ on U admits a unique
R-invariant extension μ̃ to S such that μ coincides with the standard structure σ
on S � Ũ . Moreover, Dil μ̃ = Dilμ.

In particular, if U is a fundamental domain for Ũ , then any conformal structure
μ on U admits a unique R-invariant extension μ̃ to S such that μ = σ on S � Ũ ,
and Dil μ̃ = Dilμ.

We will refer to the extension given in this Corollary as canonical.

Corollary 4.68. Let X ⊂ Ĉ be a wandering measurable set for a rational
map f : Ĉ → Ĉ such that all the iterates fn|X, n ∈ N, are injective. Then any
conformal structure μ on X admits the canonical f -invariant extension μ̃ to the
whole sphere, and Dil μ̃ = Dilμ.

26.2. Sullivan’s No Wandering Domains Theorem. Consistently with
the general terminology of §20.1, a component D of the Fatou set F (f) is called
wandering if fnD ∩ fmD = ∅ for any natural n < m. Such components will also
be referred to as “wandering domains”.7

Theorem 4.69. A quadratic polynomial f has no wandering domains.

7One can consider more general “wandering domains”, not necessarily full components of

F (f). Such domains can certainly exist (in the basins of attracting and parabolic points). We

hope this slight terminological inconsistency will not cause a problem.
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The rest of the section will be devoted to the proof of this theorem. The idea is
to endow a wadering domain D with a 3-parameter family of conformal structures
μλ, λ ∈ R3, then to promote it to a family of f -invariant conformal structures on
the whole Riemann sphere Ĉ, and to consider the corresponding qc deformation fλ
of f . With some care this deformation can be made efficient, i.e., the map λ �→ fλ
can be made injective. But this is certainly impossible since a 3D parameter domain
cannot be embedded into C.

Let us now supply the details. Since D is wandering, only one domain Dn =
fnD, n ∈ N, can contain the critical point 0. By replacing D with fn+1D, we can
eliminate this possiblity.

So, assume orbD does not contain 0. Then all the maps f : Dn → Dn+1

are conformal isomorphisms (being unbranched coverings over simply connected
domains, see Exercise 4.12). Hence D is a fundamental domain for its saturation
OrbD by the grand orbit equivalence relation.

Let us now consider an arbitrary conformal structure μ0 on D (as always, μ0

is assumed to be measurable with bounded dilatation). By Corollary 4.68, μ0

canonically extends to an invariant conformal structure μ on the whole sphere Ĉ,
and moreover Dilμ = Dilμ0.

Exercise 4.70. Work out details of this canonical extension.

By the Measurable Riemann Mapping Theorem, there exists a qc map hμ :

Ĉ→ Ĉ such that μ = h∗μσ. Let

fμ = hμ ◦ f ◦ h−1
μ : Ĉ→ Ĉ.

By Corollary 4.65, hμ can be normalized so that fμ : z �→ z2 + cμ is a quadratic
polynomial holomorphically depending on μ.

We will now make a special choice of a 3-parameter family μ = μλ of the
initial conformal structures on D to ensure that the qc deformation fλ is efficient.
Namely, we let μλ = (ψλ)∗σ, where ψλ : D → D is a smooth 3-parameter family
of diffeomorphisms that extend to the ideal boundary ∂iD, and the family λ �→ ψλ

is efficient in Aut(D)\Diff+(∂
iD). 8

Exercise 4.71. Construct such a family of diffeomorphisms.

Since dimension of the parameter space is bigger than 2, by the Implicit
Function Theorem, there exists a one-parameter family of conformal structures
μt (within our 3-parameter family) such that ct ≡ const. Let us take a base point
τ in this family. Then ft = fτ for all t, and hence the homeomrphisms Ht = ht◦h−1

τ

commute with fτ .

Exercise 4.72. Let Ht : Ĉ→ Ĉ be a one-parameter family of homeomorphisms
commuting with a quadratic polynomial f such that fτ = id for some parameter τ .
Then Ht| J(f) = id for all t.

Since ∂D ⊂ J(fτ ) (here ∂D is the ordinary boundary, not the ideal one), we
conclude that Ht|∂D = id for all t. Hence ht| ∂D = hτ | ∂D and, in partiular,
ht(D) = hτ (D) := Δ.

8In other words, ψ̃λ = h−1 ◦ ψλ ◦ h where φ : D → D is the Riemann mapping and ψ̃λ is a

family diffeomnorphisms D̄ → D̄ such that ψt|T �= M ◦ ψλ|T for any t �= λ, M ∈ PSL#(2,R).
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Note now that since (ψt)∗σ = μt|D = (ht)
∗σ, the map ht ◦ ψt : D → Δ is

conformal. Hence the map

ψ−1
t ◦ h−1

t ◦ hτ ◦ ψτ : D → D

is a conformal automorphism of D. But on ∂D it coincides with ψ−1
t ◦ ψτ . By

Exercise 1.114, these two maps have the same extension to the ideal boundary ∂iD
contradicting the efficiency of ψt.

The theorem is proved.

26.3. Complete picture of the dynamics on the Fatou set. Putting
together the No Wandering Domains Theorem and Theorem 4.51, we obtain:

Theorem 4.73. For any point z ∈ F (f), the orb z either converges to an
attracting or parabolic cycle, or else lands in a Siegel disk.

27. Quadratic-like maps: first glance

27.1. The concept.
27.1.1. Definition and first properties. The notion of a quadratic-like map is a

fruitful generalization of the notion of a quadratic polynomial.

Definition 4.74. A quadratic-like map f : U → U ′ (abbreviated as “q-l map”)
is a holomorphic double branched covering between two conformal disks U and U ′

in C such that U � U ′.

By the Riemann-Hurwitz Theorem, any quadratic-like map has a single critical
point, which is of course non-degenerate. We normalize f so that the critical point
sits at 0 (unless otherwise is explicitly stated). Note that any quadratic polynomial
f = fc restricts to a quadratic-like map f : f−1(DR)→ DR whose range is a round
disk of radius R > |f(0)|. More canonically, for any r > |Bf (0)| (recall that Bf is
the Böttcher function for f), the restriction of f to the subpotential domain Ωf (r)
(see §32.2) provides us with a quadratic-like map f : Ωf (r)→ Ωf (r

2).

From now on (unless otherwise is explicitly stated) we will make the following

Technical Conventions: For any quadratic-like map f : U → U ′, we assume that
the domains U and U ′ are 0-symmetric and that f is even , i.e, f(z) = f(−z) for
all z ∈ U . Moreover, we assume that both domains are quasidisks.

Note that the last assumtion can be secured by the following adjustment of f :

Exercise 4.75. Take any 0-symmetric topological disk V ′ � f(0) such that
U ⊂ V ′ ⊂ U ′, and let V = f−1(V ′). Then the map f : V → V ′ is quadratic-like.
(Of course, V ′ can be chosen so that its boundary is real analytic.)

Sometime we will refer to a q-l map satisfying the above Technical Conventions
as conventional. Such a map f extends continuously to Ū , so we can assume this
without loss of generality.

The annulus A = Ū ′�U is called the fundamental annulus of f . (We will refer
in the same way to the corresponding open and semi-open annuli.)

The notion of quadratic-like map does not fit to the canonical dynamical frame-
work, where the phase space is assumed to be invariant under the dynamics. In
the quadratic- like case, some orbits escape through the fundamental annulus (i.e.,
fnz ∈ A for some n ∈ N), and we cannot iterate them any further. However,
there are still a plenty of non-escaping points, which form a dynamically significant
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object. The set of all non-escaping points is called the filled Julia set of f and is
denoted in the same way as for polynomials:

K(f) = {z : fnz ∈ U, n = 0, 1, . . . .}
By definition, the Julia set of f is the boundary of the filled Julia set: J(f) = ∂K(f).
Dynamical features of quadratic-like maps are very similar to those of quadratic
maps (in §49.2 we will see a good reason for it):

Exercise 4.76. Check that all dynamical properties of quadratic polynomials
established in in §§21 - 22 are still valid for quadratic-like maps. In particular,

(i) The filled Julia set K(f) is a completely invariant full compact subset of U .
(ii) Basic dichotomy: J(f) and K(f) are either connected or Cantor; the former

holds if and only if the critical point is non-escaping: 0 ∈ K(f).
(iii) Any periodic component of intK(f) is either in the immediate basin of an

attracting/parabolic cycle, or is a Siegel disk.
(iv) f can have at most one attracting cycle.

Exercise 4.77. Show that adjustments from Exercise 4.75 do not change the
filled Julia set.

Let us consider a quadratic-like map f : U → U ′ with real symmetric domains
U and U ′. Since these domains are simply connected, their real slices

I := U ∩ R and I ′ := U ′ ∩ R

are open intervals; moreover, I � I ′. If additionally, the map f is real, i.e. f(I) ⊂ I ′,
then it is naturally referred to as a real-symmetric (or just real) quadratic-like map.
Note also that according to our Conventions, f extends continuously to ∂U , in
particular to ∂I, and we have f(∂I) ⊂ ∂I ′.

For a real-symmetric quadratic-like map f , we let KR ≡ KR(f) := K(f) ∩ R

be the real slice of its filled Julia set.

Exercise 4.78. For a real-symmetric quadratic-like map f : U → U ′ with
connected Julia set K(f), the real slice KR(f) is a closed interval compactly con-
tained in I. Moreover, the restriction f : KR → KR is a proper unimodal map (see
§21.5.2), and its boundary fixed point β ∈ ∂KR is either repelling or parabolic with
positive multiplier: f ′(β) ≥ 1.

27.2. Uniqueness of a non-repelling cycle. We will now give the first
illustration of how useful the notion of a quadratic-like map is. It exploits the
flexibility of this class of maps: small perturbations of a quadratic-like map are still
quadratic-like (on a slightly adjusted domain):

Exercise 4.79 (compare Exercise 4.75). Let f : U → U ′ be a quadratic-like
map with the fundamental annulus A. Take a 0-symmetric smooth Jordan curve
γ′ ⊂ A generating H1(A), and let V ′ be the domain bounded by γ′. Let φ be a
bounded holomorphic function on U with ‖φ‖∞ < dist(γ, ∂U ′). Let g = f + φ and
V = g−1V ′. Then g : V → V ′ is a quadratic-like map.

Theorem 4.80. Any quadratic-like map (in particular, any quadratic polyno-
mial) can have at most one non-repelling cycle.

Proof. Assume that a quadratic-like map f : U → U ′ has two non-repelling
cycles α = {αk}p−1

k=0 and β = {βk}q−1
k=0. Let μ and ν be their multipliers. Take two

numbers a and b to be specified below.
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Using the Interpolation formulas, find a polynomial φ (of degree 2p + 2q −
1) vanishing at points αk and βk, such that φ′(α0) = a, φ′(β0) = b, while the
derivatives of φ at all other points αk and βk (k > 0) vanish.

Let fε = f + εφ, where ε > 0. Then α and β are periodic cycles for fε with
multipliers

λε = λ+ aε
∏
k>0

f ′(αk) and με = μ+ bε
∏
k>0

f ′(βk)

respectively. Since |λ| ≤ 1 and |μ| ≤ 1, parameters a and b can be obviously
selected in such a way that |λε| < 1 and |με| < 1 for all sufficiently small ε > 0.
Thus, the cycles α and β become attracting for fε. But for a sufficiently small ε,
the map fε is quadratic-like on a slightly adjusted domain containing both cycles
(see Exercise 4.79). As such, it is allowed to have at most one attracting cycle
(Exercise 4.76) – contradiction. �

This result together with Exercise 4.76 (iii) immediately yields:

Corollary 4.81. Any quadratic-like map (in particular, any quadratic poly-
nomial) can have at most one cycle of components of intK(f).

27.3. Concept of renormalization.
27.3.1. Complex renormalization. The primarily motivation for introducing

quadratic-like maps comes from the idea of renormalization, which is a central idea
in contemporary theory of dynamical systems.

A quadratic-like map f : U → U ′ is called renormalizable with period p if there
is a topological disk V � 0 such that all the domains f iV , i = 0, 1, . . . , p − 1, are
contained in U , the map g := (fp : V → fp(V )) is quadratic-like with connected
Julia set K(g) (see Figure ??), and the following technical “almost disjointness”
property is satisfied: The images Ki(g) := f i(K(g)), i = 1, . . . , p − 1, can touch
K(g) ≡ K0(g) at most at one point, and this point is not a cut-point. (The
meaning of these technical assumptions will become clear later, see §??.)

The sets Ki(g), i = 0, 1, . . . , p−1, are called the little (filled) Julia sets. If they
are actually disjoint, then the renormalization is called primitive. Otherwise it is
called satellite.

The quadratic-like map g : V → V ′ is called the pre-renormalization of f .
(The renormalization will be defined later by allowing to adjust and to rescale the
domains of g, see §49.5.)

A quadratic polynomial fc is called renormalizable if it restricts to a renormal-
izable quadratic-like map.

27.3.2. Real renormalization. Let f : I → I be a proper unimodal map with
non-attracting boundary fixed point β ∈ ∂I. Such a map is called renormalizable
if there is a periodic interval T � 0 of period p such that the int(f i(T )), i =
0, 1, . . . , p − 1, are disjoint, and the return map g = fp : T → T is a proper
unimodal map with non-attracting boundary fixed point.

The following simple statement shows that for real-symmetric q-l maps, real
and complex renormalizations match.

Exercise 4.82. Let f : U → U ′ be a real-symmetric quadratic-like map which
is complex renormalizable so that its pre-renormalization g : V → V ′ is also real-
symmetric. Then its restriction to the real line, f : I → I ′, is real renormalizable,
with pre-renormalization g : T → T ′ where T := V ∩ R.
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The inverse statement is also true except when g has a parabolic fixed point of
period p, see §??.

Remark 4.6. Consider quadratic maps fc with −3/4 < c < 0 (see Exercise
4.25). These maps have a periodic interval T of period 2 but they are not renor-
malizable as the boundary fixed point of g = f2 : T → T is attracting.

27.4. Global measure-theoretic attractor. The following result is a man-
ifistation of the leading role of the critical point in global holomorphic dynamics:

Theorem 4.83. For almost all z ∈ K(f) either fnz → ω(0) or else orb z lands
in the Siegel disk.

28. Appendix: Expanding circle maps

28.1. Definition. Recall that T ⊂ C stands for the unit circle (endowed with
the induced real analytic structure and Riemannian metric). Symmetry with respect
to T is understood in the sense of the anti-holomorphic reflection τ : z �→ 1/z̄.

Let us say that g : T → T is a (degree two) expanding circle map of class E if
it satisfies the following properties:

(i) g is an orientation preserving double covering of the circle over itself;
(ii) g is real analytic;
(iii) g is expanding, i.e, there exist constants C > 0 and λ > 1 such that for

any z ∈ T,

(28.1) ‖Dgn(z)‖ ≥ Cλn, n = 0, 1, . . . .

The simplest example is provided by the quadratic circle map f0 : z �→ z2.
Slightly more generally, we have the Blyaschke circle maps:

Exercise 4.84. Let g : D → D be a holomorphic double covering of the unit
disk over itself which has a fixed point α ∈ D. Then

(i) α is attracting;
(ii) g extends analytically to a degree two rational function.
(iii) This function is a degree two Blyaschke product which is Möbius conjugate

to the following normal form:

(28.2) Ba(z) = z
z − a
1− āz , |a| < 1;

(iv) Ba|T is an expanding circle map of class E.
Calculate the multiplier of Ba at the origin.

This Blyaschke map is an example of a hyperbolic rational function.
To state some results in adequately general form, we will also consider a bigger

class E1 of C1-smooth expanding circle maps and a class E1+δ of C1-smooth maps
whose derivative satisfies the Hölder condition with exponent δ ∈ (0, 1). (However,
for applications to holomorphic dynamics we will only need real analytic maps, so
the reader can always assume it.)

Exercise 4.85. For any g ∈ E1, there exists a smooth Riemannian metric ρ
on T such that

‖Dg(z)‖ρ ≥ λ > 1 for all z ∈ T.

This metric is called Lyapunov.
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Exercise 4.86. Show that any expanding circle map g ∈ E1 has a unique fixed
point β ≡ βg ∈ T.

Conjugating g be a rotation, we can always normalize it so that g(1) = 1.
Any expanding circle map g : T → T lifts to a homeomorphism g̃ : R → R of

the universal covering of T satisfying g̃(x+ 1) = g̃(x) + 2 (as it is assumed to have
degree two). Moreover, if g is normalized then g̃ can be chosen so that g̃(0) = 0. In
what follows, we will often identify the circle T with the quotient R/Z, and view g
as g̃ modZ without making notational difference between these maps.

28.2. Symbolic model. Let us consider a symbolic sequence k̄ = (k0, k1, . . . ) ∈
Σ of zeros and ones. Each such a sequence represents some number

θ(k̄) =
∞∑

n=0

kn
2n+1

∈ [0, 1]

in its diadic expansion. As everybody learns in the school (in the context of decimal
expansions), all numbers except those of the form m/2n admit a unique diadic
expansion. The numbers of the form m/2n with odd m admit exactly two diadic
expansions:

k0
2

+ · · ·+ kn−2

2n−1
+

1

2n
=
k0
2

+ · · ·+ kn−2

2n−1
+

∞∑
m=n+1

1

2m
.

Thus the corresponding symbolic sequences viewed as representations of numbers
should be identified. If we consider the numbers mod 1, then we should also identify
the sequence 0 of all zeros to the sequence 1 of all ones. Let us call these identifi-
cations on Σ “arithmetic” and the space Σ modulo these identifications arithmetic
quotient of Σ. Of course, this quotient is in a natural one-to-one correspondence
with the unit interval with identified endpoints, i.e., with the circle.

Exercise 4.87. Show that the projection

π0 : Σ→ T, k̄ �→ exp(2πi θ(k̄))

(continuously) semi-conjugates the Bernoulli shift σ : Σ → Σ (see §21.4) to the
circle endomorphism f0 : z �→ z2. Thus f0 : T→ T is topologically conjugate to the
arithmetic quotient of the Bernoulli shift.

It turns out that the same is true for all expanding circle maps g ∈ E1:
Lemma 4.88. Any circle expanding map f ∈ E1 is topologically conjugate to

the arithmetic quotient of the Bernoulli shift.

Proof. Let g ∈ E1. Consider its fixed point β. It has a single perimage
β1 different from β ≡ β0. These two points, β and β0, divide the circle into
two (open) intervals intervals, I10 and I11 (counting anti-clockwise starting from β).
Moreover, g homeomorphically maps each I1k onto T � β. Hence each I1k contains
a preimage β2

k of β1. This point divides I1k into two open intervals, I2k0 and I2k1
(counting anti-clockwise). We obtain four intervals, I2kj , k, j ∈ {0, 1} such that g

homeomorphically maps each I2kj onto I1k .
Continuing inductively, we see that

T � g−nβ =
⋃

ks∈{0,1}

Ink0 k1 ...kn−1
,
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where:
(i) the anti-clockwise order of the intervals In

k̄
(starting from β) corresponds to

the lexicographic order on the symbolic strings k̄ = (k0 k1 . . . kn−1);
(ii) the map g homeomorphically maps In

k̄
onto In−1

σ(k̄
), where the strimg σ(k̄) =

(k1 . . . kn−1) is obtained from k̄ by erasing the first symbol.
(iii) any interval In

k̄
contains a point βn+1

k̄
∈ g−(n+1)β which divides it into two

intervals In+1
k̄ 0

and In+1
k̄ 1

of the next level.
Thus gn homeomorphically maps each interval In

k̄
onto the punctured circle

T � {β}. Since g is expanding, the lengths of these intervals shrink exponentially
fast:

|Ink̄ | ≤
2π

C
λ−n,

where C > 0 and λ > 1 are constants from (28.1). It follows that for any infinite
sequence k̄ = (k0k1 . . . ) ∈ Σ of zeros and ones, the closed intervals Īnk0...kn−1

form

a nest shrinking to a single point z = π(k̄). Thus we obtain a map π : Σ→ T.
Under this map, the cylinders of rank n are mapped to the intervals of rank n.

Since the latter shrink, π is continuous.
The above property (ii) implies that π is equivariant. Thus g is a quotient of

the Bernoulli shift.
We only need to describe the fibers of π. If z is not an iterated preimage

of β, then it belongs to a single interval of any rank. Hence card(π−1(z)) = 1.
Obviously the fiber π−1(β) consists of two extremal sequences, (0) and 1. Otherwise
z = βn+1

k0...kn−1
∈ g−(n+1)β for some n ≥ 0 (except that for n = 0, the point β1 does

not have subsripts). Then it is a boundary point for exactly two intervals of each
order m ≥ n + 1. For m = n + 1, the corresponding symbolic sequences differ by
the last symbol only: (k0 . . . kn−1 0) and (k0 . . . kn−1 1). For all further levels, we
should add symbol 1 to the first sequence and symbol 0 to the second one. Thus:

π(k0 . . . kn−1 0 1 1 1 . . . ) = z = π(k0 . . . kn−1 1 0 0 0 . . . ),

which are exactly the arithmetic identifications on Σ. �

Thus all expanding circle maps of class E1 are topologically the same:

Proposition 4.89. Any two expanding circle maps of class E1 are topologically
conjugate by a unique orientation preserving circle homeomorphism. In particular,
expanding circle maps do not admit non-trivial orientation preserving automor-
phisms.

Proof. Lemma 4.88 gives the same standard model for any expanding circle
map of class E1. In this model, the anti-clockwise order on T� {β} corresponds to
the lexicographic order on Σ. Hence the corresponding conjugacy h between two
circle maps, g and g̃, is orientation preserving.

Such a conjugacy is unique. Indeed, it must carry the points of g−n(β) to

g̃−1(β̃) preserving their anti-clockwise order starting from the corresponding fixed

points, β and β̃. Hence h is uniquely determined on the iterated preimages of
β. Since these preimages are dense in T (by the previous lemma), h is uniquely
determined on the whole circle. �

Remarks. 1. Expanding circle maps have one orientation reversing automor-
phism. In the case of z �→ z2 it is just z �→ z̄ (compare with Exercise 4.16).
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2. The above discussion can be generalized in a straightforward way to ex-
panding circle maps of degree d > 2. There is one difference though: if d > 2 then
the group of orientation preserving automorphisms of g is not trivial any more but
rather the cyclic group of order d− 1 (consider z �→ zd).

28.3. Complex extensions of circle maps. In this section we will take a
closer look at the holomorphic extensions of expanding cicle maps of class E .

Exercise 4.90. (i) For any g ∈ E, there exist two T-symmetric topological
annuli V � V ′ (bounded by smooth Jordan curves) such that g admits a holomorphic
extension to V and maps it onto V ′ as a double covering.

Hint: Extend the Lyapunov metric from Exercise 4.85 to a neighborhood of T.
(ii) Show that vice versa, property (i) imlies that g ∈ E. Hint: Use the hyper-

bolic metric in V ′.
(iii) Show that all points z ∈ V �T escape, i.e., gnz ∈ V ′ � V for some n ∈ N.

Thus property (i) can be used as a definition of an expanding circle map of
class E . In fact, only exterior part of the above extension is needed to reconstruct
the circle map (it will be useful in what follows):

Lemma 4.91. Let Ω ⊂ Ω′ ⊂ C be two open conformal annnuli whose inner
boundaries coincide with the unit circle T. Let g : Ω → Ω′ be a holomorphic
double covering. Then g admits an extension to a holomorphic double covering
G : V → V ′, where V � V ′ are T-symmetric annuli such that Ω = V � D̄ and
Ω′ = V ′ � D̄. If the outer boundary of Ω is contained in Ω′, then V � V ′ and the
restriction G|T is an expanding cicle map of class E.

Proof. First show that g continuously extends to T (apply boundary proper-
ties of confomal maps to inverse branches of g ??). Then use the Schwarz Reflection
Principle. �

Consider a holomorphic extension g : V → V ′ of a map g ∈ E given by Exercise
??. Thus V � V ′ are two T-symmetric annuli neighborhoods of the circle. Let
A = (V̄ ′ � V )�D be the “outer” fundamental annulus for g.

Given another map g̃ : Ṽ → Ṽ ′ as above, we will mark the corresponding
objects with “tilde”.

Proposition 4.92. Any two expanding circle maps g : V → V ′ and g̃ : Ṽ →
Ṽ ′ are conjugate by a qc map h : (V ′, V,T) → (Ṽ ′, Ṽ ,T) commuting with the

reflection τ about the circle. In fact, any equivariant qc map H : A → Ã between
the fundamental annuli admits a unique extension to a qc conjugacy h as above.
Moreover Dil(h) = Dil(H).

Proof. Consider an equivariant qc map H as above with dilatation K. By
Lemma ?? it can be uniquely lifted to an equivariant K-qc homeomorphism h :
V ′ � D̄ → Ṽ ′ � D̄. By ??, h admits a continuous extension to the unit circle.
Reflecting it to the interior of the circle (and then exploiting Proposition 2.28) we

obtain a desired K-qc conjugacy h : V ′ → Ṽ ′. �

Let us endow the exterior C � D̄ of the unit disk, with the hyperbolic metric
ρ ≡ ρC�D̄. The hyperbolic length of a curve γ will be denoted by lρ(γ), while it
Euclidean length will be denoted by |γ|.
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Lemma 4.93. Let g : V → V ′ be an expanding circle map of class E. Let Ω
and Ω′ be two (open) annuli whose inner boundary is the circle T. Let h : Ω→ Ω′

be a homeomorphism commuting with g. Then h admits a continuous extension to
a map Ω ∪ T→ Ω̃ ∪ T identical on the circle.

Lifting g : V → V ′ to the universal covering, we obtain a conformal map
g̃ : Ṽ → Ṽ ′, where Ṽ and Ṽ ′ are Z-invariant R-symmetric neighborhoods of R, and
f(z + 1) = f(z) + 2.

************************************ unedited

Proof. Given a set X ⊂ A, let X̃ denote its image by ω. Let us take a
configuration consisting of a round annulus L0 = A[r, r2] contained in A, and an
interval I0 = [r, r2]. Let Ln = P−n

0 L0, and Ink denote the components of P−n
0 I0,

k = 0, 1, . . . , 2n − 1. The intervals Ink subdivide the annulus Ln into 2n ”Carleson
boxes” Qn

k .

Since the (multi-valued) square root map P−1
0 is infinitesimally contracting

in the hyperbolic metric, the hyperbolic diameters of the boxes Q̃n
k are uniformly

bounded by a constant C.
Let us now show that ω is a hyperbolic quasi-isometry near the circle, that is,

there exist ε > 0 and A,B > 0 such that

(28.3) A−1ρ(z, ζ)−B ≤ ρ(z̃, ζ̃) ≤ Aρ(z, ζ) +B,

provided z, ζ ∈ A(1, 1 + ε), |z − ζ| < ε.
Let γ be the arc of the hyperbolic geodesic joining z and ζ. Clearly it is

contained in the annulus A(1, r), provided ε is sufficiently small. Let t > 1 be the
radius of the circle Tt centered at 0 and tangent to γ. Let us replace γ with a
combinatorial geodesic Γ going radially up from z to the intersection with Tt, then
going along this circle, and then radially down to ζ. Let N be the number of the
Carleson boxes intersected by Γ. Then one can easily see that

ρ(z, ζ) = lρ(γ) � lρ(Γ) � N,

provided ρ(z, ζ) ≥ 10 log(1/r) (here log(1/r) is the hyperbolic size of the boxes Qn
k ).

On the other hand

ρ(z̃, ζ̃) ≤ lρ(Γ̃) ≤ CN,

so that ρ(z̃, ζ̃) ≤ C1ρ(z, ζ), and (28.3) follows.
But quasi-isometries of the hyperbolic plane admit continuous extensions to T

(see, e.g., [Th]). Finally, it is an easy exercise to show that the only homeomorphism
of the circle commuting with P0 is identical. �

********************************************************8
We will show next that “outer automorphisms” of circle maps move points

bounded hyperbolic distance:

Lemma 4.94. Let g : V → V ′ be a map of class E. Let Ω and Ω′ be two open
annuli in V � D̄ with inner boundary T, and let h : Ω→ Ω′ be an automorphism of
g. Then for any δ > 0 there exists an R = R(δ) > 0 such that ρ(z, hz) ≤ R for all
points z ∈ Ω whose distance from the outer boundary of Ω is at least δ.

Proof. By Proposition 4.92, g is qc conjugate to the quadratic circle map f0 :
z �→ z2. Of course, this conjugacy can be extended to a global qc homeomorphism of
C̄ (e.g., by ??). Since qc homeomorphisms of C�D̄ are hyperbolic quasi-isometries
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(??), it is enough to prove the assertion for f0. So, let us assume from now on that
g = f0.

Of course, the assertion is true for any compact subset of Ω. Hence we need to
check it only near to the unit circle.

By 4.93, h admits a continuous extension to the unit circle. Of course, it still
commutes with g on the circle. By Proposition 4.89, h|T = id. Hence for any ε > 0
there exists an r > 1 such that A(1, r] � Ω and

|z − hz| < ε for z ∈ A(1, r].

Consider a fundamental annulus A of g compactly contained in A(1, r]. By com-
pactness, there exists an R > 0 such that

ρ(z, hz) ≤ R for z ∈ A.
Let An = g−nA. Take some z ∈ A1. Since |z−hz| < ε, these points are obtained

by applying the same local branch of the square root map g−1 to the points gz and
g(hz) = h(gz). Since the local branches of g−1 preserve the hyperbolic distance on
C� D̄, we have: ρ(z, hz) = ρ(gz, h(gz)) ≤ R.

Replacing A by A1, we obtain the same bound for any z ∈ A2, etc. The
conclusion follows. �

28.4. Notes. Classical Theorem 4.38 (due to Fatou and Julia) plays a funda-
mental role in the field. It is valid for a general rational function f of degree d and
implies that f may have at most 2d − 2 (the number of critical points) attracting
cycles. In particulr, a polynomials of degree d may have at most d− 1 finite (in C)
attracting cycles.

Lemma 4.47 is due to Fatou: it gives twice bigger bound on the number of
non-repelling cycles than was anticipated.

The notion of a quadratic-like map was introduced by Douady and Hubbard
in their fundamental paper [DH3]. The application to the sharp bound on the
number of finite non-repelling cycles for polynomials (by d− 1, see Theorem 4.80)
was given in [D1]. An analogous bound (by 2d − 2) for rational maps is much
harder to prove; it was later established by Shishikura [Sh1].

A simple proof for existence of Siegel disks (Proposition 5.5) is due to Yoccoz.

The No Wandering Domains Theorem for rational functions appeared in [S1,
S2, S3]. Since then, it appeared in every basic text book on the subject. The
above exposition extends without changes to the case of higher degree polynomials.
For rational functions, the proof is exactly the same for simply connected compo-
nents of F (f) but some extra analysis is needed to rule out the multiply-connected
domains: (this can be actually done by a direct geometric argument that avoids qc
deformations, see [Ba]). Let us also mention that there is a class of transcendental
functions “of finite type” (including λez and λ sin z) that enjoy similar description
of the dynamics on F (f) as their rational counterparts, see [BR, EL, GK].

The global measure-theoretic attractor appeared in [?]



CHAPTER 5

Remarkable functional equations

29. Linearizing coordinate in the attracting case

Study of certain functional equations was one of the main motivations for the
classical work in holomorphic dynamics. By means of these equations the local
dynamics near periodic points of different types can be reduced to the simplest
normal form. But it turns out that the role of the equations goes far beyond local
issues: global solutions of the equations play a crucial role in understanding the
dynamics.

We will start with the local analysis and then globalize it (though sometimes
one can go the other way around). For the local analysis we put the fixed point at
the origin and consider a holomorphic map

(29.1) f : z �→ σz + a2z
2 + . . .

near the origin.

29.1. Attracting points and linearizing coordinates.
29.1.1. Local linearization. Let us start with the simplest case of an attracting

fixed point. In turns out that such a map can always be linearized near the origin:

Theorem 5.1. Consider a holomorphic map (29.1) near the origin. Assume
0 < |σ| < 1. Then there exists an f -invariant Jordan disk V � 0, an r > 0, and a
conformal map φ : (V, 0)→ Dr with φ′(0) = 1 satisfying the equation:

(29.2) φ(fz) = σφ(z)

The above properties determine uniquely the germ of φ at the origin.

The above function φ is called the linearizing coordinate for f near 0 or the
Königs function. The linearizing equation (29.2) is also called the Schröder equa-
tion. It locally conjugates f to its linear part z �→ σz.

Proof. The linearizer φ can be given by the following explicit formula:

(29.3) φ(z) = lim
n→∞

σ−nfnz.

To see that the limit exists (uniformly near the origin), let zn = fnz, z0 ≡ z,
notice that zn = O(|zσ|n) uniformly near the origin, and take the ratio of the two
consecutive terms in (29.3):

σ−n−1zn+1

σ−nzn
= σ−1σzn(1 +O(|zn|))

zn
= 1 +O(|zσn|).

Hence

φ(z) = z
∞∏

n=0

σ−n−1zn+1

σ−nzn
= z(1 +O(|z|))

161
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uniformly near the origin, and the conclusion follows.
Obviously, φ is a linearizer. Its uniqueness follows from the exercise below. �

Exercise 5.2. Show that if a holomorphic germ f near the origin commutes
with the linear germ z �→ σz, 0 < |σ| < 1, then f is itself linear.

Remark 5.1. We see that the conjugacy φ is constructed by going forward by
the iterates of f and then returning back by the iterates of the corresponding linear
map. This method of constructing a conjugacy between two maps will be used on
several other occassions, see (32.2) and (??).

Let us note in conclusion that the Königs function φ = φf depends holomor-
phically on f :

Lemma 5.3. Let

fλ(z) : z �→ σ(λ)z + a2(λ)z
2 + . . .

be a holomorphic family of local maps with attracting fixed point 0. Then the Königs
function φλ(z) depends holomorphically on λ.

Proof. The above proof shows that convergence in Königs formula (29.3) is
locally uniform over λ. Hence the limit is holomorphic in (λ, z). �

29.1.2. Extension to the immediate basin. Next, we will extend the Königs
function to the immediate basin of attraction:

Proposition 5.4. Let f be a polynomial with anttracting periodic point α.
Then the Königs function φ analytically extends to the immediate basin D = D0(α),
and it satisfies there Schröder functional equation (29.2). Moreover, the map φ :
D → C is a branched covering of infinite degree branched on D∩Critf . The fibers
of φ are small orbits of f |D.

Proof. We can assume without loss of generality that α is fixed, f(α) = α.
The immediate basin D is exahausted by an increasing nest of domains

P0 ⊂ P1 ⊂ · · · ⊂ Pn,

where P0 is a domain for the local solution of (29.2) and Pn+1 is the component of
f−1(Pn) containing α (compare proof of Theorem 4.38). Then we can consecutively
extend φ from Pn to Pn+1 by means of the Schröder equation:

φ(z) = σ−1φ(fz), z ∈ Pn+1.

Since the maps f : Pn+1 → Pn are branched coverings, all the extensions
φn = φ : Pn → σnP0 are branched coverings, and hence the limiting map φ : D → C

is a branched covering as well. As deg(f |Pn) > 1 eventually for all n (once the Pn

contain a critical point of f), we have deg φn →∞.
Moreover, any critical point of φn+1 is either a critical point of f or else an

f -preimage of a critical point φn.
The last assertion is also easily supplied consecutively for the maps φn. �

So, in case of quadratic f : z �→ z2 + c, the map φ branches on (f |D)−pm(0),
where p is the period of α. Moreover, the critical points of φ are simple in this case,
and its critical values are σ−n φ(0), n = 0, 1, . . . .
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30. Existence of Siegel disks

We will now give a simple proof of existence of Siegel disks in the quadratic
family. Here it will be convenient to put a fixed point at the origin and to normalize
the quadratic term so that fλ(z) = λz + z2.

Proposition 5.5. In the quadratic family fλ(z) = λz + z2, λ = e2πiθ with
θ ∈ R/Z, the map fλ is linearizable for Lebesgue almost all rotation umbers θ.

Proof. The idea is to construct Siegel disks as limits of attracting petals. To
this end we need to control the size of the latter. By Proposition 5.4, the Königs
map φλ is unbranched over the disk Dr, where r = rλ = |φλ(−λ/2)| . Hence there
exists a petal Dλ � 0 containing the critical point −λ/2 on its boundary which is
univalently mapped by φλ onto Dr.

By Lemma 5.3, the function λ �→ φλ(−λ/2) is holomorphic on the unit disc D.
Let us show that it is also bounded, and in fact rλ < 2. Indeed, it is trivial to check
that the filled Julia set K(fλ) is contained in the disc D̄2. Hence

Dλ ⊂ intK(fλ) ⊂ D2.

But then rλ < 2 by the Schwarz Lemma applied to the inverse function

(30.1) ψλ = φ−1
λ : (Drλ , 0)→ (Dλ, 0), ψ′(0) = 1.

By classical results of Complex Analysis (Fatou and Privalov), the function
g(λ) := φλ(−λ/2) has non-vanishing radial limits

ḡ(θ) = lim
ρ→1

g(ρe2πiθ) for almost all θ ∈ R/Z.

Let us finally show that for such a θ, the map fλ with λ = e2πiθ is linearizble on
the disk of radius r̄ := |ḡ(θ)|/2 > 0. Indeed, the family of functions ψλ (30.1) with
λ = ρ e2πiθ is well defined and normal (by the Little Montel) on the disk of radius
r̄ (as long as ρ is sufficiently close to 1 ). Then any limit function ψ linearizes fλ
on r̄. �

31. Global leaf of a repelling point

Taking the local inverse of f , we conclude that repelling maps are also locally
linearizable:

Corollary 5.6. Consider a holomorphic map (29.1) near the origin. Assume
|σ| > 1. Then there exist Jordan disks V � V ′ � 0 such that f(V ′) = V , an r > 0,
and a conformal map φ : (V, 0)→ Dr with φ′(0) = 1 satisfying the equation:

(31.1) φ(fz) = σφ(z), z ∈ V ′.

The above properties determine uniquely the germ of φ at the origin.

Assume now that f : C̄ → C̄ is a polynomial with a repelling fixed point a.
Let us consider the inverse linearizing function ψ : (Dr, 0) → (V, a), ψ = φ−1. It
satisfies the functional equation

(31.2) ψ(σz) = f(ψ(z)), z ∈ V ′.

It allows us to extend ψ holomorphically to the disk D|σ|r by letting ψ(ζ) =
f(ψ(ζ/λ)) for ζ ∈ D|σ|r. Repeating this procedure, we can consecutively extend f
to the disks D|σ|nr, n = 1, 2, . . . , so that in the end f we obtain an entire function
ψ : C→ C satisfying (31.2).
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We will now construct in a dynamical way the Riemann surface of the inverse
(multivalued) function φ = ψ−1. The construction below is a special case of a
general natural extension or inverse limit construction. Let us consider the space
of inverse orbits of f converging to the fixed point 0:

L = {ẑ = (z−n)
∞
n=0 : f(z−n−1) = z−n, z−n → 0}.

Define π−n : L → C as the natural projections ẑ �→ z−n. Let z ≡ z0 and π ≡ π0 :

ẑ �→ z. The map f lifts to an invertible map f̂ : L → L, f̂(ẑ) = (fz−n)
∞
n=0 such

that f̂−1(ẑ) = (z−n)
∞
n=1. Moreover, the projection π is equivariant: π ◦ f̂ = f ◦ π.

For a neighborhood U of z let Û = Û(ẑ) = (U−n)
∞
n=0, where U−n−1 is defined

inductively as the component of f−1(U−n) containing z−n−1. We call Û the pullback

of U along ẑ. Let us call a pullback Û regular if the maps f : U−n → U−n−1 are
eventually univalent. Since z−n → 0, z−n ∈ V for all n ≥ N . Selecting U so
small that U−N ⊂ V , we see that U−n ⊂ V for all n ≥ N , and hence all the maps

f : U−n−1 → U−n are univalent for n ≥ N . Thus, Û is regular for a sufficiently
small U .

We define topology on L by letting all the regular pullbacks Û(ẑ) be the basis
of neighborhoods of ẑ ∈ L. Moreover, if f : U−n−1 → U−n are univalent for n ≥ N ,

the projection π−N : Û → U−N is homeomorphic, and we take it as a local chart

on L̂. Transition maps between such local charts are given by iterates of f , so that,
they turn L into a Riemann surface.

Exercise 5.7. Show that the projections π−n : L → C are holomorphic. Show
that the critical points of π are the orbits ẑ = (z−n)

∞
n=0 passing through a critical

point of f (such orbits are called critical). Find the degree of branching of π at ẑ.

Let â = (a a . . . ) ∈ L be the fixed point lift of a. The following statement shows

that L̂ is the indeed the Riemann surface for φ:

Proposition 5.8. The maps ψ and φ lift to mutually inverse conformal iso-

morphisms ψ̂ : (C, 0) → (L, â) and φ̂ : L → C conjugating z �→ σz to f̂ and such

that π ◦ ψ̂ = ψ.

Proof. For u ∈ C, we let ψ̂(u) = (ψ(u/σn)∞n=0.
Vice versa, if ẑ = (z−n)

∞
n=0 then eventually z−n ∈ V , so that the local linearizer

φ is well defined on all z−n, n ≥ N . Let now ψ̂(ẑ) = σnψ(z−n) for any n ≥ N . It
does not depend on the choice of n since φ|V conjugates f to z → σz.

We leave to the reader to check all the properties of these maps. �

Lemma 5.9. Let Cf = π−1(C̄f ). Then the map L� Cf → L� C̄f is a covering.

Proof. Let z ∈ C� C̄f and let U ⊂ C� C̄f be a little disk around z. Then

π−1(U) =
⋃

ẑ∈π−1z

Û(ẑ),

and each Û projects univalently onto U . �

Let K̂(f) = π−1(K(f)).

Corollary 5.10. Assume K(f) is connected. Let U be a component of L �

K̂(f). Then U is simply connected, so that, the projection π : U → Df (∞) is a
universal covering.
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Proof. SinceK(f) is connected, C̄f ⊂ K(f). By Lemma 5.9, U → Df (∞) is a
covering map. Since Df (∞) is conformally equivalent to D∗, U is either conformally
equivalent to D∗ or is simply connected. But in the former case U would be a
neighborhood of ∞ in L ≈ C, so that, K̂(f) would be bounded. It is impossible

since K̂(f) is f̂ -invariant, where by Proposition 5.8 f̂ is conjugate to z �→ σz with
|σ| > 1. �

32. Superattractng points and Böttcher coordinates

Theorem 5.11. Let f : z �→ zd + ad+1z
d+1 + . . . be a holomorphic map near

the origin, d ≥ 2. Then there exists an f -invariant Jordan disk V � 0, r ∈ (0, 1),
and a conformal map B : (V, 0)→ (Dr, 0) satisfying the equation:

(32.1) B(fz) = B(z)d.

The above properties determine uniquely the germ of B at the origin, up to post-
composition with rotation z �→ e2πi/(d−1)z (so, it is unique in the quadratic case
d = 2). Moreover, it can be normalized so that B′(0) = 1.

The map B is called the Böttcher function, or the Böttcher coordinate near
0. Equation (32.1) is called the Böttcher equation. In the Böttcher coordinate the
map f assumes the normal form z �→ zd.

Proof. The Böttcher function can be given by the following explicit formula:

(32.2) B(z) = lim
n→∞

dn
√
fnz,

where the value of the dnth root is selected so that it is tangent to the id at ∞.
Obviously, this finction, if exists, satisfied the Böttcher equation. So, we only need
to check that the limit exists.

Let zn = fnz, where z0 ≡ z. Then

dn+1√zn+1

2n
√
zn

=
dn+1
√
zdn(1 +O(zn))

dn
√
zn

= dn+1
√

(1 +O(zn) = 1 +O
( zn
dn+1

)
.

Hence

B(z) = lim
n→∞

dn
√
zn = z

∞∏
n=0

dn+1√zn+1

dn
√
zn

= z

∞∏
n=0

(
1 +O

( zn
dn+1

))
= z(1 +O(z)),

where the last product is convergant uniformly at a superexponential rate.
Finally, uniqueness of the Böttcher function follows from the exercise below. �

Exercise 5.12. Let d ≥ 2. Show that there are no holomorphic germs com-
muting with g : z �→ zd near the origin, except rotations z �→ e2πi/(d−1)z.

32.1. Böttcher vs Riemann. Let us now consider a quadratic polynomial fc
near ∞. Since ∞ is a superattracting fixed point of f of degree 2, the map fc near
∞ can be reduced in the Böttcher coordinate to the map z �→ z2 (Theorem 5.11).
Thus, there is a Jordan disk V = Vc ⊂ C whose complement C� V is fc–invariant,
some R > 1, and a conformal map Bc : C � V → C � DR satisfying the Böttcher
equation:

(32.3) Bc(fcz) = Bc(z)
2.

Moreover, Bc(z) ∼ z as z →∞.
We will now globalize the Böttcher function.
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32.1.1. Connected case.

Theorem 5.13. Let fc : z �→ z2 + c be a quadratic polynomial with connected
Julia set. Then the Böttcher function admits an analytic extension to the whole
basin of ∞. Moreover, it conformally maps Dc(∞) onto the complement of the
unit disk and globally satisfies (32.3).

Proof. We will skip label c from the notations. Let, as usual, f0(z) = z2.

Let Un = Ĉ � f−nV̄ . Then U0 ⊂ U1 ⊂ U2 ⊂ . . . and ∪Un = Df (∞). Since
the filled Julia set K(f) is connected, the domains Un are topological disks and the
maps f : Un+1 → Un are double coverings branched point at ∞ (recall the proof
of Theorem 4.13).

Let Δn = C̄ � D̄R1/2n . By Lemma 1.53, the Böttcher function B : U0 → Δ0

admits a lift B̃ : U1 → Δ1 such that f0 ◦ B̃ = B ◦f . But the Böttcher equation tells
us that B : U0 → Δ0 is a lift of its restriction B : f(U0)→ f0(Δ

0). If we select B̃

so that B̃(z) = B(z) at some finite point z ∈ U0, then these two lifts must coincide

on U0: B̃|U0 = B. Thus, B̃ is the analytic extension of φ to U1. Obviously, it
satisfies the Böttcher equation as well.

In the same way, the Böttcher function can be consecutively extended to all
the domains Un and hence to their union, Df (∞). �

Thus, the Böttcher function gives the uniformization of C �K(f) by the unit
disk. Given the intricate fractal structure of the Julia set, this is quite remarkable
that its complement can be uniformized in this explicit way!

One can also go the other way around and costruct the Böttcher function by
means of uniformization:

Exercise 5.14. Let f = fc be a quadratic polynomial with connected Julia
set. Then the basin of infinity D̄f (∞) is a conformal disk. Uniformize it by the
complement of the unit disk; ψ : (D,∞) → (Df (∞),∞), normalized at ∞ so that
ψ(z) ∼ λz with λ > 0. Prove (without using the Böttcher theorem) that ψ conju-
gates f0 : z �→ z2 on C� D to f on the basin of ∞ (and that λ = 1).

Exercise 5.15. Prove that Dc(∞) is the maximal domain of analyticity of the
Böttcher function.

Let us finish with a curious consequence of Theorem 5.13. The capacity of a
connected compact set K ⊂ C rel∞ is defined as 1/R, where R is the radius of the
disk DR such that the domain C�K(fc) can be conformaly mapped onto C� D̄R

by a map tangent to the id at ∞.

Corollary 5.16. Let fc : z �→ z2 + c. Then the capacity of the filled Julia set
K(fc) is equal to 1.

32.1.2. Cantor case. In the disconnected case the Böttcher function Bc cannot
be any more extended to the whole basin of ∞, as it branches at the critical point
0. However, Bc can still be extended to a big invariant region Ωc containing 0 on
its boundary.

Theorem 5.17. Let fc : z �→ z2+c be a quadratic polynomial with disconnected
Julia set. Then the Böttcher function Bc admits the analytic extension to a domain
Ωc bounded by a “figure eight” curve branched at the critical point 0. Moreover,
Bc maps Ωc conformally onto the complement of some disk D̄R with R > 1. The
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inverse map extends continuously to a map C � DR → Ω̄c which is -one-to-one
except that it maps two antipodal points ±Re2πiθ ∈ TR to 0.

Proof. Again, we skip the label c.
Since 0 ∈ Df (∞), the orb(0) lands at the domain V of the Böttcher function

near ∞. By shrinking V , we can make fn0 ∈ ∂V for some n > 0. Then there are
no obstructions for consecutive extensions of B to the domains Uk = C̄ � f−kV̄ ,
k = 0, 1, . . . , n (in the same way as in the connectef case). All these domains are
bounded by real analytic curves except the last one, Un, which is bounded by a
figure eight curve branched at 0. This is the desired domain Ω. �

For c ∈M , we let Ωc be the whole basin of infinity, Ωc(∞).

For a point z ∈ Ωc, the polar coordiantes (r, theta) of Bc(z) are called the
external coordinates of z.

32.1.3. Böttcher position of the critical value. Since the critical value c ∈ ∂Un−1

belongs to the domain of Bc, the expression Bc(c) is well-defined (provided the Ju-
lia set J(fc) is disconnected). It gives the Böttcher position of the critical value as
a function of the parameter c. This function will play a crucial role in what follows.

32.2. External rays and equipotentials. The map f0 : z �→ z2 on C � D̄

has two invariant foliations, by the straight rays going to ∞ and by round circles
centered at the origin. (Note that the first foliation is dynamically defined: see the
hint to Exercise 5.12.) We will label the rays by their angles θ ∈ R/2πZ and the
circles by their radia r > 1 or by their “heights” t = log r ∈ R+. So,

Rθ
0 = {reiθ : r ∈ R+}, Er0 ≡ Et0 = {reiθ : θ ∈ R/2πZ}, t = log r,

where the subscript 0 suggests affiliation to the map f0. Note that

f0(Rθ
0) = R2θ

0 and f0(Et0) = E2t0 .

If we now take an arbitrary quadratic polynomial fc, then by means of the
Böttcher function Bc, the above two foliations can be transferred to the domain
Ωc ⊂ Dc(∞), supplying us with the foliation by external rays and equipotentials.
The rays naturally labeled by the corresponding external angles θ, while the equipo-
tentials are labeled by the equipotential radii r or heights t. Let Rθ ≡ Rθ

c stand for
the external ray of angle θ and let Er ≡ Erc or Et ≡ Etc stand for the equipotential
of height t = log r. (We will also use notation Rθ(t) ≡ Rθ(r) for the point on the
ray Rθ whose equipotential level is equal to t = log r.)

If K(fc) is connected then Ωc = Dc(∞), so that the whole basin of infinity is
foliated by the external rays and equipotentials.

In the disconnectedf case, we can pull the two foliations in Ωc back by the
iterates of f to obtain to singular foliations on the whole basin of ∞. They have
singularities at the critical points of iterated f , i.e., at 0 and all its preimages under
the iterates of f .

In this context external rays will be understood as the non-singular leaves of
these foliaitons that go to ∞ (i.e., the maximal non-singular extensions of the
rays in Ωc). Countably many rays land at the preimages of 0. All other rays are
properly embedded into the basin; they will be called proper rays. Two (improper)
rays landing at the critical point 0 will be called the critical rays. The particularly
important ray going through the critical value will be called the charactersistic ray
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(its external angle will be also called characteristic). Of cource, it contains the
(coinciding) images of the critical rays.

The figure-eight that bounds Ωc will be called the critical equipotential.
For r > Bc(0), we let Ωc(r) ≡ Ωc(t) be the Jordan disk bounded by the

equipotential of height t = log r. We will refer to it as a subpotential disk of height
t (or, of radius r).

32.3. Dynamical Green function. The Green function of a quadratic poly-
nomial f = fc is defined as follows:

(32.4) Gc(z) = log |Bc(z)|,

where Bc is the Böttcher function of fc. The Green function is harmonic wherever
the Böttcher function is defined (since the Böttcher function never vanishes) and
has a logarithmic singularity at ∞:

G(z) = log |z|+ o(1).

In the connected case, (32.4) defines the Green function in the whole basin
D(∞). In the disconnected case definition (32.4) can be used only in the domain
Ω. However, in either case the Green function satisfies the equation:

(32.5) G(fz) = 2G(z).

This equation can be obviously used in order to extend the Green function har-
monically to the whole basin of ∞. Let us summarize simple properties of this
extension:

Exercise 5.18. a) In the connected case the Green function does not have
critical points. In the disconnected case, its critical points coincide with the critical
points of iterated f .

b) Equipotentials are the level sets of the Green function, while external rays (and
their preimages) are its gradient curves.

c) The Brolin formula holds:

(32.6) G(z) = lim
n→∞

1

2n
log |fnz|, z ∈ D(∞).

d) Extention of the Green function by 0 through the filled Julia set K(f), gives a
continuous subharmonic function on the whole complex plane.

e) The Julia set is Dirichlet regular.

These properties show that the dynamical Green function G is indeed the Green
function of D(∞) with the pole at ∞ as was defined in the general context in §7.9.
Moreover, the dynamical notion of external rays and equipotentials matches with
the general one.

Exercise 5.19. Assume that the Julia set J(f) is connected. Endow its basin
D(∞)� {∞} with the hyprbolci metric ρ. Then for any external ray Rθ we have:

ρ(z, ζ) =

∣∣∣∣log G(z)G(ζ)

∣∣∣∣ , z, ζ ∈ Rθ .
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32.4. Diadic grid. Let us fix some r = et > 1, and consider the annulus
A(1, r] cut along the real line, Δ0 = A(1, r] � (0, r]. Let us pull it back by the
dynmics of f0 : z �→ z2; let Δn

ī
≡ Δn

i0...in−1
be the pullback under the branch of

f−n
0 : C� R+ → C that maps T � {1} to the diadic interval Jī.

It provides us with the tiling of each annulus A(1, r1/2
n

by 2n rectangles Δn
ī

such that

(32.7) Δn
i0...in ⊂ Δn

i0...in−1
and f0(Δ

n
i0...in) = Δn

i1...in .

Let now f be a quadratic polynomial with connected Julia set. Taking the
pullback of the above grid under the Böttcher map, Dn

ī
= B−1(Δn

ī
), we obtain the

corresponding tilings of the external annuli neighborhood of the Julia set. Since B
is equivariant, the behavior of this grid under the the dynamics (and the inclusion)
is the same as in (32.7).

This grid give a useful dynamical picture for f in the external neighborhood of
the Julia set.

33. Parabolic points and Écale-Voronin cylinders





CHAPTER 6

Parameter plane (the Mandelbrot set)

28. Definition and first properties

28.1. Notational convention. We will label the objects corresponding to a
map fc by c, e.g., Jc = J(fc), Per(fc) = Perc. We often use notation c◦ ≡ ◦ for a
base parameter, so that f◦ = fc◦ , J◦ = Jc◦ , etc.

28.2. Connectedness locus and polynomials c �→ fnc (0). The Mandelbrot
set presents at one glance the whole dynamical diversity of the complex quadratic
family fc : z �→ z2+c. Figure ... shows this set and its blow-ups in several places. It
is remarkable that all this intricate structure is hidden behind the following one-line
definition.

Recall the Basic Dichotomy for the quadratic maps: the Julia set J(fc) is either
connected or Cantor (Theorem 4.13). By definition, the Mandelbrot set M consists
of those parameter values c ∈ C for which the Julia set Jc is connected. It is
equivalent to saying that the orbit of the critical point

(28.1) 0 �→ c �→ c2 + c �→ (c2 + c)2 + c �→ . . .

is not escaping to ∞. Let us denote the n th polynomial in (28.1) by υn(c), so that
υ0(c) ≡ 0, υ1(c) ≡ c, and recursively

(28.2) υn+1(c) = υn(c)
2 + c.

Note that deg vn = 2n−1.
Though the polynomials υn are not iterates of a single polynomial, they behave

in many respects similarly to the iterated polynomials:

Exercise 6.1 (Simplest properties of M). Prove the following properties:

(i) If |υn(c)| > 2 for some n ∈ N then υn(c) →∞ as n→∞. In particular,
M ⊂ D̄2.

(ii) υn(c)→∞ locally uniformly on C�M . Hence M is compact.
(iii) C �M is connected. Hence M is full and all components of intM are

simply connected.
(iv) The set of normality of the sequence {υn} coincides with C� ∂M .

One can see a similarity between the Mandelbrot set (representing the whole
quadratic family) and a fillied Julia set of a particular quadratic map. It is just the
first indication of a deep relation between dynamical and parameter objects.

Note that Proposition 4.24 describes the real slice of the Mandelbrot set:

M ∩ R = [−2, 1/4].

171
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28.3. Dependence of periodic points on c. What immediately catches
the eye in the Mandelbrot set is the main cardioid C with a cusp at c = 1/4. The
cardioid bounds a domain of parameter values c such that fc has an attracting fixed
point.

Exercise 6.2. Show that the main cardioid is given by the equation

c =
1

2
e2πiθ − 1

4
e4πiθ, 0 ≤ θ < 2π,

where σ = e2πiθ is the multiplier of the neutral fixed point of fc.

Let us now take a look at how periodic points move with parameter:

Lemma 6.3. Let f◦ has a cycle {αk}p−1
k=0 of period p with multiplier σ◦ �= 1.

Then for nearby c, the maps fc have a cycle {αk(c)}p−1
k=0 holomorphically depending

on c. Its multiplier σ(c) holomorphically depends on c as well.

Proof. Consider an algebraic equation fpc (z) = z. For c = c◦ it has roots
z = αk, k = 0, . . . , p− 1 (and maybe others). Since

d(fpc (z)− z)
dz

∣∣∣∣
c=c◦, z=αk

= σ◦ − 1 �= 0,

the Implicit Function Theorem yields the first assertion. The second assertion
follows from the formula for the multiplier:

σ(c) = 2p
p−1∏
k=0

αk(c).

�

Thus periodic points of fc as functions of the parameter are algebraic functions
branched at parabolic points only.

28.4. Hyperbolic components. A parameter value c ∈ C is called hyper-
bolic/parabolic/Siegel etc. if the corresponding quadratic polynomial fc is such.

Proposition 6.4 (Hyperbolic components). The set H of hyperbolic parameter
values is the union of C�M and some set of components of intM .

Proof. By definition, C �M ⊂ H. Aslo, the property to have an attracting
cycle is stable (see Lemma 6.3 ), hence H ∩M ⊂ intM .

Take now some hyperbolic parameter c◦ ∈ M and let H◦ be the component
of intM containing c◦. Let us show that H◦ ⊂ H. The map f◦ has an attracting
cycle of some period p. By Theorem 4.38, this cycle contains a point α0 such that

υpn(c◦) ≡ fpn
◦

(0)→ α0 as n→∞.
It is easy to see (Exercise!) that for nearby c ∈ H we have:

υpn(c) ≡ fpn
◦

(0)→ α0(c) as n→∞,
where α0(c) is the holomorphically moving attracting periodic point of fc (Lemma 6.3).
But the sequence of polynomials υpn(c), n = 0, 1, . . . , is normal in H (Exercise 6.1,
(iv)). Hence it must converge in the whole domain H to some holomorphic function
α̃(c) coinciding with α0(c) near c0. By analytic continuation, α̃(c) is a a periodic
point of fc with period dividing p.
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Moreover, the cycle of this point attracts the critical orbit persistently in H. It
is impossible if this cycle is repelling somewhere. Indeed, a repelling cycles can only
attract an orbit which eventually lands at it. This property is not locally persistent
since otherwise it would hold for all c ∈ C (while it is violated, say, for c = 1).

If α̃(c) were parabolic for some c ∈ H, then it could be made repelling for a
nearby parameter value. Thus α̃(c) is attracting for all c ∈ H, so that H ⊂ H. �

Corollary 6.5. Neutral parameters lie on the boundary of M .

Proof. Let c◦ be a neutral parameter, i.e., the map f◦ has a neutral cycle.
This parameter can be perturbed to make the cycle attracting. If c◦ belonged to
intM then by Proposition 6.4 it would be hyperbolic itself – contradiction. �

Exercise 6.6. (i) Any parameter c ∈ ∂M can be approximated by superat-
tracting parameters; (ii) Misiurewicz parameters form a countable dense subset of
∂M .

A component Λ of intM is called hyperbolic if it consists of hyperbolic param-
eter values. Otherwise Λ is called queer. The reason for the last term is that it
is generally believed that there are no queer components. In fact, it is a central
conjecture in contemporary holomorphic dynamics:

Conjecture 6.7 (Density of hyperbolicity). There are no queer components.
Hyperbolic parameters are dense in C.

Because of Exersice 6.6 (i), the second part of the conjecture would follow from
the first one. It is sometimes referred to as Fatou’s Conjecture.

28.5. Primitive and satellite hyperbolic components.

Proposition 6.8. Let H be a hyperbolic component of period n of M , let
p/q �= 0 mod 1, and let rp/q ∈ ∂H be a parabolic parameter with rotation number
p/q. Then there is a hyperbolic component H ′ of period nq attached to H at rp/q.

Proof. We let c◦ ≡ rp/q, f◦ ≡ fc◦ , and gc = fnc . Let α◦ be a parabolic fixed
point for g◦ Since g′

◦
(α◦) �= 1, nearby maps gc have a fixed point αc depending

holomorphically on c. Making a change of variable z �→ z − αc, we obtain a
holomorphic family of quadratic polynomials that fix 0; we keep the same notation
fc for this family and its n-fold iterate gc.

By Corollary 4.46, g◦ has q parabolic petals attached to 0 that are cyclically
permutted by g◦. Hence near the origin we have:

gq
◦
(z)− z = bq+1z

q+1 + . . . , bq+1 �= 0.

So 0 is a fixed point of multiplicity q + 1 for g◦, and hence nearby maps gc have
q + 1 simple fixed points. One of them is 0 which is also fixed by fc. Others are
permuted by fc. In fact, they form a single cycle of order q since f ′c(0) ≈ e2πip/q

and hence fc cannot have small cycles of order less than q.
The multiplier σc of this cycle is a non-constant algebraic function of c equal

to 1 at c◦. Hence there is a parameter domain attached to c◦ in which our cycle is
attracting. It is contianed in the desired hyperbolic component H ′. �

A hyperbolic component H ′ that was born from another hyperbolic component
by the period increasing bifurcation described in Proposition is called satellite. All
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other hyperbolic components of M are called primitive. They appear as a result of
a saddle-node bifurcation.

Parabolic points on ∂H with multiplier 1 are called the roots of H. (In fact, we
will see below (Theorem 6.12) that any hyperbolic component has a single root.)
In particular, the bifucation point rp/q is the root of the satellite component H ′.

The type of the component can be easily recognized geometrically:

Proposition 6.9. Satellite components are bounded by smooth curves, while
primitive components have cusps at their roots.

29. Connectivity of M

29.1. Uniformization of C�M . In this section we will prove the first non-
trivial result about the Mandelbrot set. The strategy of the proof is quite remark-
able: it is based on the explicit uniformization of the complement C�M by C�D̄.
Recall from Theorem 5.17 that for c ∈ C�M , we have a well-defined function

(29.1) ΦM (c) := Bc(c),

where Bc is the Böttcher function for fc extended to the domain Ωc bounded by
the critical figure-eight equipotential.

Theorem 6.10. The Mandelbrot set M is connected. The function ΦM con-
formally maps C�M onto C� D̄. Moreover, it is tangent to the identity at ∞:

ΦM (c) ∼ c as c→∞.
We immediately obtain the parameter analogue of Corollary 5.16:

Corollary 6.11. The Mandelbrot set has capacity 1.

29.2. Phase-parameter relation. Formula (29.1) reveals a remarkable re-
lation between the dynamical and parameter planes of the quadratic family: The
Riemann position ΦM (c) of a parameter c ∈ C �M coincides with the Böttcher
position Bc(c) of the corresponding critical value c ∈ C� J(fc).

Reacall from §32.1.2 that the polar coordinates of Bc(z) are called the (dynam-
ical) external coordinates of a point z ∈ Ωc. Similarly, the (parameter) external
coordiantes of a point c ∈ C�M are defined as the polar coordinates of ΦM (c).

We see that the parameter external coordinates of a point c ∈ C �M coincide
with its dynamical external coordinates (in the fc-dynamical plane).

Similarly to the dynamical situation (see §32.2), we can now introduce param-
eter equipotentials Erpar ≡ Etpar (where t = log r) and parameter external rays Rθ

par

by pulling back round circles (of radius r) and radial rays (of angle θ) by means of
ΦM . We obtain two (non-singular) foliations in C�M . We concude that

• For c ∈ Rθ
par we have c ∈ Rθ

c ;
• For c ∈ Erpar we have c ∈ Erc .

29.3. An elementary proof of Theorem 6.10. We will give two proofs of
this theorem. The first proof is short and elementary. The second proof, though
longer and more demanding, illuminates the deeper meaning of formula (29.1) and
the idea of qc deformations.

It is based upon the explicit formula (32.2) for the Böttcher coordinate near
∞,



29. CONNECTIVITY OF M 175

(29.2) Bc(z) = lim
n→∞

(fnc (z))
1/2n ,

where the root in the right-hand side is selected in such a way that it is tangent to
the identity at ∞. The sratedy is to show that ΦMM is a holomorphic branched
covering of degree 1.

Step 1: analyticity. Let us consider the set Ω = {(c, z) ∈ C2 : z ∈ C�Kc}. It is
easy to see that this set is open. Indeed, for any c◦, there exist an R > 0 and ε > 0
such that |fc(z)| > 2|z| for all c ∈ D(c◦, ε) and |z| > R. Hence C � D̄R ⊂ C �Kc

for all (c, z) as above.
Now, if ζ◦ ∈ C � K◦ then fn

◦
(ζ◦) ∈ C � D̄R for some n. By continuity,

fnc (ζ) ∈ C� D̄R for all (c, ζ) sufficiently close to (c◦, ζ◦), and the openness follows.
We also see that the orbits of {fnc z}n∈N, (c, z) ∈ Ω, escape to ∞ at a locally

uniform rate, which implies that convergence in the Brolin formula (32.6),

Gc(z) = lim
n→∞

1

2n
log |fnc z|,

is locally uniform on Ω. Hence (c, z) �→ Gc(z) is a continuos function on Ω,1 so
that, the set

Ω′ = {(c, z) ∈ C2 : z ∈ Ωc} = {(c, z) ∈ Ω : Gc(z) > Gc(0)}
is also open. (Recall that Ωc ⊂ Dc(∞) is the maximal domain of analyticity of the
Böttcher function Bc foliated by (non-singular) equipotentials, see §32.1).

But for the same reason, convergence in the Böttcher formula (29.2) is locally
uniformly on Ω′. Hence the Böttcher function (c, z) �→ Bc(z) is holomorphic on
Ω′. We conclude that the function ΦM : C � M → C � D̄, ΦM (c) = Bc(c), is
holomorphic on C�M .

Step 2: behavior at ∞. Let vn = fnc (c). Then vn+1 = v2n(1+O(1/vn)), so there
is a function δ(v) = O(1/v) such that

((1− δ(vn))vn)2 ≤ (1− δ(vn))vn+1 < (1 + δ(vn))vn+1 ≤ ((1 + δ(vn))vn)
2,

Iterating these estimates backwards, we see that

2n
√
vn = c(1 +O(1/c)) as c→∞,

It follows that ΦM (c) = c(1 + O(1/c)) ∼ c as c→∞, so ΦM exdends holomorphi-
cally to ∞, and is tangent to id at ∞.

Step 3: properness. Let us show that the map ΦM : C�M → C� D̄ is proper:

|ΦM (c)| → 1 as c→ ∂M.

Let us define n(c) ∈ N ∪ {∞} as the last moment n such that vn(c) ∈ D̄3. By
Exercise 6.1(i), n(c) = ∞ iff c ∈ M . Moreover, n(c) → ∞ as c → M . Otherwise
there would exist N ∈ N and a sequence ck → c ∈ M such that vN (ck) ∈ C � D̄3,
implying that vN (c) ∈ C� D̄3 – contradiction.

Let us take a small neighborhood U of M such that Kc ⊂ D̄3 for c ∈ Ū
(equivalently, n(c) > 0 for c ∈ Ū). Since the Green function is continuous on Ω,

L := sup{Gc(z) : (c, z) ∈ Ū × T3} <∞.

1It also follows that this function is pluriharmonic on Ω, i.e., its restrictions to one-

dimensional holomorphic curves in Ω are harmonic.



176 6. PARAMETER PLANE (THE MANDELBROT SET)

Since z �→ Gc(z) is subharmonic on the whole plane C for any c, by the Maximal
Principle we have Gc(z) ≤ L for (c, z) ∈ Ū × D̄3. Hence

Gc(c) =
1

n(c)
Gc(vn(c)(c)) ≤

1

n(c)
L→ 0 as c→M.

It follows that |Bc(c)| = eGc(c) → 1 as c→M (c ∈ C�M) as was asserted.

Conclusion. Thus, the map ΦM : C �M → C � D̄ is a branched covering, so
that, it has a well-defined degree. But ΦM

−1(∞) = {∞}, and by Step 2, ΦM has
local degree 1 at ∞. Hence degΦM = 1, and we are done.

29.4. Second proof.
29.4.1. Step 1: Qc deformation. The idea is to deform the map by moving

around the Böttcher position of its critical value. To this end let us consider a two
parameter family of diffeomorphisms ψω,q : C � D → C � D written in the polar
coordinates as follows:

ψ = ψω,q(r, θ) = (rω, θ + q log r), ω > 0, q ∈ R.

In terms of complex variabe a = reiθ ∈ C � D and complex parameter λ = ω + iq,
Reλ > 0, this family can be expressed in the following concise form:

(29.3) ψλ(a) = |a|λ−1a.

This family commutes with f0 : a �→ a2: ψ(a2) = ψ(a)2, and acts transitively
on C�D, i.e., for any a� and a in C�D, there exists a λ, such that ψλ(a�) = a. (Note
also that ψλ are automorphisms of C� D viewed as a multiplicative semigroup.)

Take now a quadratic polynomial f� ≡ fc� with c� ∈ C �M . Let us consider
its Böttcher function φ� : Ω� → C � D�, where Ω∗ ≡ Ωc� is the complement of the
figure eight equipotenial (see §??) and D� ≡ DR�

is the corresponding round disk,
R� > 1. Take the standard conformal structure σ on C � D and pull it back by
the composition ψλ ◦ φ�. We obtain a conformal structure μ = μλ in Ω�. Since ψλ

commute with f0 while the Böttcher function conjugates f� to f0, the structure μ
is invariant under f�.

Let us pull this structure back to the preimages of Ω�:

μn |Ωn = (fn� )
∗(μ),

where Ωn
� = f−n

� Ω�. Since μ is invariant on Ω�, the structures μn+1 and μn

coincide on Ωn
� , so that they are organized in a single conformal structure on ∪Ωn

� =
C� J(f�). Extend it to the Julia set J(f�) as the standard conformal structure.

We will keep notation μ ≡ μλ for the conformal structure on C we have just con-
structed. By construction, it is invariant under f�. Moreover, it has a bounded di-
latation since holomorphic pullbacks preserve dilatation: ‖μλ‖∞ = ‖(ψλ)

∗(σ)‖∞ <
1.

By the Measurable Riemann Mapping Theorem, there is a qc map hλ : (C, 0)→
(C, 0) such that (hλ)�(μλ) = σ. By Corollary ??, hla can be normalized so that it
conjugates fλ to a quadratic map fc ≡ fc(λ) : z �→ z2 + c(λ). Of course, the Julia
set fc is also Cantor, so that c ∈ C�M .

This family of quadratic polynomials is the desired qc deformation of f�.
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29.4.2. Step 2: Analyticity. We have to check three propertices of the map
ΦM : C �M → C � D: analyticity, surjectivity, and injectivity. Let us take them
one by one.

It is obvious from formula (29.3) that the Beltrami differential

νλ = (ψλ)
∗(σ) = ∂̄ψλ/∂ψλ

depends holomorphically on λ. Hence the Beltrami differential (f�)
∗(νλ) on Ω� also

depends holomorphically on λ (see Exercise 2.46). Pulling it back by the iterates
of f� and extending it in the standard way to J(f), we obtain by Lemma 2.43 a
holomorphic family of Beltrami differentials μλ on C. By Corollary 4.64, c(λ) is
holomorphic on λ as well.

29.4.3. Step 3: Surjectivity. Note that the map ψλ ◦ φ� ◦ h−1
λ conformally con-

jugates the polynomial fc ≡ fc(λ) near ∞ to f0 : z �→ z2. By Theorem 5.11, these

properties determine uniquely the Böttcher map φc of fc, so that φc = ψλ ◦φ� ◦h−1
λ

with c = c(λ). Since hλ conjugates f� to fc, we have: hλ(c∗) = c and hence

ΦM (c) = φc(c) = ψλ ◦ φ�(c�) = ψλ(a�),

where a� is the Böttcher position of the critical value of f�. Since the family {ψλ}
acts transitively on C�D, any point a ∈ C�D can be relasized as ΦM (c) for some
c = c(λ).

29.4.4. Step 4: Injectivity. We have to check that if

(29.4) φc(c) = a = φc̃(c̃)

for two parameter valus c and c̃ in C�M , then c = c̃. We let f ≡ fc, φ ≡ φc, f̃ ≡ fc̃,
φ̃ ≡ φc̃. Similarly, we will mark with “tilde” the dynamical objects associated with
f̃ that naturally correspond to dynamical objects associated with f .

Let R =
√
|a|. Then the maps φ−1 and φ̃−1 map C � D̄R onto the domains

Ω ≡ Ωc and Ω̃ ≡ Ωc̃ respectively. Moreover, they extend continuously to the
boundary circle mapping it onto the boundary figures eight Γ = ∂Ω and Γ̃ = ∂Ω̃,
and this extension if one-to-one except that

φ−1(±
√
a) = 0 = φ̃−1(±

√
a).

Hence the conformal map h = φ̃−1 ◦ φ : Ω→ Ω̃ admits a homeomorphic extension
to the closure of its domain:

h : (cl(Ω), 0)→ (cl(Ω̃), 0).

Consider a domain Ω0 = f(Ω) (exterior of the equipotential passing through c)
and the complementary Jordan disk Δ0 = C � Ω0. We will describe a hierarchical
decomposition of Δ0 into topological annuli An

i , n = 1, . . . , i = 1, 2, . . . , 2n. Let
Ωn = f−nΩ0 (so that Ω ≡ Ω1). The boundary ∂Ωn consists of 2n−1 disjoint figures
eight. The loops of these figures eight bound 2n (closed) Jordan disks Δn

i . The
map f conformally maps Δn

i onto some Δn−1
j , n ≥ 1. Let An

i = Δn
i ∩ cl(Ωn+1).

These are closed topological annuli each of which is bounded by a Jordan curve and
a figure eight. They tile Δ0 � J(f). The map f conformally maps An

i onto some
An−1

j , n ≥ 1.

Let us lift h ≡ h1 to conformal maps Hi : A
1
i → Ã1

i :

(29.5) Hi |A1
i = (f̃ |Ã1

i )
−1 ◦ h ◦ (f |A1

i ).
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Since h is equivariant on the boundary of Ω1 � Ω0, it matches with the Hi on
∂Δ1

i . Putting these maps together, we obtain an equivariant homeomorphism h2 :

cl(Ω2)→ cl(Ω̃2) conformal in the complement of the figure eight Γ:

h2(z) =

{
h(z), z ∈ Ω1,

Hi(z), z ∈ A1
i .

Since smooth curves are removable (recall §16), h2 is conformal in Ω2 � {0}. Since
isolated points are removable, h2 is conformal in Ω2. Thus h admits an equivariant
conformal extension to Ω2.

In the same way, h2 can be lifted to four annuli A2
i . This gives an equivariant

conformal extension of h to Ω3. Proceeding in this way, we will consecutively obtain
an equivariant conformal extension of h to all the domains Ωn and hence to their
union ∪Ωn = C� J(f).

Since the Julia set J(f) is removable (Theorem 2.75), this map admits a confor-

mal extension through J(f). Thus, f and f̃ are conformally equivalent, and hence
c = c̃.

This completes the second proof of Theorem 6.10.

30. The Multiplier Theorem

30.1. Statement. Let us pick a favorite hyperbolic component H of the Man-
delbrot set M . For c ∈ H, the polynomial fc has a unique attracting cycle
αc = {αk(c)}p−1

k=0 of period p. By Lemma 6.3, the multiplier λ(c) of this cycle
holomorphically depends on c, so that we obtain a holomorphic map λ : H → D. It
is remarkable that this map gives an explicit uniformization of H by the unit disk:

Theorem 6.12. The multiplier map λ : H → D is a conformal isomorphism.

This theorem is in many respects analogous to Theorem 6.10 on connectivity
of the Mandelbrot set. The latter gives an explicit dynamical uniformization of
C �M ; the former gives the one for the hyperbolic component. The ideas of the
proofs are also similar.

We already know that λ is holomorphic, so we need to verify that it is surjective
and injective. The first statement is easy:

Exercise 6.13. The multiplier map λ : H → D is proper and hence surjective.
In particular, H contains a superattracting parameter value.

30.2. Qc deformation. Let Z ⊂ H be the set of superattracting parameter
values in H. Take some point c0 ∈ H �Z, and let λ0 ∈ D∗ be the multiplier of the
corresponding attracting cycle. We will produce a qc deformation of f∗ ≡ fc0 by
deforming the associated fundamental torus.

30.2.1. Fundamental torus. Take a little topological disk D = D(a0, ε) around
the attracting periodic point a0 of f∗. It is invariant under g0 ≡ fp∗ and the quotient
of D under the action of f∗ is a conformal torus T0. Its fundamental group has one
marked generater corresponding to a little Jordan curve around α0.

By the Linearization Theorem (??), the action of g0 on D is conformally equiv-
alent to the linear action of ζ �→ λ0ζ on D∗. Hence the partially marked torus T0
is conformally equivalent to T2

λ0
, so that λ0 is the modulus of T0 (see §1.6.2).

Let us select a family of deformations ψλ : T2
λ0
→ T2

λ of Tλ0
to nearby tori. For

instance, ψλ can be chosen to be linear in the logarithmic coordinates (x, y) = log ζ,
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τ = log λ:

x+ yτ0 �→ x+ yτ ; x ∈ R, y ≥ 0.

This gives us a complex one-parameter family of Beltrami differentials νλ = ψ∗
λ(σ)

on T0 ≈ T2
λ0

(in what follows we identify T0 with T2
λ0
).

Exercise 6.14. Calculate νλ explicitly (for the linear deformation).

30.2.2. Qc deformation of f∗. We can lift νλ to the disk D and then pull it back
by iterates of f∗. This gives us a family of f∗-invariant Beltrami differentials μλ on
the attracting basin of α. These Beltrami differentials have a bounded dilatation
since the pull-backs under holomorphic maps preserve dilatation. Extend the μλ

by 0 outside the attracting basin (keeping the notation). We obtain a family of
measurable f∗-invariant conformal structures μλ on the Riemann sphere. Solving
the Beltrami equation (hλ)∗(μλ) = σ (with an appropriately normalization) we
obtain a qc deformation of f∗ (see Corollary 4.65):

(30.1) fc(λ) = hλ ◦ f∗ ◦ h−1
λ : z �→ z2 + c(λ).

Moreover, note that this deformation is conformal on the basin of ∞.
Let us show that the multiplier of the attracting fixed point of fc(λ) is equal

to λ. Consider the torus Tλ associated with the attracting cycle of fc(λ). Then
hλ descends to a homeomorphism Hλ : T0 → Tλ such that (Hλ)∗(νλ) = σ. Since
(ψλ)∗(ν) = σ as well, the map

ψλ ◦H−1
λ : Tλ → T2

λ

is conformal. Hence the partially marked torus Tλ has the same modulus as T2
λ,

which is λ. But as we know, this modulus is equal to the multiplier of the corre-
sponding attracting cycle.

This deformation immediately leads to the following important conclusion:

Lemma 6.15. All maps fc, c ∈ H � Z, are qc equivalent (and the conjugacy is
conformal on the basin of ∞). Moreover, cardZ = 1.

Proof. Take some c0 ∈ H �Z. By Proposition 2.39, the deformation param-
eter c(λ) in (30.1) depends continuously on λ. Hence c : λ �→ c(λ) is the local right
inverse to the multiplier function. But holomorphic functions do not have continu-
ous right inverses near their critical points. Consequently, c0 is not a critical point
of the multiplier function λ and, moreover, c is the local inverse to λ. It follows
that any c near c0 can be represented as c(λ), and hence fc is qc equivalent to fc0 .

Let us decompose the domain H �Z into the union of disjoint qc classes (with
conformal conjugacy on the basin of ∞). We have just shown that each qc class
in this decomposition is open. Since H � Z is connected, it consists of a single qc
class.

Furthermore, we have shown that λ does not have critical points in H � Z.
Hence λ : H � Z → D∗ is an unbranched covering. By the Riemann-Hurwitz
formula (for the trivial case of unbranched coverings), the Euler characteristic of
H � Z is equal to 0, i.e., 1− cardZ = 0. �

Thus, every hyperbolic component H contains a unique superattracting param-
eter value cH . It is called the center of H. We let H∗ = H � {cH}.
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30.3. Injectivity. The following lemma will complete the proof of the Mul-
tiplier Theorem:

Lemma 6.16. Consider two parameter values c and c̃ in H �Z. If λ(c) = λ(c̃)
then the quadratic maps fc and fc̃ are conformally equivalent on C.

The idea is to turn the qc conjugacy from Lemma 6.15 into a conformal conju-
gacy. To this end we need to modify the conjugacy on the basin of the attracting
cycle. Let us start with the component D0 of the basin containing 0.

30.4. Second Proof of the Multiplier Theorem. Let us give an alter-
native proof of the following key lemma that immediately implies the Multiplier
Theorem. It is one of the first manifistations of the Rigidity Phenomenon and one
more application of the Surgery techniques (gluing a map from model pieces).

Lemma 6.17. Let fc and fc̃ be two hyperbolic quadratic maps. Assume that the
Böttcher conjugacy

h : Dc(∞)→ Dc̃(∞), h = B−1
c̃ ◦Bc,

extends to a homeomorphism Dc(∞)∪Jc → Dc̃(∞)∪Jc̃. If the attracting cycles of
these maps have the same multiplier then c = c̃.

Proof. We let f = fc, f̃ = fc̃; K = Kc, K̃ = Kc̃, etc.
Let D0 be the immediate basin of the attracting point α0 (for f) containing

0. We know that it is a Jordan disk (Corollary 4.55), so the Riemann mapping
φ : (D0, α0) → (D, 0) extends to a homeomorphism clD0 → D̄ (denoted by φ
as well). Moreover, φ (appropriately normalized) conjugates the return map fp :
clD0 → clD0 to the Blaschke map g from Proposition 4.56.

Since α0 and α̃0 have the same multipliers, the normalizaed Riemann map-
ping φ̃ : clD0 → D̄ conjugates f̃p| cl D̃0 to the same Blaschke map g. Hence the

composition h0 := φ̃−1 ◦ φ : clD0 → cl D̃0 conjugates fp | clD0 to f̃p| cl D̃0.
This map h0 continuously matches on ∂D0 with the Böttcher conjugacy

h : D(∞) ∪ J → D̃(∞) ∪ J̃ .
Indeed, the composition h−1 ◦ h0 : ∂D0 → ∂D0 commutes with with fp| ∂D0, and
hence h−1 ◦ h0 | ∂D0 = id by Proposition 4.89.

We can now easily lift h0 to all other components of intK. Consider a compo-
nentD. Since intK is equal to the basin of α (Theorem 4.53), there is n = nD ∈ Z+

such that fn homeomorphically maps clD onto clD0. Let f
−n : clD → clD0 stand

for the inverse map. Then we let

(30.2) hD = f̃n ◦ h0 ◦ f−n : clD → cl D̃.

Obviously, this map conjugates fp| clD to f̃p| cl D̃.
Moreover, hD matches continuously on ∂D with h. Indeed, since h is a conju-

gacy on the whole Julia set, we have

h| ∂D = f̃n ◦ (h| ∂D0) ◦ f−n : ∂D → ∂D̃.

Comparing this with (30.2), taking into account that h| ∂D0 = h0, yields h|D = hD.

Thus, we have extended h conformally and equivariantly to all the components
Di of intK. Since diamDi → 0 and diam D̃i → 0, this extension is a global
homeomorphism (Exersice ??).
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By the dynamical qc removability of J (Lemma 4.62), this homeomoprhism is
quasiconformal. Moreover it is conformal outside the Julia set, while areaJ = 0.
By Weyl’s Lemma, it is conformal. �

Corollary 6.18. Let C be a hyperbolic component of the Mandelbrot set M ,
and let c, c̃ ∈ C. If σ(c) = σ(c̃) then c = c̃.

30.5. Internal angles. For c ∈ H̄, arg λ(c) is called the internal angle of c.

31. Structural stability

31.1. Statement of the result. A map f◦ : z �→ z2 + c◦ (and the corre-
sponding parameter c◦ ∈ C) is called structurally stable if for any c ∈ C sufficiently
close to c◦, the map fc is topologically conjugate to f◦, and moreover, the conju-
gacy hc : C → C can be selected continuously in c (in the uniform topology). By
definition, the set of structurally stable parameters is open. In this section we will
prove that it is dense:

Theorem 6.19. The set of structurally unstable parameters is equal to the
boundary of the Mandelbrot set together with the centers of hyperbolic components.
Hence the set of structurally stable parameters is dense in C. Moreover, any struc-
turally stable map f◦ is quasi-conformally conjugate to all nearby maps fc.

Notice that parameters cbase ∈ ∂M are obviously unstable since the Julia set
J◦ is connected, while the Julia sets Jc for nearby c ∈ C�M are disconnected. The
centers of hyperbolic components are also unstable since the topological dynamics
near a superattracting cycle is different from the topological dynamics near an
attracting cycle (the grand orbits on the basin of attraction are discrete in the
latter case and are not in the former).

The proof of stability of other parameters will occupy §31.2 – §31.5. The desired
conjugacies will be constructed as equivariant holomorphic motions.

A holomorphic motion hc : X◦ → Xc of a set X ⊂ C is called equivariant if

(31.1) hc(f◦(z)) = fc(hc(z))

whenever both points z and f◦(z) belong to X◦. If the Xc are fc-invariant, this
just means that the maps hc conjugate f◦|X◦ to fc|Xc. (Of course, we can apply
this terminology not only to the quadratic family).

Notice that the equivariance property (31.1) means that the associated lami-
nation (see §17.1) is invariant under the map

(31.2) f : (λ, z) �→ (λ, fλ(z)).

Since by the Second λ-lemma, holomorphic motions are automatically quasi-
conformal in the dynamical variable, the last assertion of Theorem 6.19 will follow
automatically.

31.2. J-stability. Let us first show that the Julia set Jc moves holomorpically
outside the boundary ofM . (Strictly speaking, this step is not needed for the proof
of Theorem 6.19 given below, but it gives a good illustration of the method.)

A map f◦ : z �→ z2 + c◦ (and the corresponding parameter c◦ ∈ C) is called
J-stable if for any c ∈ C sufficiently close to c◦, the map fc|Jc is topologically
conjugate to f◦| J◦, and moreover the conjugacy hc : J◦ → Jc depends continuously
on c.
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Theorem 6.20. The set of J-stable parameters is equal to C� ∂M and hence
is dense in C. Moreover, the corresponding conjugacies hc : J◦ → Jc form a
holomorphic motion of the Julia set over the component of C� ∂M containing ◦.

Proof. Let C be the component of intM containing c◦. By Corollary 6.5, C
does not contain neutral parameters, and hence all periodic points are persistently
hyperbolic over C, either repelling or attracting. Hence they depend holomorphi-
cally on c ∈ C. Since C is simply connected (Exercise 6.1 (iii)), these holomorphic
functions c �→ α(c) are single valued. Moreover, they cannot collide since collisions
could occur only at parabolic parameters. Thus, they provide us with a holomorphic
motion hc : Per◦ → Perc of the set of periodic points.

This holomorphic motion is equivariant. Indeed, if

c �→ α(c) = hc(α)

is a holomorphically moving periodic point then c �→ fc(α(c)) is also a holomorphi-
cally moving periodic point. Hence fc(α(c)) = hc(f◦(α)) and we obtain:

fc(hc(α)) = fc(α(c)) = hc(f◦(α)).

By the First λ-lemma (3.1), this holomorphic motion extends to a continuous
equivariant holomorphic motion of the closure of periodic points, which contains
the Julia set. Moreover, this motion is automatically continuous in both variables
(λ, z), and hence provides us with a family of topological conjugacies between J◦
and Jc continuously depending on c. �

Exercise 6.21. An equivariant holomorphic motion of the Julia set is unique.

31.3. Böttcher motion: connected case. In this section, we will show
that the basin of infinity, Dc(∞), moves bi-holomorphically over any component of
intM .

Proposition 6.22. Let C be a component of intM with a base point ◦. Then
there exists an equivariant bi-holomorphic motion hc : D◦(∞) → Dc(∞) of the
basin of infinity over C.

Proof. Let φc : Dc(∞) → C � D̄ be the Böttcher-Riemann uniformization
of the basin of infinity (see Theorem 5.13). It is a holomorphic function in two
variables on the domain {(c, z) : c ∈ C, z ∈ Dc(∞)} (see Step 1 of §29.3). It
follows that hc = φ−1

c ◦ φ◦ is a bi-holomorphic motion of Dc over C. Since the φc
conjugate fc to z �→ z2, this motion is equivariant. �

Exercise 6.23. Show that an equivariant bi-holomorphic motion of the basin
of ∞ over C is unique.

Now the first λ-lemma implies:

Corollary 6.24. For any component C of intM , there is a unique equivariant
holomorphic motion hc : D̄c(∞) → D̄c(∞) over C which is bi-holomorphic on
Dc(∞).

If Q is a queer componenet then C = D̄c(∞) for any c ∈ Q, and so, we obtain
the Structural Stability Theorem in this case:

Corollary 6.25. For a queer component Q of intM , there is a unique equi-
variant holomorphic motion hc : C→ C over Q which is bi-holomorphic on Dc(∞).
Hence all parameters c ∈ H are structurally stable.
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31.4. Motion of an attracting basin. For a hyperbolic parameter c, let αc

stand for the corresponding attracting cycle, and let D(αc) be its basin.

Proposition 6.26. Let H be a hyperbolic component of intM , and let c◦ ∈ H∗.
Then there is an equivariant smooth holomorphic motion of the attracting basin
D(αc) over some neighborhood of c◦.

To prove this assertion, we need three simple lemmas. The first one is concerned
with local extension of smooth motions.

Lemma 6.27. Let us consider a compact set Q ⊂ C and a smooth holomor-
phic motion hλ of a neighborhood U of Q over a parameter domain (Λ,◦). Then
there is a smooth holomorphic motion Hλ of the whole complex plane C over some
neighborhood Λ′ of ◦ whose restriction to Q coincides with hλ.

Proof. We can certainly assume that Ū is compact. Take a smooth cut-off
function η : C→ R supported in U such that η|Q ≡ 1, and let

Hλ = η hλ + (1− η) id .
Clearly H is smooth in both variables, holomorphic in λ, coinsides with h on Q
and with the identity outside U . As H0 = id, Hλ : C→ C is a diffeomorphism for
λ sufficiently close to ◦, and we are done. �

The second lemma is concerned with lifts of holomorphic motions.

Lemma 6.28. Let hλ : V◦ → Vλ be a holomorphic motion of a domain V◦ ⊂ C

over a simply connected parameter domain Λ. Let fλ : Uλ → Vλ be a holomorphic
family of proper maps with critical points ckλ such that the critical values vkλ = fλ(c

k
λ)

form orbits of hλ.
2 Then hλ uniquely lifts to a holomorphic motion Hλ : U◦ → Uλ

such that

(31.3) fλ ◦Hλ = hλ ◦ f◦.
Proof. Notice that (31.3) means that the lamination associated with the mo-

tion H is the pullback of the lamination associated with the motion h under the
map f (31.2). Clearly, such a pullback unique if exists.

Let us take any regular value ζ◦ = f◦(z◦) ∈ V◦, and let φ(λ) = hλ(ζ◦) be its
orbit. We would like to lift this orbit to a desired orbit of z◦, so we are looking for
a holomorphic solution z = ψ(λ) of an equation

(31.4) fλ(z) = φ(λ)

with ψ(z◦) = ζ◦. Since φ(λ) is a regular point of fλ for any λ ∈ Λ, the Implicit
Function Theorem implies that near any point (λ′, z′) satisfying (31.4), it admits
a unique local analytic solution z = ψ(λ). Since the maps fλ are proper, this
continuation along any path compactly contained in Λ cannot escape the domain
Uλ. Since Λ is simply connected, ψ(λ) extends to the whole domain Λ as a single
valued holomorphic function.

Two different orbits λ �→ ψ(λ) obtained in this way do not collide, for (31.4)
would have two different solutions near the collision point. Hence they form a
holomorphic motion of V◦ � {vk

◦
} over Λ. By the First λ-lemma, this motion

extends to the whole domain V◦.

2In particular, any holomorphic family of univalent maps fλ : Uλ → Vλ is allowed.



184 6. PARAMETER PLANE (THE MANDELBROT SET)

Finally,

fλ(Hλ(z◦)) = fλ(ψ(λ)) = φ(λ) = hλ(ζ◦) = hλ(f◦(z◦))

holds for any point z◦ ∈ U◦ except perhaps finitely many exceptions (preimages of
the critical values of f◦). By continuity, it holds for all z◦ ∈ U◦. �

The last lemma is concerned with dependence of the linearizing coordinate (the
Königs function) on parameters

Lemma 6.29. Let fλ be a holomorphic family of germs near the origin over a
parameter domain Λ such that 0 is a simply attracting point. Then the normalized
linearizing coordinate φλ depends holomorphically on λ.

Proof. The linearizing coordinate φλ is given by an explicit Königs formula
(29.3):

(31.5) φλ(z) = lim
n→∞

σ−n
λ fnλ , where σλ = f ′λ(0).

Since analyticity is a local property, we need to verify the assertion near an arbitrary
parameter λ◦ ∈ Λ. There exist ε > 0 and ρ < 1 such that f◦(Dε) � Dρε. Then
the same is true for λ in some neighborhood Λ′ of λ◦. By the Schwarz Lemma,
the orbits {fnλ (z)}∞n=0 of points z ∈ Dε converge to 0 at a uniformly exponential
rate: |fnλ (z)| ≤ ρn for λ ∈ Λ′. This implies (by examining the proof of (29.3))
that convergence in (31.5) is uniform on Λ′ × Dε. Hence φλ(z) is holomorphic on
Λ′ × Dε. �

Proof of Proposition 6.26. Let αc = {fkc (α)}p−1
k=0 be the attracting cycle of fc,

and let us consider the maps fpc near their fixed points αc. Lemma 6.29 implies that
there is a neighborhood H ′ ⊂ H∗ of c◦ and an ε > 0 such that the inverse linearizing
coordinate φ−1

c (z) for fpc is holomorphic on Λ′ × Dε. Let Vc = φ−1
c (Dε) � αc, and

let us consider a fundamental annulus Ac = cl(Vc � fc(Vc)).
By Theorem 4.38, the critical orbit orbc(0) must cross Ac. By adjusting ε and

shrinking H ′ if needed, we can ensure that it does not cross ∂Ac. Then it crosses
Ac at a single point υn(c) = fnc (0) ∈ intAc, where n ∈ N is independent of c. Its
position in the linearizing coordinate, ac = φc(υn(c)) ∈ A(ε, σcε) ≡ Ac, depends
holomorphically on c (here σc is the multiplier of αc).

Let Qc = ∂Ac∪{ac}. Let us define a smooth equivariant holomorphic motion h
of a small neighborhood of Qc over H ′ as follows: hc = id near the outer boundary
of Ac, hc : z �→ σcz/σ◦ near the inner boundary of Ac, and hc : z �→ acz/a◦
near ac. By Lemma 6.27, this motion extends to a smooth motion of the whole
plane over some neighborhood of c◦ (we will keep the same notation H ′ for this
neighborhood). Let us restrict the motion to the fundamental annulus Ac (keeping
the same notation hc for it). By Lemma 6.28 (in the simple case when there are
no critical points), this motion can be first extended to the forward orbit of Ac,
(providing us with an equivariant holomorphic motion of Dε). Then we can transfer
it using the linearizing coordinates to a holomorphic motion of Vc, then extend it to
an invariant neighborhood Vc =

⋃p−1
k=0 f

k
c (Vc) of α, and finally we can use Lemma

6.28 to pull this motion back to all preimages of Vc (the assumption of Lemma 6.28
on the critical values is secured by the property that ac is an orbit of the motion
h). It provides us with the desired equivariant holomorphic motion of the basin
D(αc). ��
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Corollary 6.30. Let H be a hyperbolic component of intM , and let c◦ ∈ H∗.
Then there is an equivariant holomorphic motion of the whole plane C over some
neighborhood of c◦. Hence all parameters c ∈ H∗ are structurally stable.

Proof. Since for C = cl(Dc(∞) ∪ D(αc)) for c ∈ H, Propositions 6.22 and
6.26, together with the First λ-lemma yield the desired. �

31.5. Böttcher motion: Cantor case. Let us finally deal with the comple-
ment of M .

Proposition 6.31. Let c◦ ∈ C � M . Then there is an equivariant smooth
holomorphic motion of the basin of infinity, Dc(∞), over some neighborhood of c◦.

The proof is similar to the one given in the attracting case, using the Böttcher
coordinate in place of the linearizing coordinate. To implement it, we need a
rotationally equivariant Extension Lemma:

Lemma 6.32. Let R > r > 1 and let z ∈ A(r,R). Let φ be a holomorphic
function on a domain (Λ,◦) with φ(◦) = z. Then there is a smooth holomorphic
motion Hλ of the whole complex plane C over some neighborhood Λ′ of ◦ such that

(i) Hλ(z) = φ(λ);
(ii) Hλ = id on C� A(r,R) = id;
(iii) The Hλ commute with the rotation group ζ �→ eiθζ.

Proof. Let τ(λ) = φ(λ)/z, and let hλ(ζ) = τ(λ)ζ. This motion satisfies
requirements (i) and (iii). To make it satisfy (ii) as well, we will use a smooth
cut-off function φ : R → R supported on a small neighborhood of |z|. Then the
motion

Hλ(ζ) = φ(|ζ|)hλ(ζ) + (1− φ(|ζ|))ζ
satisfies all the requirements. �

Proof of Proposition 6.31. Let us consider the Böttcher coordinate Bc of fc near
∞. Since it depends holomorphically on c, there is a neighborhood U ⊂ C �M
of c◦ and an R > 1 such that the function (c, z) �→ B−1

c (z) is holomorphic on
U × (C� D̄R).

Let Vc = B−1
c (C � D̄R). By adjusting R and U if necessary, we can ensure

that the orbc(0) does not cross the boundary of the fundamental annulus Ac =
Vc � fc(Vc). Then there is a unique n such that υn(c) = fnc (0) ∈ intAc. Let us
mark the corresponding point ac = Bc(υn(c)) in the annulus A = A(R,R2).

Applying lemma 6.32, we find a rotationally equivariant holomorphic motion
Hc : A→ A such that Hc(a◦) = ac and Hc = id on ∂A. Let us show that

Exercise 6.33. Show that this holomorphic motion extends to a holomorphic
motion Hc : C� DR → C� DR commuting with z �→ z2.

Let us now transfer Hc by means of the Böttcher coordinate to a holomorphic
motion hc : Vc → Vc, hc = B−1

c ◦Hc ◦ B◦. This motion is equivarinat, Bc ◦ f◦ =
fc ◦ Bc, and has vn(c) as one of its orbits. By Lemma 6.28, it can be lifted to
a holomorphic motion of f−1

c (Vc) that has υn−1(c) as its orbit. Moreover, by the
uniqueness of the lift, it coincides on V◦ with the original motion hc, which implies
that it is equivariant. Then we can lift it further to f−2(Vc), and so on: in this way
we will exhaust the whole basin of ∞. ��
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Since C = D̄c(∞) for c ∈ C �M , Proposition 6.31 (together with the First
λ-lemma) yields:

Corollary 6.34. Let c◦ ∈ C�M . Then there is an equivariant holomorphic
motion of the whole plane C over some neighborhood of c◦. Hence all parameters
c ∈ C�M are structurally stable.

Corollaries 6.25, 6.30 and 6.34 cover all types of components of C � ∂M , and
together prove the Structural Stability Theorem (6.19).

31.6. Invariant line fields and queer components.
31.6.1. Definition. Informally speaking, a line field on C is a family of tangent

lines l(z) ∈ TzC depending measurably on z ∈ C.
Here is a precise definition. Any line l ∈ C passing through the origin is

uniquely represented by a pair of centrally symmetric points e±2πiθ ∈ T in the unit
circle, or by a single number

(31.6) ν = e4πiθ ∈ T, θ ∈ R/(Z/2).

The space of these lines form, by definition, the one-dimensional projective line
PR1, and (31.6) provides us with its parametrization by the angular coordinate
(and shows that PR1 ≈ T).

Let us now consider the projective tangent bundle over C,

PT(C) = C× PR1

parametrized by C× (R/(Z/2)). A line field on C is a measurable section of PT(C)
defined on some set X ⊂ C of positive area called its (measurable) support. In
terms of the angular coordinate, we obtain a measurable function X → R/(Z/2),
z �→ θ(z).3 In the circular coordinate ν, we obtain a measurable function X → T.
In what follows, we will always extend ν by 0 to the whole plane.

Exercise 6.35. Show that a line field on a Riemann surface S is given by a

Beltrami differential ν(z)
dz̄

dz
with |ν(z)| ∈ {0, 1}.

A line field on a set J ⊂ C is a line field on C whose support is contained in J .
If such a line field exists (with a non-empty support) then area J > 0.

A line field is called invariant (under a holomorphic map f) if it is invariant
under the natural action of f on the projective line bundle: l(fz) = Df(z)l(z), or
in the angular coordinate, θ(fz) = θ(z) + arg f ′(z), or in the Beltrami coordinate,
f∗ν = ν (where the pullback is understood in the sense of Beltrami differentials).

If an invariant line field l is supported on a set X then we can pull it back by the

dynamics to obtain an invariant line field supported on the set X̃ =

∞⋃
n=0

f−n(X).4

Hence we can assume in the first place that l is supported on a completely invariant
set: this will be our standing assumption.

3As always, a measurable function is considered up to an arbitrary change on null-sets.
4The pullback would fail at the critical point but we can always remove its grand orbit (as

any other completely invariant null-set) from X̃.



31. STRUCTURAL STABILITY 187

31.6.2. Existence criterion.

Proposition 6.36. Let Q be a queer component of intM . Then any map fc,
c ∈ Q, has an invariant line field on its Julia set. In particular, area J(fc) > 0.

Vice versa, if fc has an invariant line field on its Julia set then c belongs to a
queer component of intM .

Proof. Take some c◦ ∈ Q. By Corollary 6.25, there is an equivariant holo-
morphic motion hc over (Q, c◦) which is bi-holomorphic on Dc(∞). Let us consider
the corresponding Belrtami differentials μc = ∂̄hc/∂hc, c ∈ Q. Each μc vanishes on
D◦(∞), however μc �= 0 for c �= c◦ (for otherwise, by Weyl’s Lemma the map hc
would be affine, contrary to the fact the quadratic maps fc and f◦ are not affinely
conjugate). Hence area(suppμc) > 0 for any c �= c◦, and all the more, areaJ◦ > 0.
Moreover, since μc is f◦-invariant, the normalized Beltrami differential νc = μc/|μc|
(where we let νc = 0 outside suppμc) is also f◦-invariant, and hence determines an
invariant line field on the Julia set J◦.

Vice versa, assume f◦ has an invariant line field on J◦ given by an invariant
Beltrami differential ν◦. For any λ ∈ D, the Beltrami differential λν◦ is also f -
invariant. Let hλ : (C, 0) → (C, 0) be the solution of the corresponding Beltrami
equation tangent to the identity at infinity. Then the map hλ ◦ f◦ ◦ h−1

λ is a
quadratic polynomial fσ(λ) : z �→ z2 + σ(λ) (see §26.1.2). By Corollary 4.65, the
map σ : D→ C is holomorphic. Since the line field is non-trivial, it is not identically
constant. Hence its image covers a neighborhood of c◦ contained in intM . So, it is
contained in some component of intM . By Theorem ??, this component cannot
be hyperbolic, so it must be queer. �

Thus, Fatou’s Conjecture (32) is equivalent to the following one:

Conjecture 6.37 (No Invariant Line Fields). No quadratic polynomial has an
invariant line field on its Julia set.

31.6.3. Uniqueness and ergodicity. As a line field l(z) is rotated by angle 2πα
with α ∈ R/(Z/2), the corresponding Beltrami differential is multiplied by λ =
e4πiα ∈ T. Of course, if the original line field was f -invariant then so is the rotated
one.

Lemma 6.38. A quadratic polynomial can have at most one, up to rotation,
invariant line field on its Julia set.

This will follow from the ergodicity of the action of f on the support of any
invariant line field. Recall that a map f : X → X of a measure space is called
ergodic if X cannot be decomposed into a disjoint unnion of two invariant (and
hence completely invariant) subsets of positive measure. Equivalently, there are no
non-constant measurable functions φ : X → R invariant under f , i.e., such that
φ ◦ f = φ.

Lemma 6.39. Let f be a quadratic polynomial, and let l(z) be an invariant line
field on J(f). Then the action of f on supp l is ergodic.

Proof. Assume that supp l admits a disjoint decomposition X1 � X2 into
two measurable invariant subsets of positive measure. Then the restriction of l
to these sets gives us two invariant line fields li with disjoint supports. Let νi be
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the corresponding Beltrami differentials. Then we can consider a complex two-
parameter family of Beltrami differentials νλ = λ1ν1 + λ2ν2, where λ = (λ1, λ2) ∈
D2. Since ‖νλ‖∞ < 1 for each λ, we can solve the corresponding Beltrami equations
and obtain a two parameter family of qc maps hλ : (C, 0) → (C, 0) tangent to
the identity at infinity. Then the maps hλ ◦ f◦ ◦ h−1

λ form a family of quadratic
polynomials fσ(λ) : z �→ z2 + σ(λ) (see §26.1.2).

By Proposition 2.39, the map σ : D2 → C we have obtained this way is contin-
uous (in fact, by Corollary 4.65, it is holomorphic). Hence it cannot be injective:
there exist λ �= κ in D2 such that σ(λ) = σ(κ). Then the map φ = h−1

κ ◦ hλ
commutes with f◦. But the only conformal automorphism of D◦(∞) commuting
with f◦ is the identity (see Exercise 5.12). Hence hλ = hκ implying that λ = κ –
contradiction. �

Proof of Lemma 6.38. Assume we have two invariant line fields given by Bel-
trami differentials νi. Let Xi = supp νi. Notice that due to our convention, both
differences, X1�X2 andX2�X1, are completely invariant sets. If area(X2�X1) > 0
then an invariant Beltrami differential ν which is equal to ν1 on X1 and is equal
to ν2 on X2 � X1 has a non-ergodic support, contradicting Lemma 6.39. Hence
area(X2 � X1) = 0, and for the same reason area(X1 � X2) = 0, so that the set
Y = X1 ∩X2 can be taken as a measurable support of both differentials.

By Lemma 6.39, f acts ergodically on Y . But the ratio ν2/ν1 is an invariant
function on Y . By ergodicity, it is equal to const a.e. on Y , and we are done. ��

31.6.4. Dynamical uniformization of queer components. We can now construct
a dynamical uniformization of any queer component Q by a Beltrami disk. (Com-
pare with the uniformizations of hyperbolic components of C� ∂M given by The-
orems 6.10 and 6.12.)

For a base map f◦, let us select an invariant line field on J◦ given by an f -
invariant Beltrami differential ν◦. Then the Beltrami disk {λν◦}λ∈D generates a
holomorphic family of quadratic polynomials fσ(λ) : z �→ z2 + σ(λ) (see the proof
of the second part of Lemma 6.36). This is the desired uniformization:

Proposition 6.40. The map σ : (D, 0)→ (Q,◦) is the Riemann mapping.

Proof. The map σ is a holomorphic embedding for the same reason as in
the proof of Lemma 6.39. Let us show that it is surjective. Let c ∈ Q. By
Corollary 6.25, the map fc is conjugate to f◦ by a qc homeomorphism hc which is
conformal outside J◦. Let μc = ∂̄hc/∂hc be the Beltrami differential of hc, and let
νc = μc/|μc|. Since the latter differential determines an invariant line field on J◦,
Lemma 6.38 yields:

suppμc = supp νc = supp ν◦.

Since the differential μc is f◦-invariant, the ratio μc/ν◦ is an f -invariant function.
By ergodicity, it is const a.e., so that μc = λνc for some λ ∈ D. It follows that
c = σ(λ), and we are done. �

31.7. Quasiconformal classification of the quadratic maps. We can now
give a complete classification of the quadratic maps up to qc conjugacy:

Proposition 6.41. Any qc class in the parameter plane C of the quadratic
family is one on the following list:

• the complement of the Mandelbrot set;
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• a hyperbolic component of intM punctured at the center;
• a queer component of intM ;
• the center of a hyperbolic component;
• a single point of the boundary of M .

The first three types of maps are deformable, the last two are qc rigid.

Proof. By the Structural Stability Theorem (6.19), each of the above listed
sets is contained in some qc class. What we need to show that they belong to
different qc classes.

Assume it is not the case: let c◦ and c be two parameters in different sets but in
the same qc class. Then the quadratic polynomials f◦ and fc are conjugate by a qc
map h. Let μ = ∂̄h/∂h be the Beltrami differential of h, and let r = 1/‖μ‖∞. Let
us consider the Beltrami disk {λμ : |λ| < r} and the corresponding qc deformation

fσ(λ) : z �→ z2 + σ(λ)

of f◦ (see Corollary 4.65). Then σ : Dr → C is a hololmorphic map such that
σ(0) = c◦ and σ(1) = c. In particular, it is not identically constant and hence its
image U is a domain in C. But U is not contained in a single component of intM ,
so it must intersect ∂M , and hence it must intersect C �M . Thus, U contains
quadratic maps of both dichotomy types: with connected as well as Cantor Julia
sets, which is impossible as all the maps in U are topologically conjugate. �

32. Notes

Fatou’s Conjecture on Density of Hyperbolicity ( ) is an interpretation of several
remarks that Fatou made on page .... of [F]. First, Fatou observes that hyperbolicity
is preserved under perturbations. Then he conjectures that any rational map can
be approximated by a stable one (compare with Theorem 6.19. He also suggests
that unstable maps form some kind of algebraic set: apparently, he did not give
a real thought to this issue. The general theory of hyperbolicity and structural
stability developed in 1960’s by Smale, Anosov, and many other people, greatly
clarified how Fatou’s remarks should be interpreted.

Theorem 6.10 on the connectivity of M was proved by Douady and Hubbard
??, and independently by Sibony (unpublished: see a remark in ??), in early 1980’s.
The elementary proof given in §29.3 reproduces the original argument from ??.





CHAPTER 7

Combinatorics of external rays

39. Dynamical ray portraits

39.1. Motivaing problems. Consider a quadratic polynomial f = fc with
connected Julia set. As we know (§??), its basin of infinity is uniformized by the
Böttcher map φ : Df (∞)→ C � D, which conjugates f to z �→ z2. If the Julia set
was locally connected then by the Carathéodory theorem the inverse map would
φ−1 extend continuously to the unit circle T. This would give a representation of
f | J(f) as a quotient of the the doubling map θ �→ 2θ mod 1 of the circle R/Z ≈ T.
This observation immeadiately leads to the followong problems:

1) Describe explicitly equivalence realtions on the circle corresponding to all
possible Julia sets;

2) Study the problem of local conectivity of the Julia sets.

It turns out that the first problem can be addressed in a comprehensive way.
The second problem is very delicate. However, even non-locally connected examples
can be partially treated due to the fact that many external rays always land at some
points of the Julia set. This is the main theme of the following discussion.

39.2. Landing of rational rays. We say that an external ray Rθ lands at
some point z of the Julia set if Rθ(t) → z as t → 0. Two rays Rθ/2 and Rθ/2+1/2

will be called “preimages” of the ray Rθ. Obviously, if some ray lands, then its
image and both its preimages land as well.

An external rayRθ is called rational if θ ∈ Q, and irrational otherwise. Dynam-
ically the rational rays are characterized by the property of being either periodic
or preperiodic:

Exercise 7.1. Let R = Rθ.

a) If θ is irraional then the rays fn(R), n = 0, 1, . . . , are all distinct.

Assume θ is rational: θ = q/p, where q and p are mutually prime. Then

(i) If p is odd then R is periodic: there exists an l such that f l(R) = R.

(ii) If p is even then R is preperiodic: there are l and r > 0 such that fr(R) is a
periodic ray of period l, while the rays fk(R), k = 0, 1, . . . , r − 1, are not periodic.

How to calculate l and r?

Theorem 7.2. Let f be a polynomial with connected Julia set. Then any

periodic ray R = Rp/q
f lands at some repelling or parabolic point of f .

Proof. Without loss of generality we can assume that the ray R is periodic
and hence invariant under some iterate g = f l. Let d = 2l. Consider a sequence
of points zn = R(1/dn), and let γn be the sequence of arcs on R bounded by the
points zn and zn+1. Then g(γn) = γn−1.

191
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Endow the basin D = Df (∞) with the hyperbolic metric ρ. Since g : D → D
is a covering map, it locally preserves ρ. Hence the hyperbolic length of the arcs
γn are all equal to some L.

But all the rays accumulate on the Julia set as t→ 0. By the relation between
the hyperbolic and Euclidean metrics (Lemma 1.97), the Euclidean length of these
arcs goes to 0 as n → ∞. Hence the limit set of the sequence {zn} is a connected
set consisting of the fixed points of g. Since g has only finitely many fixed points,
this limit set consists of a single fixed point β. It follows that the ray R lands at
β ∈ J(f) (compare with the proof of Theorem 4.51).

Since β ∈ J(f), it can be either repelling, or parabolic, or Cremer. But the
latter case is excluded by the Necklace Lemma 4.52. �

39.3. Inverse Theorem: periodic points are landing points. It is much
harder to show that, vice versa, any repelling or parabolic point is a landing point
of at least one ray:

39.3.1. Repelling case.

Theorem 7.3. Let f be a polynomial with connected Julia set. Then any
repelling point a is the landing point of at least one periodic ray.

Proof. Replacing f with its iterate, we can assume without loss of general-
ity that a is a fixed point. We will consider the linearizing coordinates φ and ψ
near a based on the discussion and notation of §31. Let Ũi be the components of
ψ−1(D(∞)). These components are permuted by the map g : z �→ λz. The main

step of the proof is to show that each component Ũi is periodic under this action. It
will be done by studying the rate of escape of hyperbolic geodesics in Ũ to infinity.

Let us consider the Green function G : C → R≥0 of f (see §32.3). Recall
that it is a continuous subharmonic function satisfying the functional equation
G(fz) = dG(z). Let us lift it to the dynamical plane of g. We obtain a continuous

subharmonic function G̃ = G ◦ ψ on C satisfying the functional equation G̃(λz) =

dG̃(z). Letting Mn = max
|z|=|λ|n

G̃(z), M ≡M1, we see that Mn ≤ dnM .

By Lemma 5.10, the domains Ũi are simply connected and the restrictins ψ :
Ũi → D(∞) are the universal coverings. Let us fix one of these domains, Ũ = Ũi

and endow it with the hyperbolic metric ρ. Let γ be the hyperbolic geodesic in Ũ
that begins at a point u0 ∈ T1 and goes to ∞ (i.e., γ is the pullback of a straight
ray in C � D̄ by the B ◦ ψ : U → C � D̄). This geodesic must cross all the circles
T|λ|n ; let un stand for the first crossing point, and let ρn = ρ(u0, un).

By Excersice 5.19 and the above estimate on Mn, we have:

(39.1) ρn = log
G(un)

G(u0)
≤ log

Mn

G(u0)
= n log d+O(1).

Thus, the points un escape to infinity no faster than at linear rate.

The above discussion is generally applied, no matter whether the domain Ũ is
periodic under g or not. Assuming now that it is aperiodic, we will argue that the
points un must escape to infinity at a superlinear rate.

If Ũ is aperiodic then the action of the cyclic group < g > on the orbit of Ũ is
faithful, so that, Ũ is embeded into the quotient torus T2 = C∗/ < g > under the
natural projection C∗ → T2. Let W ⊂ T2 be the image under this embedding.
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It is now convenient to make the logarithmic change of variable on C∗ that
turns it to the cylinder C/Z. Then the complex scaling g becomes the translation
z �→ z + τ , where τ = log iλ/2πmodZ, the circles T|λ|n become the circles Tn =
{v : Im v = n Im τ}, U becomes a domain U ⊂ C/Z, the geodesic γ in U becomes
a geodesic γ in U, and points un turn into points un ∈ γ ∩Tn. Let us parametrize
γ by the length parameter t ∈ R≥0 so that γ(0) = u0.

Let us endow the cylinder C/Z and the torus T2 with the flat Euclidean metric
so that the natural projection π : C/Z→ T2 is locally isometric. Then

(39.2) dist(γ(t), ∂U)→ 0 as t→∞.
Otherwise there would exist ε > 0 and a sequence of points xn ∈ C/Z such that
Imxn+1 > Imxn + 2ε and Dn ≡ D(xn, ε) ⊂ U. Since π : U → T2 is a locally
isometric embedding, the images π(Dn) would be disjoint ε-disks in T2, which is
impossible by compactness of T2.

Let dρ(γ(t)) = σ(t)|dz|. By Lemma 1.97 and (39.2),

(39.3) σ(t) � 1

dist(γ(t), ∂U)
→∞ as t→∞.

Let ln stands for Euclidean length of the arc of γ bounded by un+1 and un, and
let σn = inf σ(t) on that arc. Then

ρ(un+1,un) ≥ σnln ≥ σn Im τ.

Hence

ρ(un+1,u0) ≥ Im τ

n−1∑
k=0

σk,

and by (39.3)
1

n
ρ(un+1,u0)→∞ as n→∞,

contradicting (39.1).

Thus, the domain Ũ is periodic under the action of g with some period q. Hence
the image W of Ũ in T2 is the quotient of Ũ by the cyclic < gq >. It follows that
it is conformally equivalent to either an annulus A(1, r) or to the punctured disk
D∗ depending on whether gq is hyperbolic or parabolic. In fact, the first option is
realized. Indeed,

Ψ ≡ B ◦ ψ : ∪Ũi → C� D̄

is a covering map conjugating g to z �→ zd. Hence it semi-conjugates gq : Ũ → Ũ
to z �→ zd

q

. Since Ũ is simply-connected, Ψ lifts to a conformal isomorphism
Ψ̂ : Ũ → H conjugating gq to τ : ζ → dqζ. But the latter is a hyperbolic map of H,
so that, W ≈ H/ < τ > is an annulus (with modulus π/(q log d)).

To complete the proof, let us consider the simple closed hyperbolic geodesic
Γ in W . It lifts to a hyperbolic geodesic Γ̃ in Ũ invariant under the action of
< gq >. Let δ be a fundamental arc on Γ̃ bounded by some point u and g−qu.
Then g−qn(δ)→ 0 as n→∞, so that, Γ̃ lands at 0 (in “negative” time).

Since ψ : Ũ → D(∞) is a covering map semi-conjugating gq to fq, ψ(Γ̃) is a
hyperbolic geodesic in D(∞) invariant under fq and hence escaping to infinity in
positive time. But hyperbolic geodesics in D(∞) escaping to infinity are exactly
the external rays of f .

Finally, ψ(Γ̃) lands at a in negative time since ψ is continuous at 0. �
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Problem 7.4. a) Modify the above proof to show that there are only finitely

many domains Ũi.
b) Conclude that there are only finitely many rays landing at any repelling point,
and all of these rays are periodic.

39.3.2. Parabolic case. A point a ∈ K(f) is called dividing if K(f) � {a} is
disconnected.

Exercise 7.5. Assume K(f) is connected. Show that a repelling or parabolic
periodic point a ∈ K(f) is dividing if and only if there are more than one ray
landing at a.

39.3.3. Cantor case.

Proposition 7.6. Let fc : z �→ z2 + c be a quadratic polynomial with Cantor
Julia set, i.e., c ∈ C � M . Then any external ray Rθ that does not crash at a
precritical point lands at some point of J(fc).

39.4. Rotation sets on the circle. We will now briefly deviate from the
complex dynamics to study “rotation cycles” on the circle.

The oriented cicle T ≈ R/Z is certainly not ordered, but it rather cyclically
ordered. Namely, any finite subset Θ ⊂ T is ordered, Θ = (θ1 . . . , θn), up to cyclic
permutation of its points and this order is compatible with the inclusions of the
sets. We say that a tuple of points (θ1, . . . , θn) of T is correctly ordered if their order
is compatible with the cyclic order of T.

Given two points θ1, θ2 ∈ T, we let (θ1, θ2) be the (open) arc of T that begins
at θ1 and ends at θ2 (which makes sense since T is oriented).

A tuple of two points (θ1, θ2) of Θ is called neighbors in Θ if the correspond-

ing arc (θ1, θ2) does not contain other points of Θ. (Note that this relation is
asymmetric.)

Given a subset Θ and an injection g : Θ → T, we say that g is monotone if
it preserves the cyclic order of finite subsets of Θ (i.e., if (θ1, . . . , θn) is a correctly
ordered tuple of points of Θ, then the tuple of points (g(θ1), . . . , g(θn)) is also
correctly ordered).

Exercise 7.7. Show that g is monotone on a finite set Θ ⊂ T iff it maps any
tuple of neighbors in Θ to a tuple of neighbors in g(Θ).

Monotone bijections g : Θ→ Θ are called rotations of Θ, and Θ is correspond-
ingly called a rotation set for g.

Any finite rotation set Θ ⊂ T has a well defined rational rotation number
p/q ∈ Q/Z. Namely, take a point θ ∈ Θ and let q be the period of θ, while p be

the number of points in the orb(θ) contained in the semi-open arc [θ, g(θ)).

Exercise 7.8. Check that q and p are independent of the choice of θ.

We will now analyze rotation cycles for the doubling map g : θ �→ 2θ mod 1.

Lemma 7.9. Let Θ be a rotation cycle for g with rotation number p/q. Then
complementary arcs to Θ (counted according to the action of g starting with the
shortest one) have lengths 2k−1/(2q − 1), k = 1, . . . q.

Proof. Let ωi = (θi, κi) be the complementary arcs to Θ, where g(θi) = θi+1,
g(κi) = κi+1 (i ∈ Z/qZ). If some ωi is shorter that half-circle then g maps it
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homeomorphically onto the arc ωi+1 of length |ωi+1| = 2|ωi|. So, if all the arcs ωi

were shorter than half-circle then we would arrive at the basic logical contradiction:

1 =
∑

i∈Z/qZ

|ωi+1| = 2
∑

i∈Z/qZ

|ωi| = 2.

Thus, one of the arcs ωi must be longer than half-circle. Let us call it ω0, and let
|ω0| = (1 + ε)/2. This arc is the union of the half-circle ξ = [κ′0, θ0) and the arc

η = (θ0, κ′0) of length ε/2, where κ′0 = κ0 − 1/2 is the point symmetric with κ0.
Moreover, under g, the arc ξ is bijectively mapped onto the whole circle T, while η
is homeomorphically mapped onto (θ1, κ1) = ω1. We see that |ω1| = ε.

Since each arc ωi, i = 1, . . . , q − 1, is shorter than half-circle, it is mapped
homeomorphically onto the arc ωi+1, and |ωi+1| = 2|ωi|. Hence |ωi| = 2i−1ε,
i = 1, . . . , q. Since q = 0 in Z/qZ, we obtain the equation:

1 + ε

2
= |ω0| = |ωq| = 2q−1ε,

which gives us the desired value of ε. �

The arc ω0 of T � Θ which is longer than half-circle is called critical. The
shortest arc ω1 is called characteristic.

Proposition 7.10. For the doubling map g : θ �→ 2θ on T and any rational
p/q ∈ Q/Z, there exists a unique rotaion cycle Θp/q ⊂ T with rotation number p/q.

Proof. Let Θ be a rotation cycle with rotation number p/q. Let us consider its

characteristic arc ξ1 = (θ, κ). Since κ is the neighbor of θ, we have: κ = 2lθ mod 1,
where l = 1/p in Z/qZ. On the other hand, κ = θ + 1/(2q − 1) by Lemma 7.9.
Hence

(39.4) (2l − 1) θ ≡ 1/(2q − 1) mod 1

Since θ is g-periodic with period q, 2qθ = θ mod 1, so that, θ = t/(2q−1). Plugging
it into (39.4), we come up with the equation

(39.5) (2l − 1) t ≡ 1 mod 2q − 1.

Since l and q are mutually prime, so are 2l − 1 and 2q − 1, and hence (39.5) has a
unique solution mod 2q − 1. This prove uniqueness of the rotation cycle.

Going backwards, we take the solution of (39.4), let κ = glθ and ξ1 = (θ, κ).
Then ξ2 = gl(ξ) is the arc of length 2/(2q − 1) adjacent to ξ1; ξ3 = g2l(ξ) is the
arc of length 2/(2q − 1) adjacent to ξ2, etc., up to the arc ξq = glq(ξ) of length
2q−1/(2q−1) > 1/2. Since the total length of these arcs is equal to 1, their closures
tile the whole circle T, so that, Θ = orb(θ) is a rotation cycle of gl with rotation
number 1/q. Since pl = 1 mod q, we have: g|Θ = (gl)p|Θ, and hence g|Θ has
rotation number p/q.

�

Exercise 7.11. Derive the uniqueness part of the last proposition directly from
Lemma 7.9, without finding the rotation cycle explicitly.

Exercise 7.12. Analyse the structure of rotation sets on T with irrational
rotation number. Prove that for any η ∈ R/Z, there exists a unique closed rotation
set Θη on T with rotation number η.
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Exercise 7.13. Analyze the structure of rotation cycles for the map gd : θ �→
d θ. Prove that there are at most d− 1 cycles with a given rotation number.

39.5. Fixed points and their combinatorial rotaion number.
39.5.1. Combinatorial rotation number. Let us now consider a polynomial f of

degree d with connected Julia set. Let a be its repelling or parabolic fixed point,
and let Ri ≡ Rθi be the rays landing at a. The set of angles Θ(a) = {θi} ⊂ T is
called the ray portrait of a.

Lemma 7.14. The ray portrait Θ(a) is a rotation set for the map gd : θ �→ d θ.

Proof. Let Si be the complementary sectors to the rays, i.e., the connected
components of C�∪Ri. Each sector S is bounded by a pair of rays (R,R′), which
can be ordered so that R is positively oriented rel S. Thus, we can order the rays,
(R0,R1, . . . ,Rn−1), so that, Ri and Ri+1 are neighbors, and this ordering is well
defined up to cyclic permutation of the rays. So, the rays are cyclically ordered.

The map f preserves this cyclic order. Indeed, it is a local homeomorphism
near a, and hence it permutes the local sectors. It follows that neigboring rays are
mapped by f to neighboring ones, which is equivalent to preserving the cyclic order
(compare Exercise 7.7).

But the cylic order of the rays Rθi coincides with the cyclic order of their slopes
θi at∞. Since these slopes are permuted by the map gd, the conclusion follows. �

So, we have a well defined combinatorial rotation number of f at a. In fact, it
can be defined in terms of any periodic curve landing at a:

Exercise 7.15. Let γ be a periodic path in C � K(f) landing at a. Then it
has period q, and f cylically permutes the curves fk(γ), k = 0, 1, . . . ,q − 1, with
combinatorial rotation number p/q.

For a periodic point a of period p, the combinatorial rotation number is defined
by considering it as a fixed point of fp.

39.5.2. The α− and β− fixed points of a quadratic polynomial. Let us now
assume that f = fc is a quadratic polynomial z �→ zd + c with connected Julia set.
It turns out that the two fixed points of f (which ure statically undistinguishable)
play very different dynamical role.

The polynomail f has only one invariant ray, R0. By Theorem 7.2, this ray
lands at some fixed point called β; moreover, this point is either repelling or para-
bolic with multiplier 1. (In the latter case, c = 1/4 is the cusp of the Mandelbrot
set, and the two fixed points coincide.) The ray R0 is the only ray landing at β (for
any other ray would be also invariant by Lemma 7.14). Thus β is the non-dividing
fixed point (see Exercise 7.5).

Outside the cusp c = 1/4, fc has the second fixed point called α. It is either
attracting (for c in the main hyperbolic component H0 ⊂M bounded by the main
cardioid C – see §28) or neutral (for c on the main cardioid C), or repelling. If α
is repelling or parabolic then by Theorem 7.3 it is a landing point of some periodic
ray R = Rθ. Since θ �= 0 mod 1, the period q of this ray is greater than 1. Of
course, all the rays Ri = f i(R), n = 0, 1, . . . , q− 1, also land at α, so that, α is the
dividing fixed point.

By Lemma 7.14 the ray portrait Θ(α) ⊂ T is a rotation set for the doubling
map θ �→ 2θ. By Proposition 7.10, it is in fact, a single rotation cycle. Hence
the rays Ri are cyclically permuted by f with a combinatorial rotaion number p/q.
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This rotation number, ρ(fc) ≡ ρ(c), is also called the combinatorial rotation number
of f (or of the corresponding parameter c).

The rays Ri divide the plane into q sectors Si, i = 0. . . . , q − 1, which cut off
arcs ωi at the circle at infinity. We studied these arcs in Lemma 7.9. Recall that
the longest of these arcs, labeled ω0 ≡ ωq, is called critical, while the shortest, ω1

is called characteristic. The corresponding sectors, S0 ≡ Sq and S1, will be called
in the same way.

Lemma 7.16. For i = 1, . . . , q − 1, the map f univalently maps the sectors Si

onto Si+1. The critical sector S0 contains the critical point 0, while the character-
istic sector S1 contains the critical value c.

Proof. Let S̄i be the compactification of the sector Si at infinity obtained by
adding the arc ω1 to Si. This is a topological triangle. For i = 1, . . . , q − 1, the
boundary of Si is homeomorphically mapped onto the boundary of Si+1. By the
Argument Principle, the whole triangle S̄i is homeomorphically mapped onto S̄i+1.
Hence there are no critical points in these Si, so that, 0 ∈ S0. �

Let α′ = −α; this is the second preimage of the fixed point α. By symmetry,
there are q rays R′

i landing at α′ symmetric to the rays Ri, so that, f(R′
i) = Ri+1,

i ∈ Z/qZ. Altogether, the rays Ri and R′
i partition the plane into q − 1 pairs of

symmetric sectors Si, S
′
i, i = 1, . . . , q− 1 (bounded by two rays each) and a central

domain Ω0 � 0 bounded by two pairs of symmetric rays.

Lemma 7.17. The central domain Ω0 is mapped onto the characteristic sector
S1 as a double branched covering.

Proof. Each pair of symmetric rays that bound Ω0 is mapped homeomorphi-
cally onto a characteristic ray that bound S1, so we have a 2-to-1 map ∂Ω0 → ∂S1.

Let Ω̄0 be the compactification of Ω0 by two symmetric arcs η and η′ at infinity
(where the arc η appeared in the proof of Lemma 7.9). Each of these arcs is mapped
homeomorphically onto the characteristic arc ω1.

We see that the boundary of Ω̄0 is mapped to the boundary of S̄1 as a double
covering, and the conclusion follows. �

Below we will describe the set of parameters with a given combinatorial rotation
number.

39.6. Hubbard trees revisited.
39.6.1. The α-fixed point.

Lemma 7.18. The legal path γ connecting the critical point c0 = 0 to the critical
value c1 = c contains a fixed point α of f .

Proof. The image δ := f(γ) is the legal path connecting c to c2. Let us orient
γ from 0 to c, and respectively, orient δ from c to c2. Since c is a vertex of T , these
orientations are opposite near c.

Note that the inclusion δ ⊂ γ is impossible, since in this case a topological
interval, γ, is mapped by f to itself, so it would contain a fixed point which is
attracting at least on one side (as long as we know that the fixed points are isolated,
which is certainly the case for polynomials).

If δ ⊃ γ then the inverse branch f−1 : δ → γ maps a topological interval, δ, to
a smaller interval γ, so it has a fixed point α ∈ γ.
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Otherwise, δ∩γ = [c, α], where α is a branch point of T . Let us show that this
point is fixed under f . If this is not the case, then γ contains a point α−1 �= α such
that f(α−1) = α. Then the image α1 := f(α) �= α is a point of the path [c, c2]. Let
us consider the topological interval I0 = [α, α1] ⊂ [c, c2]. It is oriented away from
the critical point 0 (in the sense that the path [0, α] is disjoint from I0).

Then the interval I1 ≡ [α1, α2] := f(I0) ⊂ T extends I0 beyond α1 to an
interval [α, α2] oriented away from 0 as well. Attachning to it the next iterate
I3 ≡ [α2, α3] := f2[α, α1], we obtain a bigger interval [α, α3] with the same property,
etc. Note that we will never hit the crtical point (since the intervals [α, αn] grow
away from it in the Hubbard tree), so the intervals in question will never be folded
under f . In this way, we obtain infinitely many branch points αn = fn(α) of T ,
which is impossible. �

39.6.2. Spine and the β-fixed point. Since the zero-ray R0 is f -invariant, it
lands at a fixed point. This point is usually called β. Let β′ ≡ −β be the
corresponding co-fixed point. The legal arc σ ≡ σf := [β, β′] is called the spine of
K(f). It turns out that the spine captures all cut-points in K.

Lemma 7.19. A point a ∈ J belongs to the interior of the spine if and only of
there are two rays, Rθ0 and θ1 landing at a such that the diadic expansions for θ0
and θ1 begin with different digits ( 0 and 1 respectively).

Proof. Of course, interior point of any path in K that belongs to ∂K is a
cut-point. ....

Let us cosider the arc Γ composed of the spine and two rays, R0 and Rπ. It
divides C into two symmetric topological half-planes, Π0 and P1, such that rays
Rθ with θ = [0ε2 . . . ] ∈ (0, 1/2) lie in the upper half-plane P0, while rays Rθ with
θ = [1ε1 . . . ] ∈ (1/2, 1) lie in the lower half-plane. It follows that Rθ0 cannot land
in Π1, while Rtheta1

cannot land in Π0. Hence they both land on the spine. �

Proposition 7.20. A point a ∈ J is a cut-point if it only if it belongs to some
preimage of the interior of the spine, i.e., fna ∈ intσ = (β, β′) for some n ∈ N.

Proof. The “only if” part follows directly from Lemma 7.19.
Vice versa, if a ∈ J is a cut-point then by defintion there are at least two rays,

Rθ± , landing at a. The diadic expansions of the correspoding angles, θ±, differ at
some place n. Then the diadic expansions for 2nθ+ and 2nθ− mod 1 differ at the
first place. By Lemma 7.19, fna is a cut point, and hence a is, too. �

The extended Hubbard tree T e
f is the legal hull of the cycle c and the points β,

β′.

Exercise 7.21. Show that T e
f = Tf ∪ σf and that T e

f is f -invariant.

One can describe exactly how the spine σ is located with respect to the Hubbard
tree T .

39.7. Characteristic pair of rays and the Combinatorial Model.
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40. Limbs and wakes of the Mandelbrot set

41. Geodesic laminations

42. Limbs and wakes of the Mandelbrot set

42.1. Stability of landing.
42.1.1. Repelling case. If a is a repelling periodic point of period p for a poly-

nomial f then by the Implicit Function Theorem, a nearby polynomial f̃ has a
unique repelling periodic point ã near a. We will refer to this point as the perturbed
a.

Lemma 7.22 (Stability Lemma). Assume that a periodic ray R = Rθ(f) lands

at a repelling periodic point a for a polynomial f . Then for f̃ sufficiently close to
f , the corresponding ray R̃θ lands at the perturbed repelling periodic point ã.

Remark 7.1. Let us emphasize that this lemma applies to both connected and
disconnected cases.

Proof. Without loss of generality we can assume that the point a is fixed.
and the ray R is invariant.

Let us take a small disk D = D(a, 2ε) such that the local inverse branch g of

f−1 is well defined in D and g(D) � D. Then the same is true for f̃ sufficiently
close to f .

Let us fix some equipotential level t > 0 such that R(τ) ⊂ D(a, ε) for τ ≤ d t.
Let γ be the closed arc of R in between the potential levels t and d t.

Let us consider the inverse Böttcher function

B̃−1 ≡ B−1

f̃
: C� D̄ρ(f) → Ωf

on its maximal domain fo definition. Let

R≥t = B−1{eτe2πiθ : t ≤ τ <∞}.
The notations R>t and similarly notations for R̃ (whenever they are well defined)

are self-explanatory. The Böttcher formula (32.2) implies that B̃−1 depends con-

tinuously on f̃ in the closed-open topology. Hence if f̃ is sufficiently close to f ,
then the ray R̃≥t (parametrized by the potential level) is well defined and ε-close

to the ray R≥t. Let γ̃ = [ã, b̃] be the arc of R̃ between the potential levels t and
d t. It follows that γ̃ ⊂ D, so that, the inverse branch g̃ is well defined on γ̃.

But b̃ = f(ã), so that, ã = g(b̃). Thus the arc g̃(γ̃) ⊂ D gives an extension of

the ray R̃≥t to the ray R̃≥t/d. Repeating this argument, we conclude that the arcs

g̃−n(γ̃) give an extension of R̃≥t to the full ray R̃t>0. �

42.1.2. Parabolic case.

Lemma 7.23. Let f be a polynomial with connected Julia set. For a parabolic
periodic point a with multimplier λ = e2πip/q, the combinatorial rotaion number
coincides with its rotation number p/q.

Proof. Without loss of generality we can assume that a is a fixed point.
By Lemma ??, the rays landing at a are tangent to the bisectors Li of the

repelling petals, which are permuted by the differential Df(a) with rotation number
p/q. Hence these rays are organized in q groups Gi = (Rij)j , i = 1, . . . q, so that
the rays in Gi are tangent to Li. The rays within one group are naturally ordered:
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Rk ! Rj if Rj is positively oriented relatively to the local sector S of zero angle
bounded by these rays (in other words,Rk is obtained fromRj by the anti-clockwise
“rotation” in S). Since f is a local orientation preserving diffeomorphism near a,
it permutes these groups preserving the order of the rays. It follows that under fq

each ray is mapped back onto itself, and hence it is permuted by f with rotation
number p/q. �

Putting this together with Proposition 7.10, we obtain:

Lemma 7.24. Assume that the α-fixed point of the quadratic polynomial fc :
z �→ z2 + c is parabolic with rotation number p/q. Then it is a landing point of q
rays that are permuted with the same rotation number.

Recall that rp/q ∈ C is the parabolic parameter with rotation number p/q. Let
Hp/q stand for the satellite hyperbolic component attached to the main cardioid C
at rp/q (see Proposition 28.5).

Lemma 7.25. For any rotation number p/q �= 0, there exists a curve c(t),
t ∈ [0, ε) such that c(0) = rp/q, c(t) ∈ Hp/q for t > 0, and ρ(c(t)) = p/q.

42.2. Limbs and wakes.
42.2.1. Limbs. Let L∗

p/q be the connected component of M �{rp/q} containing
Hp/q, and let Lp/q = L∗

p/q∪{rp/q}. This set is called the p/q-limb of the Mandelbrot

set, while L∗
p/q is called the “unrooted p/q-limb”.

Proposition 7.26. For any c ∈ Lp/q, the combinatorial rotation number ρ(c)
is equal to p/q.

Proof. By Lemma 7.24, it is true at the root rp/q. By Lemma 7.25, it is
also true on some curve γ ∈ Hp/q landing at rp/q. By stability of ray portraits
at repelling points (Lemma 7.22), the combinatorial rotaion number c �→ ρ(c) is a
continuous function of c ∈ L∗

p/q. Since the unrooted limb Lp/q is connected, while

ρ can assume only rational values, it is constant on the whole limb Lp/q. �

42.2.2. Characteristic parameter rays. Since the Stability Lemma 7.22 applies
to the disconnected case as well, the p/q-ray portrait at the α-fixed point persists
at some open set containing the unrooted limb L∗

p/q. Below we will give the precese

description of this open set.
For a parameter c with a well defined finite ray portrait, letR−

dyn(c) andR+
dyn(c)

be the the characteristic rays landing at the α-fixed point αc of fc, and let Schar(c)
be the characteristic sector bounded by these rays. For c ∈ Lp/q, let θ

−
p/q < θ+p/q be

the angles of the charcteristic rays (which are independent of c by by Proposition
7.26).

The corresponding objects in the parameter plane are the rays R−
par(p/q) and

R+
par(p/q) with angles θ−p/q and θ+p/q, and the p/q-wake Wp/q, the component of

C� cl(C ∪ R−
par ∪R+

par) containing the satellite hyperbolic component Hp/q.
1

In what follows we sometimes suppress the label p/q and c, as long as this
cannot lead to a confusion.

1This definition is convenient to start with, but eventually it will be simplified (see Theorem

7.29).



42. LIMBS AND WAKES OF THE MANDELBROT SET 201

Lemma 7.27 (Key Observation). For c ∈ R±
par(p/q), the dynamical character-

istic rays R±
dyn(c) do not land on J(fc).

Proof. Assume for definiteness that c ∈ R−
par(p/q). Then by the Basic Phase-

Parameter relation, c ∈ R−
dyn.

Let Θ = {θi}q−1
i=0 ⊂ T be the cycle of θ− under the doubling map, where θ1 = θ−.

Then 0 ∈ Rθ0
dyn, so, the ray Rθ0

dyn does not land on J(f) but rather crashes at the
critical point 0.

Going backwards along the cycle of rays Rθi
dyn, we see that all the rays of this

cycle crash at some precritical point. In particular, the characteristic rays do. �

Lemma 7.28. The wake Wp/q contains the unrooted limb L∗
p/q and some com-

ponent Ω of (C �M) � (R−
par(p/q) ∪ R+

par(p/q)). All the points in the wake have
combinatorial rotaion number p/q.

Proof. By the Stablility Lemma 7.22 and the Key Observation, the parameter
rays R±

par(p/q) cannot accumulate on a point c �∈ C with rotation number p/q. In
particular, they do not accumulate on the unrooted limb L∗

p/q, which implies the

first assertion.
It follows that the wake Wp/q intersects C � M , and hence it contains the

component Ω of C �M � (R−
par(p/q) ∪ R+

par(p/q)) such that L∗
p/q ⊂ ∂Ω. (Notice

that (C�M)� (R−
par(p/q) ∪R+

par(p/q)) consists of two components.)
Let us prove the last assertion. Assume there is a parameter c1 ∈ Wp/q with

ρ(c1) �= p/q. Let us fix a reference point c0 ∈ Hp/q and connect it to c1 with a
curve ct ⊂ Wp/q, 0 ≤ t ≤ 1.

By the Stablility Lemma 7.22, there is a maximal interval [0, τ) such that
ρ(ct) = p/q for t ∈ [0, τ). By Proposition 7.26, c(τ) �∈ L∗

p/q, so c(τ) ∈ Ω. Then by

Proposition 7.6 only two events can happen:

(i) The characateristc ray R+
dyn(cτ ) lands at some periodic point a �= α of

J(fcτ ). But then by the Stability Lemma, this would also be the case for cτ−ε for
ε > 0 sufficiently small, contradicting definition of τ .

(ii) The characteristc ray R−
dyn(cτ ) crashes at some precritical point. But then

the critical value cτ would belong to one of the rayRθi
dyn(cτ ) of the cycle ofR−

dyn(cτ ).

Since for cτ−ε, the critical value c belongs to the characteristic sector Schar(c), this
can only be one of the characteristic rays R±

dyn(cτ ). But then by the Basic Phase-

Parameter relation, cτ ∈ R±
par contradicting the definition of Ω.

�

Theorem 7.29. Both parameter rays R±
par(p/q) land at the root rp/q. The wake

Wp/q coincides with the domain bounded by the curve R−
par(p/q)∪R+

par(p/q)∪ rp/q
and containing Hp/q. The combinatorial rotation number is equal to p/q throughout
the wake.

Proof. We know from the proof of Lemma 7.28 that the raysR±
par(p/q) cannot

accumulate on a point c ∈M �C with rotation number p/q. Let us show that they
can neither accumulate on other points c ∈M � C.

Let ρ(c) = r/s �= p/q. By the Stability Lemma, ρ(c̃) = r/s for all c̃ ∈ D(c, ε),
provided ε > 0 is sufficiently small. But if R−

par accumulates on c then all nearby

parameter rays Rθ
par enter the disk D(c, ε). Take such a parameter ray in the
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domain Ω, and let c̃ ∈ D(c, ε)∩Rθ
par. Since c̃ ∈W , ρ(c̃) = p/q by Lemma 7.28, and

we have arrived at a contradiction.
Hence the rays R±

par can accumulate only the points of main cardioid C. Let

ω± ⊂ C be the limit sets of the rays R±. If one of then, say, ω−, was not a single
point, then we could find a rational point p/q ∈ intω−, and the ray R−

par would
have to cross the satellite component Hp/q. Since it is certainly impossible, the

limit sets ω± are, in fact, single points, so that both rays land at some points c±
of the main cardioid.

If c+ �= c− then the wakeWp/q would contain, besidesHp/q, some other satellite
hyperbolic domain Hr/s. But the combinatorial rotation number in Hr/s is equal

to r/s �= p/q contradicting Lemma 7.28. This shows that the rays R±
par land at the

root rp/q, and the rest of the lemma easily follows. �

The angles θ±p/q of the rays R±
par(p/q) landing at rp/q are also called the external

angels of rp/q.

42.3. Limbs and wakes attached to other hyperbolic components.
One can generalize the above discussion to limbs attached to any hyperbolic com-
ponent H in place of the main one, H0. Let ac = aHc , c ∈ H, be the attracting
periodic point of fc, and let λc = λHc be its multiplier. On the boundary of H
the point ac becomes neutral. By the Multiplier Theorem 6.12, for c ∈ ∂H, the
rotation number ρ(ac) assumes once every value θ ∈ R/Z. Let rp/q(H) ∈ ∂H stand
for the parabolic parameter with rotatin number p/q, i.e., ρ(ac) = p/q.

Theorem 7.30. Let p/q �= 0 mod 1. Then there are two parameter rays
R±

par(p/q,H) landing at rp/q(H) such ρ(aHc ) = p/q in the wake Wp/q(H) bounded
these rays, and moreover, this wake is a maximal region with this property.

Remark 7.2. Note that at this moment we do not claim that there are no
other rays landing at rp/q(H) since we will use Theorem 7.30 to show this.

The limb Lp/q(H) of M attached to the parabolic point rp/q(H) is defined as
in the case of the main component H0.

In the case when H is itself a satellite hyperboplic component attached to H0,
we call Lp/q(H) and Wp/q(H) secondary limbs and wakes respectively.

In what follows, we will also need to know that the external angles θ±p/q(H) of

a root point depend continuously on the internal angle p/q.

Lemma 7.31. • Let p/q �= 0. Then θ±(r/s)(H) → θ−p/q(H) as r/s ↗
p/q, and θ±(r/s)(H)→ θ+p/q(H) as r/s↘ p/q.

• Let H = H0. Then θ±p/q(H)→ 0 as p/q → 0 mod 1.

• Let H be a satellite hyperbolic component and θ±0 (H) be the characteristic
rays landing at the root of H. Then θ±p/q(H) → θ−0 (H) a p/q ↘ 0 and

θ±p/q(H)→ θ+0 (H) as p/q ↗ 1.

Remark 7.3. The only reason why in the last statement we assume that H
is satellite is that we do not know yet that there are rays landing at the root of a
primitive hyperbolic component H �= H0.
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42.4. No fake limbs. A fake limb of M is a component of M � H̄0 different
from any limb L∗

p/q.

Lemma 7.32. There are no fake limbs.

Proof. Let X be such a limb. Notice first that X̄ ∩ C �= ∅, for otherwise
M would be disconnected. Also, since X is connected, the combinatorial rotaion
number ρ(c) is independent of c ∈ X, so we have a well defined number ρ(X) = p/q.

Obviously X∩∂Wp/q = ∅, so that, X is either contained inWp/q or lies outside
its closures. Let us first assume the latter. Then for r/s �∈ {p/q, 0}, any parameter
c0 ∈ X can be connected to any parameter c1 ∈ Hr/s by a path ct ∈ C � H̄0,
t ∈ [0, 1], that does not cross ∂Wp/q. But then by the Stability Lemma, ρ(ct) = p/q
for all t ∈ [0, 1], contradicting to ρ(c1) = r/s.

Assume now thatX ⊂ Wp/q. Let us then consider the periodic cycle {fn(ac)}q−1
n=0

of period q obtained by analytic continuation of the attracting cycle bifurcated from
the α-fixed point at rp/q. At this moment we do not know yet that the multiplier
λc of this cycle is different from 1 throughout the wake Wp/q, so that, the function
c �→ ac can be multi-valued. Let Z = {c ∈ Wp/q ∪ {rp/q} : |λc| ≤ 1}. Since this is
a finite union of disjoint Jordan disks, Wp/q � Z is connected. Notice also that X
is not contained in Z since there are always satellite components attached to each
compenent of Z. Let c0 ∈ X�Z, and let k/l be the combinatorial rotation number
of the periodic point as0 .

Let us consider the secondary wakes W2
r/s attached to the satellite component

Hp/q. Again, we have the anlternative: either X ⊂ W2
k/l or X ∩ W̄2

k/l = ∅. But

the former option is actually impossible since W̄2
k/l does not touch C. The latter

option is ruled out in the same way as above by taking a different rotation number
r/s �= k/l and connecting c0 to a seconday satellite component H2

r/s attached to

Hp/q with a path ct ∈ Wp/q � Z. �

Corollary 7.33. The Mandelbrot set admits the following partition:

M = H0 ∪ C ∪
⋃

p/q∈Q/Z�0

L∗
p/q.

Corollary 7.34. The rays R±
par(p/q) are the only parameter rays landing at

rp/q.

Proof. If there was an extra ray R landing at rp/q then by Lemma 1.119 there

would be an extra component of M � H̄0 attached to C at rp/q. �

42.5. The α-rays and their holomorphic motion. Let us fix some combi-
natorial rotation number p/q. For c ∈ Wp/q, let Rθi

c be the dynamical rays landing
at the α-fixed point αc, and let

I(0)c =
⋃
i

Rθi
dyn(c) ∪ {αc}.

This configuration of rays partition the plane into q sectors Si described in Lemma
7.16.

Let hc : X∗ → Xc be a holomorphic motion of some dynamical set over a
pointed parameter domain (Λ, ∗) of the quadratic family z �→ z2 + c. We say that
it respects the Böttcher marking if for any point z ∈ X∗ � J(f∗) we have:

Bc(hc(z)) = B∗(z), c ∈ Λ
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Figure 1. Almost renormalization for the elephant eye.

(so that, the Böttcher coordinate Bc is the “first integral” of the motion).

Proposition 7.35. There is a holomorphic motion of the configuration I(0)c

over the parabolic wake Wp/q that respects the Böttcher marking.

Proof. Let us select an arbitrary base point ∗ ∈ Wp/q.

By definition, Bc(Rθ
c(t)) = et+iθ, where t ∈ R+ and θ ∈ R/Z are the Böttcher

coordinates of the pointRθ
c(t). Hence for B∗(Rθi

∗ (t)) = Bc(Rθi
c (t)), so that, hc(z) =

B−1
c ◦B∗(z) determines a motion of the external rays Rθi

c over Wp/q respecting the
Böttcher marking. This motion is holomorphic since the Böttcher function Bc

depends holomorphically on c.
On the other hand, the point αc obviously moves holomorphically over Wp/q

as well, and we obtain the desired motion of the whole configuration I(0)c . �

Let

(42.1) I(n)c = f−n(I(0)c ).

42.6. MLC on the main cardioid.

Theorem 7.36. The Mandelbrot set is locally connected at any point of the
main cardioid C.

Proposition 7.37. For any irrational θ ∈ R/Z, there is a single parameter
ray Rη landing at the point c(θ) ∈ C with internal angle θ.

43. Misiurewisz wakes and decorations

44. Topological model

45. Renormalization

45.1. Hyperbolic maps.
45.1.1. Canonical almost renormlization. Let us consider a hyperbolic qua-

dratic polynomial f = fc with an attracting cycle α = {αk}p−1
k=0 of period p > 1.

Here we will show that it is renormalizable with period p.
Let us consider the immediate basin �Di of α, where Di � αi and D0 � 0. As

we know, the return maps fp| ∂Di are topologically conjugate to z �→ z2 on the
unit circle T; hence each boundary ∂Di contains a unique fixed point γi of f

p and
a unique “co-fixed” point γ′i �= γi (such that fp(γ′i) = γi). Note that the points γi
form a cycle of period l which is a diviser of p, so γi = γj if i ≡ j mod l. Note also
that γ′0 = −γ0.

Let R±
1 be the pair of characteristic rays (see §??), i.e., the pair of rays landing

at γ1 that bound the sector containing the critical value c. Let θ± be their angles.
Let us consider an arc

Γ1 = R+
1 ∪R−

1 ∪ {γ1}.
Let Γi and Γ′

i be its lifts by f throught the points γ0 and γ′0 respectively. Its further
pullbacks by the iterates fp−i (i = 1, . . . p − 1) passing through the point γi and
γ′i will be called Γi and Γ′

i respectively. (Note that there are p/l arcs Γj passing
through each γi.) See Figure ??.
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Figure 2. Thickening.

Let ±γ′′0 ∈ ∂D0 be two preimages of γ′0 under fp, and let ±Γ′′
0 be the corre-

sponding pullbacks of the arc Γ′
1.

Select your favorite t > 0, and truncate this configuration of rays by equipo-
tential E2t of level 2t > 0. Then the subpotential domains Ω(2t) get tiled by several
topological disks D′

j . Let V
′
1 � c be the critical value tile in Ω(2t), let V ′

0 = f−1(V ′
1),

and let V0 � 0 be the pullback of V ′
) under fp.

Exercise 7.38. (i) V0 ⊂ V ′
0 ;

(ii) The disk V0 is bounded by arcs of Γ0, Γ
′
0, ±Γ′′

0 , and four equipotential arcs of
Et.
(iii) f : V0 → V1 is a double branched covering.

Let V ′
0 := fp(V0). It follows that V0 ⊂ V ′

0 and fp : V0 → V ′
0 is a double

branched covering. It is called the canonical almost renormalization of f (of period
p).

Exercise 7.39. Draw the canonical almost renormalization picture for the rab-
bit, airplane, and other favourite hyperbolic maps of yours.

45.1.2. Thickening. The double covering fp : V0 → V ′
1 described above is not

a quadratic-like map since the domains V0 and V ′
1 have a common boundary (arcs

of Γ0 and Γ′
0). To fix this problem, let us slight;y thicken these domains, see Figure

??. Namely, one can replace Γ0 with a nearby arc Γ̃0 comprising pieces of two
nearby rays and a little circle around γ0. Since the periodic angles θ± are repelling
under the p-fold iterate of the doubling map T → T, and γ0 is a repelling fixed
point for fp, the arc Γ̃0 will be “pushed farther away” from Γ0 under fp. Similarly,
replace Γ′

0 with the arc Γ̃′
0 which is symmetric to Γ̃0. Truncating this pair of arcs

by the equipotential E(2pt) we obtain a domain Ṽ ′
0 � V ′

0 . Pulling it back under fp,

we obtain a domain Ṽ0 � V0.

Lemma 7.40. The map fp : Ṽ0 → Ṽ ′
0 is a quadratic-like renormalization of f .

45.1.3. Real renormalization. Let us now consider a real hyperbolic quadratic
map f = fc, c ∈ [−2, 1/4], with an attracting cycle α = {αi}p−1

i=0 of period p > 1.
This cycle is real, and it has the real immediate attracting basin consisting of the
intervals Ij = (γj , γ

′
j) = Dj ∩ R, j = 0, . . . , p − 1. Moreover, I0 � 0. The return

map fp : Ī0 → Ī0 is the real renormalization of f . Since on the real line we do not
need to create a quadratic-like picture, no thickening is needed in this construction.

45.2. Renormalization windows.
45.2.1. Complex windows. Let us go back to a complex hyperbolic map f◦ = fc◦

of period p > 1. The ray portrait used to construct its canonical almost renormal-
ization survives on a parameter region much bigger that the hyperbolic component
h◦ of f◦. Namely, let us consider the open parameter domain W◦ ≡ Wc◦ corre-
sponding to the dynamical domain D1 around the critical value, see Figure ??.
This domain is bounded by two parameter rays of angle θ± and two parmeter rays
of angle ψ± truncated be the equipotential lof level 2t. The former rays land at the
root r◦ of H◦, while the latter land at its tip t◦.
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Proposition 7.41. The configuration of arcs Γi, Γ
′
i, ±Γ′′

i , and the equipoten-
tials that creates the canonical almost renormalization moves holomorphically over
the parameter window W◦.

Proposition 7.42. All the maps fc, c ∈W◦, are renormalizable with period p.
Furthermore, the map ftip is also renormalizable, while the map froot is renormal-
izable if and only if the hyoerbolic component H◦ is primitive.

45.2.2. Real windows. Let us take the real slice WR
◦ :=W◦ ∩R of the complex

renormalization window. It is an open interval bounded be the root and tip of W◦.
Proposition 7.41 implies:

Corollary 7.43. Let f◦ be a real hyperbolic map of period p > 1. Then the
configuration of arcs Γi, Γ

′
i, ±Γ′′

i , and the equipotentials that creates the canonical
almost renormalization moves continuously over the real renormalization window
WR

◦ .

Similarly, we have the real counterpart of Proposition 7.44:

Corollary 7.44. All the maps fc, c ∈ W̄R
◦ , are really :) renormalizable with

period p. (Note that both the tip and the root are included to W̄R
◦ .)



CHAPTER 8

Thurston theory

45. Rigidity Theorem

45.1. Thurston equivalence. Let us conisder two quadratic polynomials,
f = fc and f̃ = fc̃, with postcitical sets O and Õ. They are called Thurston
equivalent if there exists a homeomorphism h : (C,O)→ (C, Õ) which is a conjugacy

on the postrcitical sets and that can be lifted (via f and f̃) to a homeomorphism

h1 : (C,O)→ (C, Õ) homotopic to h rel O.

A couple of remarks are due. First, recall that h1 is a lift of h via f and f̃ if
f̃ ◦ h1 = h ◦ f . A homeomorphism h : C → C is liftable if and only if h(c) = c̃. If
so, there are two lifts determined by whether h1(c) = c̃ or h1(c) = −c̃.

Next, since h : O → Õ is a conjugacy, we have h(c) = c̃, hence h is liftable in
two ways. The above definition requires that if the lift is selected so that h1(c) = c̃,
then h1| O = h| O, and h1 is homotopic to h rel O.

Finally,we can specify an extra regularity (qc, smooth, etc.) of a Thurston
equivalence h.

45.2. Pullback Argument.

Lemma 8.1. If two quadratic polynomials f = fc and f̃ are K-qc Thurston
equivalent, then the Böttcher conjugacy Dc(∞)→ Dc̃(∞) admits a K-qc extension
to the whole complex plane which is a conjugacy on the postcritical sets (and is
automatically a conjugacy on the Julia sets).

Proof. Let D(t) = C � Ω(t), where Ω(t) is the subpotential domain for f of

level t > 0 (see §32.2). As usual, the corresponding objects for f̃ are marked with

tilde. Let φ : D(∞) → D̃(∞) be the Böttcher conjugacy between f and f̃ on the
basins of ∞.

Take a quasidisk Δ containing O, let Δ̃ = h(Δ), and select an equipotential

level t > 0 so that Δ � Ω(t) and Δ̃ � Ω̃(t). We can modify h and h1 on C�Δ so

that on D(t) they are both equal to the Böttcher conjugacy φ : D(t) → D̃(t) (by
means the quasiconformal interpolation into the annulus Ω(t) � Δ, see ??). This
modification does not change the homotopy type of h rel O since it does not change
h on Δ (see the Alexander trick ??). Moreover, the modification can be done so
that h1 is homotopic to h rel D(t). Indeed, since h|D(t) = φ, the lift h1|D(t/2) is
equal to either φ or −φ. In the latter case we replace the homotopy type of h on
the annulus Ω(t)�Δ rel its boundary to get the correct lift (see Exersice ??).

By the Lift Homotopy Theorem, h1 admits a lift h2 homotopic to h1 (which is
a lift of h) rel f−1(O) ⊃ O. In particular, h2| O = h1| O.

On the domain D(t/2), the lift h2 is either equal to the is a Böttcher conjugacy
. Moreover:

207
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• h2 is holomorphic on D(t/2), and hence it is the Böttcher conjugacy on this larger
domain.

• h2 is K-qc (since f and f̃ are holomorphic).

Repeating this lifting procedure we obtain a sequence ofK-qc homeomorphisms
hn : (C,O) → (C, Õ) in the same homotopy class rel O and such that hn is the
Böttcher conjugacy on D(t/2n).

By compactness of the space of normalized K-qc maps, there exists a subse-
quence hn(k) uniformly converging to a K-qc map H. Moreover, H coincides with
the Böttcher conjugacy on the whole basin ∞, and the conclusion follows. �

Corollary 8.2. Let f and f̃ be two quadratic polynomials with nowhere dense
Julia sets. If they are K-qc Thurston equivalent then they are K-qc conjugate.

46. Rigidity of superattracting polynomials

Theorem 8.3. Let f = fc and f̃ = fc̃ be two superattracting quadratic polyno-
mials. If they are Thurston equivalent then c = c̃.

Proof. Since the postcritical set is finite, the Thurston equivalence can be
assumed smooth, and hence qc, on the whole Riemann sphere. By the Pullback
Argument, the Böttcher conjugacy between f and f̃ extends continuously to the
Julia sets. Since the attracting cycles of our maps have the same multipliers (equal
to 0), the conclusion follows from Lemma 6.17. �

Remark 8.1. Instead of using Lemma 6.17, one could adjust the Pullback Ar-
gument so that it would directly imply the statement. Namely, one can modify
the Thurston equivalence so that is becomes a conformal conjugacy near the su-
perattracting cycles (similarly to the adjustment near ∞ carried in the proof of
Lemma 8.1). Then the Pullback Argument will turn it into a qc conjugacy which
is conformal outside the Julia set. Since the latter has zero area, it is conformal on
the whole plane.

47. Hubbard tree determines f

We say that two maps f and f̃ “have the same Hubbard trees”, T and T̃ if
there is a conjugacy hT : (T , 0) → (T̃ , 0) between the restriction of the maps to
their trees. Such a conjugacy should necessarily respect the marking of the trees.

Remark 8.2. Note that the condition hT (0) = 0 is satisfied automatically if 0
is not an extremity.

Lemma 8.4. If two superattracting quadratic polynomials have the same Hub-
bard trees, then they are Thurston equivalent.

Proof. Let us partition the plane by the rays Ri landing at the marked points
of the Hubbard trees, and let R = ∪Ri. Then the conjugacy hT : T → T̃ can be
extended to the whole plance so that it is the Böttcher conjugacy R. It further lifts
to a homeomorphism

h1 : (C, f−1(T ∪ R)→ (C, f̃−1(T̃ ∪ R̃)

which is Böttcher on f−1(R). As h1 = h on R, these two mapa are homotopic rel
R, all the more rel O. It gives us a desired Thurston equivalence. �
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Putting this together with Theorem 8.3, we obtain:

Corollary 8.5. If two superattracting quadratic polynomials, fc and fc̃, have
the same Hubbard tree then c = c̃.

47.1. Growth of entropy. Let us now consider a real superattracting qua-
dratic polynomial f = fc, c ∈ [−2, 1/4] of period p > 0. Its Hubbard tree Tf is
the interval [c, f(c)] with the marked postrcritical set O. As this information is
equivalent to presribing the (finite) kneading sequence of f , we obtain:

Corollary 8.6. An finite kneading sequence uniquely determines a real su-
perattracting parameter.

With the Intermediate Value Theorem in hands, we can promote this resul to
infinite sequences as well.

Theorem 8.7. An infinite kneading sequence uniquely determines a real pa-
rameter.

For real maps, topological entropy can be defined as the growth rate for the
number of periodic points:

h(f) = lim
1

n
log |Pern|,

where Pern = {x : fnx = x}.
Corollary 8.8. As c moves from 1/4 to −2, the topological entropy h(fc)

monotonically changes from 0 to log 2.

Remark 8.3. The entropy function c �→ h(fc) is an example of the Devil Stair-
case: it is constant on the hyperbolic windows, and grows on the compementary
Cantor set (of positive length).

48. Realization of critically periodic maps

48.1. Statement. Let g : C → C be a topological double branched covering
of the plane with the critical point at 0. We say that it is postcritically periodic if
fp(0) = 0 for some p ≥ 1. (As we know, quadratic polynomials with this property
are called “superttracting”, but this term could be misleading in the topological
setting since a periodic critical point can be even repelling.) Let O = {fn(0)}p−1

n=0.
Similarly to the actual quadratic maps, we can define Thurston equivalence

between such maps, see §??. We say that a map g in question is realizable if there
exists a quadratic polynomial fc in the Thurston class of g. By the Uniqueness
Theorem, this realization is unique.

Thurston Realization Theorem. Any postcritically periodic topological
double branched covering g : C→ C is realizable.

48.2. Proof.
48.2.1. The Teichmüller and Moduli spaces. Without loss of generality, we can

assume that g is quasiregular. All the conformal structures on C (or, on the punc-
tured C) will be assumed to have a bounded dilatation.

Let us consider the Teichml̈ler space T = Tg ≈ Tp+1 of the punctured plane

C � O = Ĉ � Z, where Z = O ∪ {∞}. By definition, it is the space of conformal
structures μ on C�O up to homotopy. More precisely, let hμ : (C,O)→ (C,Oμ) be
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the the solution of the Beltrami equation for the structure μ, where Oμ = hμ(O).
Two structures μ and μ′ are equivalent if there is a complex affine transformation
φ : (C,Oμ)→ (C,Oμ′) such that φ ◦ hμ is homotopic hμ′ rel O. A class τ = [hμ] of
equivalent maps represents a point of T .

The moduli space M = Mg is the space of embeddings O → C up to affine
transformation. The natural projection π : T → M associates to a class [hμ] ∈ Tg
the class of embeddings [hμ| O] ∈M.

48.2.2. Pullback operator and its fixed points. By an affine conjugacy and ho-
motopy rel O, we can normalize g so that c0 = 0 is its critical point and g(z) = z2

near ∞. Let ck = fk(0), k = 0, . . . , p− 1.
Let us now define the pullback operator g∗ : T → T induced by the pullback

μ �→ μ′ = g∗(μ) of the compex structures on C. More precisely, let a point τ ∈ T be
represented by a homeomorphism h : (C,O, 0) → (C,Oτ , 0). Then μ = h∗(σ) and
μ′ = (h ◦ g)∗(σ). Let h′ : (C,O, 0) → (C, h′(O, 0)) be the solution of the Beltrami
equation with the conformal structure μ′. Then h′ represents the point τ ′ = g∗(τ).

If h̃ is homotopic to h rel O then by the Lift Homotopy Theorem ensures that h̃′ is
homotopic to h̃ rel O, so the operator is well defined. In particular, h′(O) (up to
rescaling) depends only on τ ′, and it can be called Oτ ′ .

Let h(O) = (z0 = 0, z1, . . . , zp−1), h
′(O) = (z′0 = 0, z′1, . . . , z

′
p−1), where zi =

h(ci), z
′
i = h′(ci).

Composition h′ ◦ g ◦ h−1 is a holomorphic double branched covering

f : (C,Oτ ′)→ (C,Oτ ),

so it is a quadratic polynomial. Notice, however, that f does not have a dynamical
meaning as h′(O) �= h(O). Moreover, we have two independent scaling factors
to normalize the maps h and h′, and there are several useful ways to do so. For
instance,

N1: Let z1 = 1 while z′p−1 = i; then f(z) = z2 + 1.

N2: Let z1 = z′1 = 1; then f(z) = (z2 − 1) z2 + 1.

(48.1)

(C,O, τ ′) −→
h′

(C,Oτ ′ , σ)

g ↓ ↓ f

(C,O, τ) −→
h

(C,Oτ , σ)

48.2.3. Ambiguity in the Moduli space. The operator g∗ does not descend to
the moduli space Mp+1: the Riemann surface (C,Oτ ′) is diagram (48.1) is not
uniquely determined by (C,Oτ ). However, the ambiguity is bounded:

Lemma 8.9. For a given Riemann surface (C,Oτ ′), ther exists a bounded (in

terms of p = |O|) number of Riemann surfaces (Ĉ,Oτ ′). Moreover, if (C,Oτ ′)
belongs to a compact subset K of Mp then (C,Oτ ′) belongs to a compact subset
K′ �Mp as well.

Proof. Let us use normalization N1 for h and h′, so f(z) = z2 +1. Then the
set f−1(Oτ ) is uniquely defined by Oτ :

(48.2) z′i = ±
√
zi+1 − 1.
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Since Oτ ′ ⊂ f−1(Oτ ), we have only finitely many (at most 2p−2) options for Oτ ′ .
The choice of ± signs in ( 48.2) is determined by the marking z′i = h′(ci), and
formulas (48.2) express the pulback operator g∗ in the local coordinates:

g∗ : (z2, . . . , zp−1) �→ (z′1, . . . , z
′
p−2).

Let Zτ = Oτ ∪ {∞}. If (C,Oτ ) ∈ K then the points of Zτ are ε-separated in
the spherical metric for some ε = ε(K) > 0 (see Lemma ??). But then the points
of Zτ ′ (i.e., z′i = ±

√
zi − 1 and ∞) are ε′-separated for some ε′ > 0 depending only

on ε, and the conclusion follows. �

48.2.4. Fixed points of g∗.

Proposition 8.10. A branched covering g : (C,O) → (C,O) is realizable if
and only if the pullback operator g∗ : T → T has a fixed point.

Proof. If g is realizable then by definition there is a superattracting quadratic
polynomial fc with the postcritical setOc and homeomorphisms h and h′ homotopic
rel O such that the diagram is valid:

(C,O) −→
h′

(C,Oc)

g ↓ ↓ fc
(C,O) −→

h
(C,Oc)

Comparing it with diagram (48.1) we see that [h′] = g∗[h]. But [h] = [h′] by
definition of a point in T . So, [h] is a fixed point of g∗.

Vice versa, assume that a homeomorphism h in diagram (48.1) represents a
fixed point of f∗. Then [h′] = [h], which means by definition that after postcom-
posing h′ with a scaling z �→ λz we have h′ � h rel O. But then the quadratic
polynomial f is Thurston equivalent to g.

�

48.2.5. Infinitesimal Contraction. Recall from §?? that the cotangent space
T∗

τT to the Teichmüller space T is isometric to the space Q1(C�O) of integrable
meromorphic quadratic differentials. So, the codifferential

Dg(τ)∗ : T∗
τ ′T → T∗

τT

can be viewed as an operator

Dg(τ)∗ : Q1(C�Oτ ′)→ Q1(C�Oτ ).

On the other hand, the quadratic map f from diagram (48.1) induces the push-
forward operator between the same spaces:

f∗ : Q1(C�Oτ ′)→ Q1(C�Oτ )

(see §1.8.3). It turns out that these two operators are the same:

Lemma 8.11. Up to the above isometries, the codifferential of Dg(τ)∗ is equal
to the push-forward operator f∗.
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Proof. Let us take a smooth vector field v on Ĉ representing a tangent vector
to T at τ . The differential Dg∗(τ) acts on v as the pullback f∗v. Since the ∂̄-
operator behaves naturally under holomorphic pullbacks, we have ∂̄(f∗v) = f∗(∂̄v).
Using now duality between the pullback and push-forward (Lemma 1.41), we obtain

for any quadratic qifferential q ∈ Q1(Ĉ �Oτ ′):

< q, f∗v >=

∫
q · ∂̄(f∗v) =

∫
q · f∗(∂̄v) =

∫
f∗q · ∂̄v =< f∗q, v > .

�

48.2.6. Non-escaping creates the fixed point. The previous discussion implies
that the pullback operator g∗ is uniformly contracting depending only on the loca-
tion of the Riemann surface (C,Oτ ) in the moduli space:

Lemma 8.12. For any compact subset K in Mp there exists ρ = ρ(K) < 1 such
that ‖Dg∗(τ)‖ ≤ ρ for any τ ∈ Tp such that (C,Oτ ) ≡ π(τ) ∈ K.

48.2.7. Escaping creates an invariant multicurve.
48.2.8. Structure of an invariant multicurve. Let us consider an invariant mul-

ticurve Γ. Let γ be a component of Γ that surrounds the fewest number, say l ≥ 2,
of postcritical points. Then g∗(γ) must be a single curve, γ−1, surrounding the
same number, l, postcritical points. For the same reason, the pullback g∗(γ−1, is a
single curve, γ−2 ∈ Γ, also surrounding l postcritical points. Continuing this way,
we will construct a cycle of curves γi ∈ Γ, i ∈ Z/pZ, such that γi−1 = f∗(γi). Of
course, one of these curves surrounds 0.

If there is a curve γ′ ∈ Γ that does not belong to the above cycle, we can
construct a new cycle of curves γ′−i, i ∈ A/pZ, etc., until we will exhaust all the
curves.

We see that Γ is decomposed into a disjoint union of cycles of curves, each of
which surrounds the critical point.

48.2.9. Improvement. Under (f∗)p, all the annuli in the cycles

48.3. Realization of abstract Hubbard trees.
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CHAPTER 9

Quadratic-like maps

49. Straightening

49.1. Adjustments. The notion of a quadratic-like map with the fixed do-
main is too rigid, so we allow adjustments of the domains which do not effect the
essential dynamics of the map (see Exercises 4.75, 4.77). An appropriate adjustment
allows one to improve the geometry of the map:

Lemma 9.1. Consider a quadratic-like map f : U → U ′ with

(49.1) modA ≥ μ > 0

and f(0) ∈ U . Then there is an adjustment g : V → V ′ such that:

(i) The new domains V and V ′ are bounded by real analytic κ-quasicircles γ
and γ′ with κ depending only on μ. Moreover, these curves have a bounded (in
terms of μ) eccentricity around the origin.

(ii) mod(V ′ � V̄ ) ≥ μ/2 > 0.

(iii) g admits a decomposition

(49.2) g = h ◦ f0,

where f0(z) = z2 and h is a univalent function on W = f0(V ) with distortion
bounded by some constant C(μ).

Proof. Let us uniformize the fundamental annulus A of f by a round annulus,
φ : A(1/r, r) → A, where r ≥ eμ/2 ≡ r0. Then γ′ = φ(T) is the equator of A.
Consider the disk V ′ bounded by γ′, and let V = f−1V ′. Since f(0) ∈ V ′, V is a
conformal disk and the restriction f : V → V ′ is a quadratic-like adjsutment of f
(see Exerecise 4.75).

Restrict φ to the annulus A(1/r0, r0). Take an arc α = [a, b] on T of length at
most (1− 1/r0)/2. By the Koebe Distortion and 1/4 Theorems in the disk D2δ(a),

|φ(b)− φ(a)| ≥ |b− a|
4

|φ′(a)|; l(φ(α)) ≤ K |φ′(a)| l(α),

where l stands for the arc length, and K is an absolute constant. Hence γ′ = φ(T)
is a quasi-circle with the dilatation depending only on r0 = r0(μ) (see Excercise
??).

Applying the same argument to the uniformization of f−1A, we conclude that
its equator γ = ∂V is a quasicircle with bounded dilatation as well.

Since γ and γ′ are 0-symmetric κ-quasicircle, the eccentricity of these curves
around 0 is bounded by some constant C(κ) (see Exercise 2.65). This proves (i).

Property (ii) is obvious since mod(V ′ � V̄ ) ≥ modA(1, r0) ≥ μ/2.

215
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Since g is even, it admits decomposition (49.2). Moreover, h admits a univalent

extension to the disk W̃ = f0(U), and

mod(W̃ �W ) = 2mod(U � V ) ≥ μ/2.

The Koebe Distortion Theorem (in the invariant form 1.94) completes the proof. �

If a q-l map g admits decomposition (49.2), we call it “quadratic up to a
bounded distortion”.

49.2. Straightening Theorem. If the reader attempted to extend the basic
dynamical theory from quadratic polynomials to quadratic-like maps, quite likely
he/she had a problem with the No Wandering Domains Theorem. The only known
proof of this theorem crucially uses the fact that a polynomial of a given degree
depends on finitely many parameters. The flexibility offered by the infinite dimen-
sional space of quadratic-like maps looks at this moment like a big disadvantage.
It turns out, however, that the theorem is still valid for quadratic-like maps, and
actually there is no need to prove it independently (as well as to repeat any other
pieces of the topological theory). In fact, quadratic-like maps do not exibit any
new features of topological dynamics, since all of them are topologically equivalent
to polynomials (restricted to appropriate domains)!

The proof of this theorem was historically the first application of the so called
quasiconformal surgery technique. The idea of this technique is to cook by hands a
quasiregular map with desired dynamical properties which topologically looks like
a polynomial. If you then manage to find an invariant conformal structure for this
map, then by the Measurable Riemann Mapping Theorem it can be realised as a
true polynomial.

To state the result precisely, we need a few definitions. Two quadratic-like
maps f and g are called topologically conjugate if they become such after some
adjustments of their domains. Thus there exist adjustments f : U → U ′ and
g : V → V ′ and a homeomorphism h : (U ′, U) → (V ′, V ) such that the following
diagram is commutative:

U −→
f

U ′

h ↓ ↓ h

V −→
g

V ′

In case when one of the maps is a global polynomial, we allow to take any quadratic-
like restriction of it.

If the homeomorphism h in the above definition can be selected quasiconformal
(respectively: conformal or affine) then the maps f and g are called quasiconfor-
mally (respectively: conformally or affinely) conjugate. Two quadratic-like maps
are called hybrid equivalent if they are qc conjugate by a map h with ∂̄h = 0 a.e.
on the filled Julia set K(f).

Remark. The last condition implies that h is conformal on the intK(f). On
the Julia set J(f) it gives an extra restriction only if J(f) has positive area.

The equivalence classes of hybrid (respectively: qc, topological etc.) conjugate
quadratic-like maps are called hybrid (respectively: qc, topological etc.) classes.



49. STRAIGHTENING 217

Theorem 9.2. Any (conventional) quadratic-like map g is hybrid conjugate to
a quadratic polynomial fc. If J(f) is connected then the corresponding polynomial
fc is unique.

This polynomial fc is called the straightening of g.

Corollary 9.3. If g is a quadratic-like map, then:

(i) There are no wandering components of intK(g);
(ii) Repelling periodic points are dense in J(g);
(iii) If all periodic points of g are repelling then K(g) is nowhere dense.

Remark. If J(g) is a Cantor set, then the straightening is not unique. Indeed,
by Corollary 6.34 and the Second λ-Lemma (§17.4), all quadratic polynomials fc,
c ∈ C �M , are qc equivalent. Since their filled Julia sets have zero area, they are
actually hybrid equivalent. Hence all of them are “straightenings” of g. We will see
however that sometimes there is a preferred choice (see §??).

Existence of the straightening will be proven in the next section, while unique-
ness will be postponed until the end of §28.

49.3. Construction of the straightening. The idea is to “mate” g near
K(g) with f0 : z �→ z2 near ∞.

Take some r > 1. Consider two closed disks: the disk Ū ′ endowed with the
map g : Ū → Ū ′ and the disk Ĉ�Dr endowed with the map f0 : Ĉ�Dr → Ĉ�Dr2 .
Let us view them as two hemi-spheres, S2

0 ≡ Ū ′ and S2
∞ ≡ Ĉ �Dr (see Figure ??).

Glue them together by an orientation preserving equivariant qc homeomorphism
B : A → A[r, r2] between the closed fundamental annnuli. Here “equivariance”
means that h respects the boundary dynamical relation:

(49.3) B(gz) = f0(Bz) for z ∈ ∂U.
Such a map B = Bg is called a tubing of g.

Exercise 9.4. Construct a tubing B (using that f is conventional). Do it so
that DilB is bounded in terms of modA and qc dilatation of the quasicircles U , U ′.

In this way we obtain an oriented qc sphere

S2 = S2
0 �B S2

∞ ≡ Ū ′ �B (Ĉ � Dr)

with the atlas of two local charts given by the identical maps φ0 : S2
0 → Ū ′ and

φ∞ : S2
∞ → Ĉ�Dr. Moreover, these hemispheres are quasidiscs in S2. For instance,

in the local chart φ0 the curve γ := ∂S2
∞ becomes φ0(γ) = ∂U which is a quasicirlce

since f is conventional.

Define now a map F : S2 → S2 by letting

F (z) =

{
φ−1
0 ◦ g ◦ φ0(z) for z ∈ φ−1

0 Ū

φ−1
∞ ◦ f0 ◦ φ∞(z) for z ∈ S̄2

∞

(It is certainly quite a puritan way of writing since the maps φ− and φ+ are in fact
identical.) Since B is equivariant (49.3), these two formulas match on γ. Hence F
is a continuous endomorphism of S2. Moreover, it is a double branched covering
of the sphere onto itself (with two simple branched points at “0”≡ φ−1

0 (0) and
“∞”≡ φ−1

∞ (∞)).
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Since F : S2 → S2 is holomorphic in the local charts φ0 and φ∞, it is quasireg-
ular on S2 � γ. Since γ is a quasicircle, it is removable (Corollary 2.68). Hence F
is quasiregular on the whole sphere.

Exercise 9.5. Let us adjust f so that ∂U is smooth. Then the gluing map B
can be chosen so that S2 is a smooth sphere and the map F is smooth.

We will now construct an F -invariant conformal structure μ on S2 (with a
bounded dilatation with respect to the qc structure of the sphere S2). Start in a
neighborhood of ∞: μ|S2

∞ = (φ∞)∗σ. Since σ is f0-invariant, μ|S2
∞ is F -invariant.

Since φ∞ is qc, μ|S2
∞ has a bounded dilatation.

Next, look at this structure in the local chart φ0 : S2
0 → U ′, and by means of

Corollary 4.67 extend it canonically to an invarinat structure on the whole sphere
S2 with the same dilatation. We will keep the extension the same notation μ for
the extension.

Exercise 9.6. Work out details of this canonical extension.

We obtain an F -invariant measurable conformal structure μ with bounded di-
latation on the whole sphere S2. By the Measurable Riemann Mapping Theorem,
there exists a qc map H : (S2, μ) → Ĉ normalized so that H(0) = 0, H(∞) = ∞
and H ◦ φ−1

∞ (z) ∼ z as z → ∞. Then the map f = H ◦ F ◦ H−1 is a quadratic
polynomial (see §26.1.2) with the critical point at the origin and asymptotic to z2

at ∞. Hence f = fc : z �→ z2 + c for some c.

Exercise 9.7. Show that K(f) = H(φ−1
0 K(g)).

The qc map H ◦φ−1
0 conjugates g : U → U ′ to a quadratic-like restriction of f .

Moreover, restricting it to K(g), we see that

(H ◦ φ−1
0 )∗σ = H∗μ = σ,

so that H is a hybrid conjugacy between g and the restriction of f . Thus, f is a
straightening of g.

Remark 9.1. The straightening construction of fc was uniquely determined
by the choice of the tubing B : A → A[r, r2]. In fact, one can do better: in the
case of connected Julia set, the straightening is independent of the choice of tubing;
in the disconnected case, it depends only on the tubing position of the critical value
(see §51).

49.4. Addendum to the straightening construction. Here we will refine
the straightening construction in several ways. In particular, we will extend the
tubing to a bigger annulus, through a series of liftings (similarly to the extension
of the Böttcher function carried in §32.1).

49.4.1. Tubing equipotentials and rays. The tubung B : A → A[r, r2] plays a
role of the Böttcher coordinate for the quadratic-like map g. In particular, we
can use it to define equipotentials and rays for f as pullbacks by B of the round
circles and radial intervals in A[r, r2]. In this way we obtain two foliations in the
fundamental annulus A. There are natural radia/levels assigned to the equipoten-
tials and and external angles assigned to the rays. (For instance, the the boundary
equipotential ∂U has radius r and level t = log r.)

By means of the dynamics, we can now extend these foliations to invariant
(singular) foliations in U ′ � K(g). If K(g) is connected then these foliations are
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in fact non-singular. In the disconnected case, they have simple cross-singularities
at the critical point 0 and its iterated preimages. In this case, the figure-eight
equipotential passing through 0 is called critical. We let Ωg ⊂ U ′ be the topological
annulus bounded by this equipotential and the external boundary ∂U ′. In the
connected case, we let Ωg = U ′ � K(g) (everything is similar to the polynomial
case).

49.4.2. Equivariant extension of the tubing. Similarly to the Böttcher coordi-
nate, the tubing can be equivariantly extended to the domain Ωg (compare §32.1).
It is based on a simple lifting step:

Lemma 9.8. Let us consider a nest of two Riemann surfaces Ω ⊂ Ω′ with
boundary. We assume that Γ′ := ∂Ω′ and Γ := ∂Ω are quasicircles, and that A :=
Ω′�intΩ is a closed annulus bounded by Γ and Γ′ (its “inner” and “outer” boundary
components respectively). Let g : Ω → Ω′ be a holomorphic double covering map
such that g(Γ) = Γ′.

Consider also another map g̃ : Ω̃ → Ω̃′ with the same properties (all corre-

sponding objects for g̃ are marked with “tilde”). Let h : A → Ã be an equivariant
K-qc homeomorphism, i.e., h(gz) = g̃(hz) for z ∈ Γ.

Assume A and Ã do not contain the critical values of g and g̃ (respectively).

The A1 := g−1(A) and Ã1 := g−1(Ã) are annuli attached to A and Ã, and h extends

to an equivariant K-qc homeomorphism H : A ∪A1 → Ã ∪ Ã1.

Proof. Since A does not contain the critical values of g, A1 is an annulus.
Since g(Γ) = Γ′, A1 is attached to A along Γ, so together they form an annulus
A ∪A1.

By the general lifting theory, h lifts to a homeomorphism h1 : A1 → Ã1 in two
ways determined by the choice of value of h1 at one point. But since h : A → Ã
is equivariant, h|Γ is a lift of h|Γ′. Hence the lift h1 can be selected so that it
coincides with h on Γ, and we obtain a single equivariant homeomorphism H :
A ∩A1 → Ã ∪ Ã1.

Since g is holomorphic, h1 is K-qc. Since Γ is a quasicircle, H is K-qc as well
(by Lemma 2.68). �

By iterating the Lifting Construction, we obtain:

Corollary 9.9. Let g : U → U ′ and g̃ : Ũ → Ũ ′ br two quadratic-like maps
with fundamental annuli A and Ã. Let h : A → Ã be a homeomorphism between
fundamental annuli equivariant on the boundary. If K(g) and K(g̃) are connected

then h extends uniquely to an external conjugacy U ′�K(f)→ Ũ ′�K(g̃). Moreover,
if h is K-qc then so is the extension.

Corollary 9.10. Let B : A→ A[r, r2] be a K-qc tubing for g. Then it extends
to an equivariant K-qc map Ωg → Dr2 � DR, where R = 1 in the connected case
and R > 1 in the Cantor case.

This exension will be denoted B and called a “tubing” as well. Its equvariance
means that B(gz) = B(z)2 for z ∈ Ωg ∩ U .

Note that in the Cantor case, we have g(0) ∈ Ωg , so the point B(g(0)) is well
defined. We call it the tubing position of the critical value.
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49.4.3. Böttcher coordinate for the straightening. The map B ≡ φ∞ ◦H−1 in
the above construction is the Böttcher coordinate for f on Ω := H(S2

∞). Indeed,
B|Ω is conformal (since both φ∞ and H transfer the conformal structure μ|S2

∞ to
σ) and B conjugates f to f0 : z �→ z2.

Since B(∂Ω) = Tr, ∂Ω = Er is the equipotential of radius r for f . Thus, we
have conjugated g : U → U ′ to f : Ωc(r) → Ωc(r

2) where Ωc(r) is the subpotential
disk of radius r for fc (see §32.2).

In the Cantor case, Figure49.3 (with the extended tubing) shows that the tubing
position of the critical value for a polynomial-like map g coincides with Böttcher
position of the critical value for its straightening fc:

(49.4) Bg(g(0)) = Bc(c).

49.4.4. Dilatation. Finally, let us dwell on an important issue of a bound on
the dilatation of the qc homeomorphism that straightens g.

Lemma 9.11. Let g : U → U ′ be a quadratic-like map with modA ≥ δ > 0.
Then g is hybrid conjugate to a straightening fc by a K-qc map whose dilatation K
depends only on δ.

Proof. Let us first adjust g according to Lemma 9.1 (keeping the same nota-
tions for the domains U and U ′).

Let us now follow the proof of the Straightening Theorem. Look at the con-
formal structure μ|S2

0 in the local chart φ0, i.e., consider the conformal structure
ν = (φ0)∗(μ|S2

0) on U ′. On U ′ � K(g) , it is obtained by pulling back (by the
conformal g-dynamics) the structure B∗(σ) from the fundamental annuus A. On
K(g) it is equal to the standard structure σ. Hence the dilatation of ν is equal to
the dilatation of the tubing B.

The qc map H ◦φ−1
0 conjugating g : U → U ′ to f : Dr → Dr2 transfers ν to σ.

Hence its dilatation is also equal to Dil(B). But by the latter is bounded in terms
of δ (see Exercise 9.4). �

49.4.5. Standard equipment of q-l maps. Due to the Straightening Theorem, we
can equip q-l maps with the strandard amunition of quadratic polynomials. Notice
first that the α- and β− fixed points are well defined as long as the Julia set J(g) is
connected (the α-fixed point is either non-repelling or the dividing repelling one).
Moreover, as pointed out in §49.4.1, once we selectd a tubing, we obtain the external
foliations of rays and equipotentials in U ′�K(g). Under the straightening conjugacy
they are mapped to the corresponding foliations for the polynomial fc. Since all the
conjugacies agree on the Julia set (see Corollary 9.16 below), the landing properties
of the rays are independent of the particular choice of the tubing. In particular,
the β-fixed point is always the landing point for the 0-ray.

49.5. Concept of renormalization. The primarily motivation for introduc-
ing quadratic-like maps comes from the idea of renormalization, which is a central
idea in contemporary theory of dynamical systems.

A quadratic-like map f : U → U ′ is called renormalizable with period p if there
is a topological disk V � 0 such that all the domains f iV , i = 0, 1, . . . , p − 1, are
contained in U , the map g := (fp : V → fp(V )) is quadratic-like with connected
Julia set (see Figure ??), and a technical “almost disjointness” propery explained
below is satisfied.
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Let V ′
i = f iV , i = 1, . . . , p; then fp−i maps V ′

i univalently onto V ′
p = fpV .

Let φi : Vi → V ′
p stands for this univalent map. Let Vi � V ′

i be the pullback of V
under φi. Then the map gi := (fp : Vi → V ′

i ) is a double covering, and thus, it is a
quadratic-like map (note that gp = g). Moreover, φi conjugates gi to g : V → V ′.
Hence the Julia sets J(fi) and Ki = K(gi) are connected and their α and β-fixed
points are well defined.1

These Julia sets are called little Julia sets (associated with a particular renor-
malization scheme under consideration). Almost disjointness property requires that
the little Julia sets can touch only at their β-fixed points (see Figure ??). This
completes the definition of a renormalizable map.

The quadratic-like map g : V → V ′ is called the pre-renormalization of f . In
fact, all pre-renormalizations define the same quadratic-like germ:

Lemma 9.12. Let f : U → U ′ and f̃ : Ũ → Ũ ′ be two quadratic-like maps
representing the same ql germ. If f is renormalizable with period p, then so is f̃ ,
and the corresponding pre-renormalizations represent the same ql germ. The little
Julia sets Ki are canonically defined.

Thus, we can promote the above pre-renormalization to the renormalization
R = Rp acting on ql germs (considered up to rescaling).

The above discussion applies to quadratic polynomials by considering the cor-
responding quadratic-like germs.

The renormalization is called primitive if the little Julia sets Ki are disjoint
and is called satellite otherwise. In the latter case, a union of little Julia sets that
share a common point a is called a bouquet of little Julia sets (“centered” at a).

Each renormalization comes together with certain combinatorial data. It ac-
counts for the renormalization period p and the “positions” of the little Julia sets
Ki on the big one, K(f). More precisely, let us consider a graph whose vertices
are the little Julia sets Ki and whose edges are defined as follows: Ki is connected
to Kj if these little Julia sets belong to the same component of K(f)� ∪m 
=i,jKm.
It turns out that this graph is a tree. It will be called the Hubbard tree of the
renormalization in question.

We can now define the combinatorics of the renormalization as its Hubbard
tree. In §?? we will show that the renormalizable quadratic maps fc with a given
combinatorics assemble a little Mandelbrot copy M ′ (see Figure ??).

Let p0 < p1 < . . . be the sequence of all renormalization periods of a map f . If
this sequence has length at least n then f is n times renormalizable. In particular,
if it has infinite length then f is infinitely renormalizable. If it haz zero length (no
periods) then f is non-renormalizable.

Lemma 9.13. If (pn) is the sequence of all renormalization periods of a map f ,
then pn+1 is a multiple of pn, the map fn := Rpn

f is renormalizable with relative
period qn = pn+1/pn, and Rqnfn = fn+1.

We will refer to Rp0
f as the first renormalization of f , and we will usually

reserve notation Rf for this one. Then Rpn−1
f = Rnf is the n-fold renormalization

of f .

1As long as it does not cause a confusion, we will skip “filled” when referring to the Ki.
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49.6. Higher degree case. A polynomial-like map of degree d is a branched
covering f : U → U ′ of degree d between two nested topological discs U � U ′. The
basic theory of quadratic-like maps developed above extends to the higer degree
case in the straigtfoward way.

50. External map

Before passing to the uniquenss part of the Straightening Theorem, let us dwell
on an important relation between quadratic-like and circle maps.

50.0.1. Connected case. To any quadratic-like map f : U → U ′ one can nat-
urally associate an expanding circle map g of class E which captures dynamics
outside the Julia set. For this reason g is called the external map of f .

The construction is very simple if the Julia set J(f) is connected. In this case
the basin of infinity Df (∞) = C�K(f) is simply connected and can be conformally
mapped onto the complement of the unit disk:

R : C�K(f)→ C� D̄.

Let Ω = R(V �K(f)), Ω′ = R(V ′ �K(f)). These are two conformal annuli with
smooth boundary. Moreover, the have a common inner boundary, the unit circle T,
while the outer boundary of Ω is contained in Ω′. Conjugating f by R we obtain a
holomorphic double covering

g : Ω→ Ω′, g(z) = R ◦ f ◦R−1(z) for z ∈ Ω.

By Lemma 4.91, g can be extended to an expanding circle map of class E .
In fact, this map is not uniquely defined since the Riemann map R is defined

up to post-composition with rotation z �→ e2πiθz, 0 ≤ θ < 2π. A natural way to
normalize g is to put its fixed point β to 1 ∈ T.

Note also that if f is replaced by an affinely conjugate map A−1 ◦ f ◦A, where
A : z �→ λz, λ ∈ C∗, then the Riemann map R is replaced by R◦A, and the external
map g remains the same. Thus, to any quadratic-like map f (with connected Julia
set) prescribed up to an affine conjugacy corresponds an expanding circle map g
well-defined up to rotation conjugacy.

50.0.2. General case. In the case of disconnected Julia set the construction is
more subtle.

Take a fundamental annulus A = U ′ � U with real analytic boundary curves
E = ∂U ′ and I = ∂U . Then f : I → E is a real analytic double covering.

Let μ = modA. Let us consider an abstract double covering ξ1 : A1 → A of
an annulus A1 of modulus μ/2 over A. Let I1 and E1 be the “inner” and “outer”
boundary of A1, i.e., ξ1 maps I1 onto I and E1 onto E. Then there is a real
analytic diffeomorphism θ1 : E1 → I such that ξ1 = f ◦ θ1. This allows us to stick
the annulus A1 to the domain C�U bounded by I. We obtain a Riemann surface
T1 = (C � U) ∪θ1 A1. Moreover, the maps f on A and ξ1 on A1 match to form an
analytic double covering f1 : A1 → A.

This map f1 restricts to a real analytic double covering of the inner boundary
of A1 onto its outer boundary. This allows us to repeat this procedure: we can
attach to the inner boundary of T1 an annulus A2 of modulus 1

4μ, and extend f1 to
the new annulus T2. Proceeding in this way, we will construct a Riemann surface

(50.1) T ≡ TA(f) = lim Tn = (C� U) ∪θ1 A1 ∪θ2 A2 . . .
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and an analytic double covering F : ∪n≥1An → ∪n≥0An extending f .
The inner end of T can be reprsented by a puncture or by an ideal circle. But

in the former case, after filling that pucture we would obtain a superattracting fixed
point α (since the map F is a double covering near α). This would contradict to
the property that the trajectories of F are repelled from the inner end of T .

Thus, the inner end of T is not a puncture but a circle. Hence T can be
uniformized by C�D (with the inner ideal boundary uniformized by the unit circle
T). Now by the reflection principle, this conformal representation of F can be
extended to an analytic expanding endomorphism g ≡ gA : T→ T.

For a given choice of the fundamental annulus A, the map gA : V → V ′ (which
comes together with the domains (V, V ′)) is well-defined up to rotation. Indeed,
for two such maps gA and g̃A, by construction there is a conformal isomorphism
h : C � D → C � D conjugating them on an outer neighborhood of the circle.
Reflecting h to the unit disk, we conclude that h is a rotation conjugating gA and
g′A near the circle.

Exercise 9.14. Show that in the connected case this construction leads to the
same result as the construction of §50.

51. Uniqueness of the straightening

51.0.3. Connected case. Let us first show that an “external automorphisms” of
a quadratic-like map admits a continuous extension to the Julia set by the identity
(compare with Lemma 4.93).

Lemma 9.15. Let f : U → U ′ be a quadratic-like map with connected Julia set.
Let W ⊂ U and W ′ ⊂ U be two (open) annuli whose inner boundary is J(f). Let
h : W → W ′ be an automorphism of f . Then h admits a continuous extension to
a map W ∪ J(f)→W ′ ∪ J(f) identical on the Julia set.

Proof. Consider the Riemann mapping φ : C�K(f)→ C�D̄ and the external
circle map g : V → V ′, g|V � D̄ = φ ◦ f ◦ φ−1. Transfer the annuli W and W ′ to
the g-plane. We obtain two annuli Ω = φ(W ) and Ω′ = φ(W ′) in V � D̄ attached
to the unit circle T. Of course, the homeomorphism k : Ω → Ω′, k = φ ◦ h ◦ φ−1,
commutes with g.

By Lemma 4.94, k moves points near T bounded hyperbolic distance:

ρC�D̄(k(z), z) ≤ R.

Since the Riemann mapping φ : C � D̄ → C �K(f) is a hyperbolic isometry, the
same is true for h:

ρC�K(f)(h(z), z) ≤ R for z ∈W near J(f).

By Proposition 1.78, the Euclidean distance |z − h(z)| goes to 0 as z → J(f). It
follows that the extension of h by the identity to the Julia set is continuous. �

Corollary 9.16. Let f and f̃ be two quadratic-like maps, and let h and h′ be
two homeomorphisms conjugating f to f̃ in some neighborhoods of the filled Julia
sets. Then h = h′ on J(f).

Problem 9.17. Assume that quadratic polynomials f and f̃ are conjugate on
the Julia sets only. Is the conjugacy unique?
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Let us now put together the above results:

Theorem 9.18. Let us consider two quadratic-like maps f : U → U ′ and
f̃ : Ũ → Ũ ′ with connected Julia sets. Assume that they are topologically conjugate
near their Julia sets by a homeomorphism ψ : V → Ṽ . Assume also that we are
given an equivariant homeomorphism H : A→ Ã between the (closed) fundamental

annuli of f and f̃ .
Then there exists a unique homeomorphism h : U ′ → Ũ ′ conjugating f to f̃ ,

coinciding with ψ on the Julia set J(f), and coinciding with H on A.
If H is qc, then h|U �K(f) is also qc with the same dilatation. If both H and

ψ are qc, then h is qc, and

Dil(h) = max(DilH, Dil(ψ|K(f)).

In particular, if ψ is a hybrid equivalence, then Dil(h) = Dil(H).

Proof. By the Lifting Construction of Corollary 9.9, H admits a unique equi-
variant extension to a homeomorphism h : U �K(f)→ Ũ �K(f̃). This extension
continuously matches with ψ on the filled Julia set. Indeed, ψ−1 ◦h commutes with
f on some external neighborhood of K(f). By Corollay 9.15, this map continuously
extends to the filled Julia set as the identity. Hence h continuously extends to the
filled Julia set as ψ.

If H is qc then h|U �K(f) is qc with the same dilatation (Corollary 9.9). All
the rest follows from Bers’ Lemma. �

Of course, we can always construct an equivariant qc map H between the
fundamental annuli. Hence if two quadratic-like maps are topologically equivalent,
then the conjugacy can be selected quasi-conformal outside the filled Julia set.
If they are hybrid equivalent, then the dilatation of the conjugacy is completely
controlled by the dilatation of H, which is in turn controlled by the geometry of
the fundamental annuli (see Lemma 9.11). In the polynomial case we can do even
better:

Corollary 9.19. Consider two quadratic polynomials f : z �→ z2 + c and
f̃ : z �→ z2 + c̃ with connected Julia sets. If they are topologically conjugate near
their filled Julia sets by a map h0, then there exists a unique global conjugacy
h : C→ C that coincides with h0 on K(f) and is conformal on the basin of ∞. If
h0 is qc then so is h, and Dilh = Dil(h0|K(f)). If h0 is hybrid then h = id and

f = f̃ .

Proof. By Theorem 5.13, the Riemann-Böttcher map Bf : Df (∞) → C � D̄

conjugates f to z �→ z2, and similarly for f̃ . Hence the composition

(51.1) H = B−1

f̃
◦Bf : Df (∞)→ Df̃ (∞)

conformally conjugates f to f̃ on their basins of ∞. By the previous theorem, this
conjugacy matches with the topological conjugacy on the filled Julia set giving us
a desired global conjugacy h.

Moreover, If f and f̃ are hybrid equivalent, then Dil(h) = 0 a.e. on C. By
Weyl’s Lemma, h is conformal and hence affine. As h(0) = 0 and h(z) ∼ z near ∞,
we conclude that h = id.
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The uniqueness of h follows from the fact that id is the only conformal auto-
morphism C � D̄ → C � D̄ commuting with z �→ z2 (and hence (51.1) is the only

conformal isomorphism Df (∞)→ Df̃ (∞) conjugating f to f̃). �

The last statement of the above Corollary gives the uniqueness part of the
Straightening Theorem in the connected case.

51.0.4. Disconnected case.

Proposition 9.20. For a q-l map g with disconnected Julia set, the tubing
position of the critical value, Bg(g(0)), determines the straightening fc : z �→ z2+c.

Proof. By (49.4), the tubing position of the critical value is equal to the
Böttcher position Bc(c) of the critical value for fc. But by Theorem 6.10, the
latter is equal to the Riemann position ΦM (c) of the parameter c. (Recall that
ΦM : C�M → C�D̄ is the Riemann mapping on the complement of the Mandelbrot
set.) As ΦM (c) determines c, the conclusion follows. �

51.1. Mating of fc with g ∈ E. We have associated to any quadratic-like
map f with connected Julia set its straightening fc : z �→ z2+c and its external map
g : T → T. Recall that quadratic-like maps are considered up to affine conjugacy,
while expanding circle maps are considered up to rotation. These maps can be
normalized so that

f(z) = c+ z2 + h.o.t.

near the origin, while g has his fixed point at 1. Now we will reverse the above
construction constructing a mating between fc and g:

Proposition 9.21. Given a parameter c ∈ M and an expanding circle map
g : V → V ′, there exists a unique quadratic-like map f (up to affine conjugacy)
such that fc and g are the straightening and the external map of f respectively.

Proof. The proof is similar to the proof of the Straigtening Theorem, so we
will just sketch it.

Existence. Let us consider a quadratic-like restriction fc : U → U ′ of our qua-
dratic polynomial (e.g., we can select U as a disk bounded by by some equipotential
of fc). Take some equivariant diffeomorphism h0 : U ′ � U → V ′ � V and extend it
by Lemma ?? to an equivariant diffeomorphism h : U ′�K(f)→ V ′�D̄. Now glue

two hemi-spheres S2
+ := U ′ and S2

− := Ĉ � D̄ by means of h to obtain a qc sphere
S2. Define a map

F : U �h (V � D̄)→ U ′ �h (V ′ � D̄)

as fc on U ⊂ S2
+ and as g on V � D̄ ⊂ S2

−. It is a well defined quasiregular
double branched covering. Moreover, it preserves the conformal structure μ which
is standard on K(f) ⊂ S2

+ and on S2
−. My means of the Measurable Riemann

Mapping Thorem, F can be turned into the desired quadratic-like map f .

Uniqueness. Asssume that two quadratic-like maps f and f̃ have the same
straightenings and the same normalized external maps. Then they are hybrid con-
jugte by a qc map h : U → U ′ near their filled Julia sets, and are conformally
conjugate by a map φ : C � K(f) → C � K(f̃). By Theorem 9.18, these two
conjugacies match on the Julia set and glue together into a global conformal (and
hence affine) map C→ C. �

Exercise 9.22. Supply the missing details in the above proof.
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Exercise 9.23. A quadratic-like map is a quadratic polynomial if and only if
its external map is z �→ z2.

52. Weak q-l maps and Epstein class

52.1. Weak quadratic-like maps. Let us now introduce a slightly general-
ized notion of quadratic-like map.

Definition 9.24. A holomorphic double branched covering f : U → U ′ be-
tween two nested conformal disks U ⊂ U ′ is called a weak quadratic-like map.

The only difference compared with standard q-l maps is that U may not be
compactly contained in U ′ (so there may be no space between the domain U and
the range U ′). Of course, such a map also has a unique critical point which will
be placed at the origin, unless otherwise is explicitly assumed. The filled Julia
set K(f) ⊂ U is defined in the same way as in the standard situation, as the set
of points that never escape from U . It is obviously completely invariant, so the
map f : K(f)→ K(f) is two-to-one: every point z ∈ K(f) except the crtical value
c = f(0) has two preimages in K(f). However, K(f) may be non-compact (and
even non-closed). In fact, this is essentially the only difference between the two
settings:

Proposition 9.25. Let f : U → U ′ be a weak q-l map whose Julia set K(f) is
a compact continuum. Then f admits a q-l restriction V → V ′ with the same Julia
set. Moreover, if mod(U ′ �K(f)) ≥ ν > 0 then mod(V ′ � V ) ≥ μ(ν) > 0.

Proof. Since K(f) is a compact continuum, we can uniformize its compement
by the Riemann map φ : C�D̄→ C�K(f), and then construct the external circle
map g : (Ω,T)→ (Ω′,T) exactly as in the standard situation (see §50). Here Ω′ is
the T-symmetric annulus obtained by symmetrization of φ−1(U ′ �K(f)).

By the Definitive Schwarz Lemma (see Corollary 1.101 and Exercise 1.102), g
is strictly expanding in the hyperbolic metric of Ω′. Let W ′ � Ω′ be the hyperbolic
1-neighborhood of T. Since W ′ � Ω′, g|W′ is strongly expanding. Since the circle
T is g-invariant, the full preimage W := g−1(W ′) is contained in a ρ-neighborhood
of T with ρ < 1. Hence W �W ′ and g :W →W ′ is a double covering.

Let now V = φ(W ) ∪K(f) and V ′ = φ(W ′) ∪K(f). Then f : V → V ′ is the
desired q-l restriction of f .

Let us now quantify this construction. Without loss of generality, we can
assume that μ ≤ 1 and μ ≤ mod(U ′�K(f) ≤ 2μ (by restricting f to an appropriate
preimage f−n(U)). Then modΩ′ = 2mod(U ′ �K(f)) ∈ [2μ, 4μ] and

modΩ =
1

2
modΩ′ ∈ [μ, 2μ].

These conditions determine a compat family of nested pairs of annuli Ω′ ⊃ Ω ⊃ T

(in the Carathéodory topology, see §??). Since the hyperbolic metrics depend
continuously on the annuli, the embeddings Ω...Ω′ are uniformly contracting. This
implies that the map g|W ′ is uniformly expanding, and all the conclusions follow.

�



CHAPTER 10

Quadratic-like families

42. Fully equipped families

42.1. Definitions. Let Λ ⊂ C be a domain in the complex plane. A quadratic-
like family g over Λ is a family of quadratic-like maps gλ : Uλ → U ′

λ depending on
λ ∈ Λ such that:

• The tube U = {(λ, z) : λ ∈ Λ, z ∈ Uλ} is a domain in C2;
• gλ(z) is holomorphic in two variables on U.

As usual, we assume that the critical point of each fλ is located at the origin 0,
and that Uλ and U ′

λ are 0-symmetric quasidisks.
We will now make several additional assumptions. The first of them is minor.

We say that g extends beyond U if there exists a domain Λ′ � Λ and a quadratic-like
family Gλ : Vλ → V ′

λ over Λ′ such that for λ ∈ Λ, gλ is an adjustment (see §49.1)
of Gλ.

We call a quadratic-like family g : Uλ → U ′
λ over Λ proper if

• g admits an extension beyond U;
• For λ ∈ ∂Λ, gλ(0) ∈ ∂U ′

λ.

Obviously gλ(0) �= 0 for λ ∈ ∂Λ, so that we have a well defined winding number of
the curve λ �→ gλ(0), λ ∈ ∂Λ, around 0. We call it the winding number of g and
denote w(g). A proper family g is called unfolded if w(g) = 1. By the Argument
Principle, any proper unfolded quadratic-like family has a unique parameter value
◦ such that f◦ has a superattracting fixed point, i.e., f◦(0) = 0. We will select ◦ as
the base point in Λ.

Finally, we want the fundamental annulus Aλ = Ū ′
λ � Uλ of gλ to move holo-

morphically with λ. So, assume that there is an equivariant holomorphic motion
hλ : A◦ → Aλ, i.e., such that

hλ(g◦z) = gλ(hλ(z)) for z ∈ ∂U◦.

Moreover, we will make a technical
Assumption H: The motion of any compact subset Q ⊂ Ū ′

◦ � Ū◦ extends to a
slightly bigger disk ΛQ � Λ.

Remark 10.1. Note that the motion of ∂U◦ cannot be extended beyond Λ
since for λ ∈ ∂Λ the boundary curve ∂Uλ pinches at the critical point 0 (becoming
a figure-eight curve).

Denote this holomorphic motion by h. We say that the quadratic-like family g
is equipped with the holomorphic motion h. Sometimes we will use notation (g,h)
for an equipped quadratic-like family.

For equipped families, there is a natural choice of tubing (see §49.3) holomor-
phically depending on λ. Namely, select any tubing B◦ : A◦ → A[r, r2] for the base

227
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point, and then let

(42.1) Bλ = B◦ ◦ h−1
λ .

These are tubings since the holomorphic motion hλ is equivariant.
The Mandelbrot set of the quadratic-like family is defined as

M(g) = {λ ∈ Λ : J(gλ) is connected}.
If g is proper, then M(g) is compactly contained in Λ.

Let us finish with a few terminological and notational remarks. Let π : C2 → C

stand for the projection onto the first coordinate. We call a set U ⊂ C2 a tube over
Λ = π(U) ⊂ C if it is a fiber bundle over Λ whose fibers Uλ = U∩ π−1λ are Jordan
disks (either open or closed). For X ⊂ Λ, we let U|X = U ∩ π−1X.

42.2. Restricted quadratic family. In this section we will show that the
quadratic family {fc}c∈C can be naturally restricted to a proper unfolded equipped
quadratic-like family.

Fix some r > 1. Restrict the parameter plane C to the subpotential disk D ≡
Dr2 bounded by the parameter equipotential of radius r2 (see §42.4). According to
formula (29.1), this parameter domain is specified by the property that

fc(0) ∈ Ωc(r
2) ≡ Ω′

c.

(Recall that Ωc(ρ) stands for the dynamical subpotential disk of radius ρ, see §32.2).
Hence for c ∈ D, fc restricts to a quadratic-like map fc : Ωc → Ω′

c, where Ωc ≡
Ωc(r). These quadratic-like maps obviously form a quadratic-like family over D,
which we will call a restricted quadratic family.

The restricted quadratic family is proper. The first property of the definition is
obvious. The main property, fc(0) ∈ ∂Ω′

c for c ∈ ∂D, follows from formula (29.1).
The winding number of this family is equal to 1. Indeed, when the parameter c
runs once along the boundary ∂D, the critical value c = fc(0) runs once around
0 ∈ D.

The restricted quadratic family is equipped with the holomorphic motion of
the fundamental annulus given by the Böttcher maps. Select 0 as the base point in
D and let

(42.2) B−1
c : A[r, r2]→ Ω̄′

c � Ωc

(note that A[r, r2] = Ω̄′
0 �Ω0). Since the Böttcher function B−1

c (z) is holomorphic
it two variables (Step 1 in §29.3), {B−1

c }c∈D is a biholomorphic motion (not only
in c but also in z). We call it the Böttcher motion.

Finally, note that for any slightly smaller annulus A[ρ, r2], ρ > r, the Böttcher
motion (42.2) extends to a slightly bigger subpotentia domain, Dρ2 � D.

Thus, the restricted quadratic family satisfies all the properties required for an
equipped proper unfolded quadratic-like family.

42.3. Straightening of quadratic-like families. The Mandelbrot setM(g)
of any quadratic-like family g can be canonically mapped to the genuine Mandelbrot
set M . Namely, by the Straightening Theorem, for any λ ∈M(g) there is a unique
quadratic polynomial fc(λ) : z �→ z2 + c(λ), c(λ) ∈ M , which is hybrid equivalent
to gλ. The map χ : λ �→ c(λ) is called the straightening of M(g).

We know that the straightening is not canonically defined outsed the Mandel-
brot set but rather depends on the choice of the tubing. But for equipped families



42. FULLY EQUIPPED FAMILIES 229

there is a natural choice given by (42.1). With this choice, the straightening χ
admits an extension to the whole parameter domain Λ, which well be still denoted
by χ.

Recall that Dr stands for the parameter subpotential disk of radius r (in the
quadratic family). We can now formulate a fundamental result of the theory of
quadratic-like families:

Theorem 10.1. Let g be a proper unfolded equipped quadratic-like family over
Λ. Endow it with the tubing given by (42.1). Then the corresponding straightening
χ is a homeomorphism from Λ onto Dr2 mapping M(g) onto M .

The proof of this theorem will be split into several pieces each of which is
important on its own right.

42.4. The critical value moves transversally to h. We say that a holo-
morphic curve Γ ⊂ C2 is a global transversal to a holomorphic motion h if it
transversally intersects each leaf of h at a single point.

Lemma 10.2. Under the assumptions of Theorem 10.1, the graph of the function
λ �→ gλ(0), λ ∈ Λ, is a global transversal to the holomorphic motion h on U′ �U.

We will also express it by saying that the critical value moves transversally to
h. The moral of this lemma is that in the complex setting the transversality can be
achieved for purely topological reasons.

Proof. Take a point z ∈ A◦ = Ū ′
◦
� U◦ and consider its orbit

ψz : λ �→ hλ(z)

under the motion h. By Assumption H of §42.1, for z ∈ Ū ′
◦
� Ū◦ the function ψz

admits a holomorphic extension to a slightly bigger parameter domain Λz � Λ. For
z ∈ ∂U◦, equivariance equation

fλ(ψz(λ)) = ψf◦z(λ)

implies that ψz admits an extension to the domain Λf◦z � Λ (note that f◦z ∈ ∂U ′
◦
)

as a multiply valued holomorphic function. Such a function is continuous up to the
boundary of Λ.

Thus, for any z ∈ A◦, the function ψz admits a continuous extension to Λ̄.
Moreover,

(42.3) ψz(λ) ∈ U ′
λ for any z ∈ U ′

◦
� U◦ and λ ∈ Λ̄.

For z ∈ U◦ � Ū◦, it follows immediately from Assumption H. To see it for z ∈ ∂U◦,
let us take any intermedite Jordan disk, U◦ �W◦ � U ′

◦
, and let Wλ be the Jordan

disk bounded by hλ(∂W◦), λ ∈ Λ̄. Then we have:

• Wλ � Uλ for any λ ∈ Λ̄ (by Assumption H);

• ψz(λ) ∈ Vλ for any λ ∈ Λ, and by continuity, ψz(λ) ∈ V̄λ for λ ∈ ∂Λ,
and (42.3) follows.

In what follows we fix z ∈ U ′
◦
� U◦ and let ψ ≡ ψz. Since the tube V ≡ U′| ∂Λ

is homeomorphic to the solid torus ∂Λ× D over ∂Λ, the curve λ �→ ψ(λ), λ ∈ ∂Λ,
is homotopic to the zero curve λ �→ 0 in V, i.e., these two curves can be joined by
a continuous family of curves ψt : ∂Λ→ V, 0 ≤ t ≤ 1.

Consider now the curve φ : λ �→ gλ(0), λ ∈ ∂Λ. Since g is proper, φ(λ) ∈ ∂Vλ.
Hence φ(λ) − ψt(λ) �= 0 for any t ∈ [0, 1], λ ∈ ∂Λ. It follows that the curves
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λ �→ φ(λ)− ψ(λ) and λ �→ φ(λ), λ ∈ ∂Λ, have the same winding number around 0.
But the latter number is equal to 1, since g is unfolded. Hence the former number is
equal to 1 as well. By the classical Argument Principle, the graphs of the functions
φ and ψ have a single transverse intersection, as asserted. �

42.5. External uniformization. In this section we will construct a dynam-
ical (locally quasiconformal) uniformization of Λ � M(g) which generalizes the
uniformization of C�M constructed in §29.1. This construction will illustrate how
to relate the parameter and dynamical planes by means of holomorphic moions
(“phase-parameter relation”).

Let us consider a set P 0 = {λ ∈ Λ : gλ(0) ∈ U ′
λ � Uλ} (i.e., the set of

parameters for which the critical point escapes under the first iterate through the
“half-closed” fundamental annulus A0

λ := U ′
λ �Uλ). Since g is proper, all points in

Λ sufficiently close to ∂Λ belong to P 0. We will show that P is an annulus naturally
homeomorphic to the base fundamental annulus A0

◦
.

To this end consider the graph of the function φ : λ �→ gλ(0),

Γ = {(λ, z) ∈ C2 : λ ∈ Λ, z = gλ(0)}.
By Lemma 10.2, this graph is a global transversal to the holomorphic motion h of
A0

◦. Hence there is a well defined holonomy γ0 : A0
◦
→ Γ along the leaves of g ,

and it maps A0
◦
homeomorphically onto a topological annulus B0 ⊂ Γ. Obviously,

π(B0) = P 0. Altogether, we have a homeomorphism π ◦ γ0 from A0
◦
onto P 0. It

follows, in particular that P 0 is a topological annulus, whose inner boundary is a
Jordan curve π ◦ γ0(∂U◦) in Λ and the outer boundary is ∂Λ.

Let us consider the domain Λ1 = Λ� P 0. The restriction of our quadratic-like
family to this parameter domain is not proper any more. To restore this property,
we have to restrict the dynamical domains as well. Let U1

λ = g−1
λ Uλ. For any

λ ∈ Λ1, gλ(0) ∈ Uλ; hence U1
λ is a topological disk and gλ : U1

λ → Uλ is a
quadratic-like map. This gives us a quadratic-like family over Λ1.

It is proper since by construction gλ(0) ∈ Uλ for λ ∈ ∂Λ1. It has winding
number one since the function φ : λ �→ gλ(0) does not have zeros in the annulus P̄ 0.
It follows that the boundary curves φ : ∂Λ→ C∗ and φ : ∂Λ′ → C∗ are homotopic
(after parametrizing ∂Λ and ∂Λ1 by the standard circle) and hence they have the
same winding number around 0.

Let us now equip this family with a holomorphic motion h1λ : A1
◦
→ A1

λ of the
fundamental annulus A1

λ := Uλ�U
1
λ . This motion is obtained by lifting the motion

hλ by means of the double coverings gλ : A1
λ → A0

λ (see Lemma 6.28):

A1
◦
−→
h1
λ

A1
λ

g◦ ↓ ↓ gλ
A◦ −→

hλ

Aλ

By the First λ-lemma, the original holomorphic motion h mathches with h′

on the common boundary ∂iA0
λ = ∂oA1

λ, so that together they provide a single
holomorphic motion of the union A0

λ ∪A1
λ over Λ1.

Let P 1 = {λ ∈ Λ1 : gλ(0) ∈ A1
λ}. Applying the above result to the re-

stricted quadratic-like family, we obtain a homeomorphism π ◦ γ1 : A1
◦
→ P 1,

where γ1 : A1
◦
→ Γ is the holonomy along h1. Since γ1 matches with γ0 on the
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common boundary of the annuli, they give us a homeomorphism of the union of
the dynamical annuli onto the union of parameter annuli, A0 ∪A1 → P 0 ∪ P 1.

Proceeding in the same way, we construct: • A nest of parameter annuli Pn

attached one to the next and the corresponding parameter domains Λn = Λn−1 �

∪Pn−1 (where Λ0 ≡ Λ). Moreover, ∪Pn = Λ�M(g).

• A sequence of proper unfolded quadratic-like families

gn,λ ≡ gλ : Un
λ → Un−1

λ over Λn,

where Un
λ = g−n

λ Uλ (thus U0
λ ≡ Uλ, U

−1
λ ≡ U ′

λ).

• A sequence of holomorphic motions hn,λ of the fundamental annulus An
λ :=

Un−1
λ �Un

λ over Λn that equip gn,λ; moreover hn+1,λ is obtained by lifting hn,λ by

means of the coverings gλ : An
λ → An−1

λ . These holomorphic motions match on the
common boundaries of the fundamental annuli.

Let γn : An
◦
→ Γ be the holonomy along hn. Since the holomorphic motions

match on the common boundaries, these holonomies also match, and determine a
continuous injection

γ : U ′
◦
�K(f◦)→ Γ.

Composing it with the projection π, we obtain a homeomorphism

(42.4) π ◦ γ : U ′
◦
�K(f◦)→ Λ�M(g)

between the dynamical and parameter annuli. Note that the inverse map is equal
to γ−1 ◦ φ. This is the phase-parameter relation we alluded earlier.

Composing the above homeomorphism with the tubing (42.1), we obtain a
“uniformization” ΦM(g) ≡ Φg of Λ�M(g) by a round annulus:

(42.5) Φg = B◦ ◦ (π ◦γ)−1 = Bλ ◦φ : Λ�M(g)→ A(1, r2), Φg(λ) = Bλ(gλ(0)).

We see that this uniformization is given by the tubing position of the critical value
of gλ (see §49.2).

Corollary 10.3. The Mandelbrot set M(g) is connected and full.

The above uniformization of Λ �M(g) is generally not conformal. However,
in the case of a restricted quadratic family (see §42.2), it is a restriction of the
Riemann map ΦM : C �M → C � D̄. Indeed, in this case, the tubing Bλ turns
into the Böttcher maps Bc (see (42.2) ), the critical value gλ(0) turns into c, and
formula (42.5) turns into formula (29.1) for the Riemann map ΦM .

42.6. External straightening. We are now ready to prove that the straight-
ening is a homeomorphism outside the Mandelbrot sets.

Lemma 10.4. Under the assumptions of Theorem 10.1, the straightening

χ : Λ�M(g)→ Dr2 �M

is a homeomorphism.

Proof. Let us consider the uniformizations Φg : Λ �M(g) → A(1, r2) and
ΦM : Dr2 �M → A(1, r2) constructed above. Then

(42.6) χ = ΦM
−1 ◦ Φg.
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Indeed, let λ ∈ Λ�M(g) and c = χ(λ) ∈ Dr2 �M . Putting together (29.1), (42.5)
and (49.4), we obtain:

Φg(λ) = Bλ(gλ(0)) = Bc(c) = ΦM (c),

which is exactly (42.6). Since Φg and ΦM are both homeomorphisms, χ is a home-
omorphism as well. �

42.7. Quasiconformality. Given a holomorphic motion h over Λ, let

Dil(h) = sup
λ∈Λ

Dil(hλ)

(which can be infinite). We say that the holomorphic motion h is K-qc if

Dil(h) ≤ K.

Lemma 10.5. Under the assumptions of Theorem 10.1, assume that the tubing
B◦ : A◦ → A[r, r2] and the holomorphic motion h are K-qc. Then the uniformiza-
tion Φg : Λ�M(g)→ A(1, r2) (42.5) is K-qc as well.

In fact, we can make the dilatation depend only on modA◦ and mod(Λ� Λ′),
after an appropriate adjustment of the family g:

Lemma 10.6. Let us consider a quadratic-like family g over Λ satisfying the
assumptions of Theorem 10.1. This family can be adjusted to a family g̃ over Λ̃ in
such a way that the dilatation of the straightening χ̃ : Λ̃ �M(g̃) → D �M will
depend only on modA◦ and mod(Λ� Λ′).

42.8. Miracle of continuity. We will now show that the straightening is
continuous on the boundary of M(g):

Lemma 10.7. Under the assumptions of Theorem 10.1, the straightening χ is
continuous at any point λ ∈ ∂M(g) and moreover χ(λ) ∈ ∂M .

Proof. First we will show that χ| ∂M(g) is a continuous extension of χ|Λ �

M(g). Let λn ∈ Λ �M(g) be a sequence of parameter values converging to some
λ ∈ ∂M . Let cn = χ(λn) and c = χ(λ) ∈ M . We shoud show that cn → c. Let
gλ : U → U ′, fc : Ω→ Ω′.

By Lemma 10.4, the map χ : Λ� intM(g) → D � intM is proper, and hence
any limit point d of {cn} ⊂ D � M belongs to ∂M . We assert that gλ : U →
U ′ is qc conjugate to fd : V → V ′. Indeed, the gλn

: Un → U ′
n are hybrid

equivalent to the fcn : Ωn → Ω′
n by means of some qc maps ψn : U ′

n → Ω′
n.

By the straightening construction (see the proof of Lemma 9.11), the dilatation
of ψn is equal to the dilatation of the tubing Bλn

= B◦ ◦ h−1
λ , which is locally

bounded by the λ-lemma. By Theorem 2.31, the sequence ψn is precompact in
the topology of uniform convergence on compact subsets of U ′. Take a limit map
ψ : U ′ → Ω′. Since gλn

→ gλ uniformly on compact subsets of U and fcn → fd
(along a subsequence) uniformly on compact subsets of Ω, the map ψ conjugates
gλ to fd, as was asserted.

But gλ is also hybrid equivalent to fc. Thus fc and fd are qc conjugate in some
neighborhoods of their filled Julia sets. By Corollary 9.19, they are qc conjugate
on the whole complex plane. Since d ∈ ∂M , Proposition 6.41 implies the desired:
c = d (and, in particular, c ∈ ∂M).
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The above argument implies that χ continuously maps Λ� intM(g) into D �

intM . We still need to show that χ is continuous at any point λ ∈ ∂M(g) even if
it is approached from the interior of M(g). The argument is similar to the above
except one detail. So, let now {λn} be any sequence in Λ converging to λ. Let cn, c
and d be as above. Then the above argument shows that fc is qc equivalent to fd.
But now we already know that c ∈ ∂M (though this time we do not know this for
d). Applying Proposition 6.41 once again, we conclude that c = d. �

“Only by miracle can one ensure the continuity of straightening in degree 2”,
said Adrien Douady As we have seen, a reason behind this miracle is quasiconformal
rigidity of the quadratic maps fc with c ∈ ∂M (Proposition 6.41). Another reason
is the λ-lemma. All these reasons are valid only for one-parameter families. There
are no miracles in the polynomial families with more parameters.

42.9. Hyperbolic components. As in the case of the genuine Mandelbrote
set, a component H of intM(g) is called hyperbolic if it contains a hyperbolic
parameter value.

Exercise 10.8. Show that:

(i) All parameter values in a hyperbolic component of M(g) are hyperbolic;
(ii) Neutral parameter values belong to ∂M(g).

Lemma 10.9. If P is a hyperbolic component of intM(g) then there exists a
hyperbolic component Q of intM such that χ : P → Q is a proper holomorphic
map.

Proof. Obviously the straightening of a hyperbolic map is hyperbolic. Hence
χ(P ) belongs to some hyperbolic component Q of intM . Moreover, since the hy-
brid conjugacy is conformal on the interior of the filled Julia set, it preserves the
multiplies of attracting cycles. Hence

μP (λ) = μQ(c) for c = χ(λ),

where μP and μQ are the multiplier functions on the domains P and Q respectively.
By the Implicit Function Theorem, both these functions are holomorphic. More-
over, by the Multiplier Theorem, μQ is a conformal isomorphism onto D. Hence

χ = μ−1
Q ◦ μP is holomorphic as well.

By Lemma 10.7, the map χ : P → Q is continuous up to the boundary and
χ(∂P ) ⊂ ∂Q. Hence it is proper. �

42.10. Queer components. As in the quadratic case, a non-hyperbolic com-
ponent Q of intM(g) is called queer. In this section we will prove, using the dy-
namical uniformization of queer components (§31.6.4), that the straightening χ is
holomorphic on Q. Let us begin with an extention of Corollary 6.25 to quadratic-
like families:

Lemma 10.10. Let Q be a queer component of M(g). Take a base point ◦ ∈ Q.
Then there is a holomorphic motion Hλ : U ′

◦
→ U ′

λ conjugating g◦ to gλ.

Proof. Since M(g) is equipped, there is an equivariant holomorphic motion
hλ : A◦ → Aλ. Let An

λ = g−n
λ Aλ. Since the critical point is non-escaping under

the iterates of gλ, the An
λ are annuli and the maps gnλ : An

λ → Aλ are double
coverings. By Lemma 6.28, h can be consequtively lifted to holomorphic motions
hn,λ : An

∗ → An
λ. By the First λ-lemma, they automatically match on the common
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boundaries of the annuli, so that we obtain an equivariant holomorphic motion
Hλ : U ′

◦
� K(g◦) → U ′

λ � K(gλ). Since the sets K(gλ) are nowhere dense (see
Corollary 9.3), the First λ-lemma implies that the Hλ extends to an equivariant
holomorphic motion U ′

◦
→ U ′

λ. �

Exercise 10.11. Let Hλ be the holomorphic motion constructed in the previous
lemma. Then the Beltrami differential

(42.7) μλ(z) =

{
∂̄Hλ(z)
∂Hλ(z)

, z ∈ K(g◦),

0, z ∈ C�K(g◦),

holomorphically depends on λ ∈ Q.

We can now prove an analogue of Lemma 10.9 for queer components:

Lemma 10.12. The straightening χ is holomorphic on any queer component Q
of intM(g).

Proof. Select a base point ◦ ∈ Q, and let φ : U ′ → Ω′ denote the hybrid
conjugacy between g◦ : U → U ′ and its straightening f◦ ≡ fc◦ : Ω → Ω′. Let
μλ be the holomorphic family of conformal structures on K(g◦) considered in the
previous Excercise. Push it forward to the f◦-plane: let νλ be the f◦-invariant
Beltrami differential equal to φ∗(μλ) on K(f◦) and vanishing on C�K(f◦). Since
φ is confomal a.e. on the Julia set,

νλ =
(
μλ φ

′/ φ′
)
◦ φ−1,

which is obviously holomorphic in λ ∈ Q. Let hλ : (C, 0) → (C, 0) be the solution
of the Beltrami equation for μλ tangent to the identity at ∞. Then the map
fλ := hλ ◦ f◦ ◦h−1

λ is a quadratic polynomial z �→ z2 + c(λ), and by Corollary 4.65,
c(λ) is holomorphic in λ. Finally, fλ is the straightening of gλ by means of the
hybrid conjugacy hλ ◦ φ ◦H−1

λ . �

42.11. Discreteness of the fibers.

Lemma 10.13. For any c ∈M , the fiber χ−1(c) is finite.

Proof. Since M(g) is compact, it is enough to show that the fibers are dis-
crete. Assume that there exists some c ∈ M with an infinite fiber χ−1(c). Then
this fiber contains a sequence of distinct parameter values λn ∈ χ−1(c) converging
to some point λ∞ ∈ χ−1(c). Let g ≡ g∞ : U → U ′.

Without loss of generality, we can assume that λ∞ ∈ ∂M . [Otherwise, con-
sider the component U of intM containing λ∞. Since χ is holomorphic on U and
continuous on Ū , we conclude that χ|U ≡ const. But then we can replace λ∞ by
any boundary point of U .]

Let us select λ∞ as the base point in Q. Since the quadratic-like family gλ :
Uλ → U ′

λ is equipped, there exists an equivariant holomorphic motion hλ : A→ Aλ

of the closed fundamental annulus Aλ = Ū ′
λ�Uλ over Λ (where A ≡ Ū ′�U). Extend

it by the Elementary λ-lemma to a holomorphic motion hλ : C�U → C�Uλ over
a neighborhood Q′ ⊂ Q of λ∞ (keeping the same notation for the extension). We
will now construct a holomorphic family of hybrid deformations Gλ of g over Q′

naturally generated by this holomorphic motion.
To this end let us first pull back the standard conformal structure to C � U ,

μλ = h∗λ(σ). Then extend μλ to a g-invariant conformal structure on C�K(g) by



42. FULLY EQUIPPED FAMILIES 235

pulling it back by iterates of g. Finally, extend it toK(g) as the strandard structure.
This gives us a holomorphic family of g-invariant conformal structures on C. We
will keep the same notation μλ for these structures. Solving the Beltrami equations,
we obtain a holomorphic family of qc maps Hλ : C→ C such that μλ = (Hλ)

∗(σ),
and in particular, ∂̄H(z) = 0 a.e. on K(g). Conjugating g by these maps, we
obtain a desired hybrid deformation Gλ = Hλ ◦ g ◦H−1

λ , λ ∈ Q′.

On the other hand, for maps gn := gλn
, we can construct the Beltrami differen-

tials μn ≡ μλn
in a different way. Namely, since the map gn is hybrid equivalent to

g, the equivariant map hn := hλn
uniquely extends to a hybrid conjugacy (Theorem

9.18). Let us keep the same notation hn for this conjugacy.
The above two constructions naturally agree: (hn)

∗σ = μn. Indeed, it is true
on C�U by definition. It is then true on U�K(f), since both Beltrami differentials
are g-invariant. Finally, it is true on the filled Julia set K(g) since hn is conformal
a.e. on it.

Thus the qc maps Hn : C → C and hn : C → C satisfy the same Beltrami
equation. They also coincide at two points, e.g., at the critical point and at the
β-fixed point of g (in fact, by Corollary 9.16 they coincide on the whole Julia set
of g). By uniqueness of the solution of the Beltrami equation, Hn = hn. Hence
Gn = gn. Returning to the original notations, we have

(42.8) Gλn
(z) = gλn

(z).

Take an ε > 0 such that both functions Gλ(z) and gλ(z) are well-defined in the
bidisk {(λ, z) ∈ C2 : |λ − λ�| < ε, z ∈ V ≡ g−1U}. For any z ∈ V , consider two
holomorphic functions of λ:

Φz(λ) = Gλ(z) and φz(λ) = gλ(z), |λ− λ∞| < ε.

By (42.8), they are equal at points λn converging to λ∞. Hence they are identically
equal.

Thus for |λ| < ε, two quadratic-like maps, Gλ and gλ, coincide on V . But it
is impossible since the Julia set of Gλ is always connected, while the Julia set of
gλ is disconnected for some λ arbitrary close to λ∞ (recall that we assume that
λ∞ ∈ ∂M(g)). �

Corollary 10.14. χ(intM(g)) ⊂ intM.

Remark. Of course, it is not obvious only for queer components.

Proof. Take a component P of intM . We have proven that χ|P is a non-
constant holomorphic function. Hence the image χ(P ) is open. Since it is obviously
contained in M , it must be contained in intM . �

42.12. Bijectivity. What is left to show is that the map χ : M(g) → M is
bijective. By §42.5, the winding number of the curve χ : ∂Λ→ C around any point
c ∈ Dr2 is equial to 1. By the Topological Argument Principle (§2.3),
(42.9)

∑
a∈χ−1c

inda(χ) = wc(χ, ∂Λ) = 1, c ∈ Dr2 .

It immediately follows that the map χ : Λ → Dr2 is surjective (for otherwise the
sum in the left-hand side would vanish fo some c ∈ Dr2).

Let us show that χ is injective on the interior of M(g). Indeed, if a0 ∈ intM ,
then by Corollary 10.14 c = χ(a0) ∈ intM , and by Lemma 10.7 χ−1(c) ⊂ intM .
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But since χ| intM is holomorphic (see §42.9 and 42.10), we have inda(χ) > 0 for
any a ∈ intM . It follows that the sum in the left-hand side of (42.9) actually
contains only one term, so that c has only one preimage, a0.

Finally, assume that there is a point c ∈ ∂M with more than one preimage.
By the Topological Argument Principle, χ has a non-zero index at one of those
preimages, say, a1. Take another preimage a2. Both a1 and a2 belong to ∂M .

Take a point a′2 �∈ ∂M(g) near a2, and let c′ = χ(a′2). By Exercise 1.52, χ is
locally surjective near a1, so that c′ has a preimage a′1 over there. This contradicts
injectivity of χ on Λ� ∂M(g).

This completes the proof of Theorem 10.1.

43. QL families over the complex renormalization windows

Let us go back to the quadratic family fc : z �→ z2+c. Take some superattract-
ing parameter c◦ of period p > 1. It is the center of the renormalization window
Λ = Λc0 described in §45.2. Recall that ∂Λ intersects the Mandelbrot set M in two
points called the root and the tip.

For any polynomial fc, c ∈ Λ, we have constructed a quadratic-like return map
gc = fpc : Vc → V ′

c around the critical point. If the Julia set J(gc) of this map is
connected then fc is renormalizable with combinatorics c◦. Let

M◦ = {c ∈ Λ : fc is renormalizable with combinatorics c◦} ∪ {root, tip}.
Theorem 10.15. The set M◦ is canonically homeomorphic to the Mandelbrot

set M .

Theorem 10.1 is designed to imply this result. However, it does not do it (at,
least, not immediately) since the quadratic-like family gc over Λ is not full: it
misses the root and the tip of M◦. This problem can be fixed for the tip. In case of
primitive renormalization, it can also be fixed for the root. However, in the satellite
case, it is not fixable: in fact, in this case the root of M◦ is not renormalizable with
period p.

In this section we will give a proof of Theorem 10.15, which will produce for
us all little M -copies. For primitive copies, an alternative proof will be given in
§?? where we will construct the corresponding full quadratic-like families to which
Theorem 10.1 can be applied.

44. Notes

The notion of a polynomial-like map was introduced by Douady and Hub-
bard in their fundamental work [DH3]. Basic theory of these maps, including the
Straightening Theorem, was developed in the same paper. This theorem was the
first application of the method of quasiconformal surgery: you cook by hands some
topological object that looks like a polynomia, and then you realize it as an actual
polynomial by means of the MRMT.

Miracle of continuity: [D2]
No miracle in higher degrees: ??, §...



CHAPTER 11

Yoccoz Puzzle

46. Combinatorics of the puzzle

Kids know well the “puzzle game” of cutting a picture into small pieces and
then trying to put them back together. Such a game can be played with dynamical
pictures like Julia sets and the Mandelbrot set as well. It turned out to be a very
efficient way to describe the combinatorics of the corresponding dynamical systems
and to control their geometry.

Our standing assumption will be that both fixed points of f are repelling.

46.1. Description of the puzzle. Let us fix some parameter wake Wp/q

(see Theorem 7.29), and let c ∈ Wp/q, f = fc. The puzzle game starts by cutting
the complex plane with the α-rays Ri, i = 1, . . .q, landing at the α-fixed point (see
§39.5.2). They are cyclically permuted by the dynamics, and divide the plane into
q sectors Si as described in Lemma 7.16. (Recall that S0 � 0 is the critical sector,
and S1 � f(0) is the characteristic one.)

Let us select some equipotential E = Et of height t > 0 surrounding the critical
value f(0). Let U0 � f(0) be the (open) Jordan disk bounded by E . Its closure Ū
is tiled by q (closed) “triangles”

Y
(0)
i = U0 ∩ Si

called puzzle pieces of depth 0 (see Figure ??). The puzzle piece Y (0) ≡ Y
(0)
0 � 0

is naturally called critical, while Y
(0)
1 � c is called characteristic. We denote this

initial puzzle Y(0).
Consider now the preimage Y(2) of Y(0) under f . Let U1 = f−1(U0) be the

disk bounded by the equipotential E(1) = Et/2. Cut it by 2p external rays landing
at the points α and α′ = −α. We obtain a tiling of U1 by 2p− 1 closed topological

disks Y
(1)
i called puzzle pieces of depth 1 (2p − 2 lateral triangles and one central

6-gone). We label them in such a way that Y
(1)
i ⊂ Y

(0)
i , i = 0, 1, . . . ,q, and we let

Zi := Y
(0)
−i = −Y (1)

i , i = 1, . . . ,q.

Again, Y (1) ≡ Y
(1)
0 � 0 is called critical, while Y

(0)
1 � f(0) is called characteristic.

Lemmas 7.16 and 7.17 imply that

(46.1) f(Y (1)) = Y
(0)
1 ; f(Y

(1)
i ) = f(Zi) = Y

(0)
j+1 (i = 1, . . . ,q− 1)

(where Y
(0)
q is understood as Y (0)). Moreover, the map f : Y (1) → Y

(0)
1 is a double

branched covering, while all other maps, f : Y
(1)
i → Y

(0)
i+1 and f : Zi → Y

(0)
i+1

(i = 1, . . . ,q− 1) are univalent.
If f(0) ∈ U1, we can take the preimage of Y(1) to obtain puzzle Y(2) of depth

2, etc. In general, if fn(0) ∈ U0 then we define puzzle Y(n) as the n-fold preimage

237
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of Y(0). It is a tiling of the disk Un = f−n(U0) bounded by the equipotential
E(n) = E1/2n obtained by cutting U1 by the external rays comprising f−n(∪Ri)

(i.e., the external rays landing at the points of f−nα). The tiles Y
(n)
i of Y(n) are

called puzzle pieces of depth n. If fn(0) �= α then among these puzzle pieces there

is one, Y (n) ≡ Y
(n)
0 , containing the critical point 0. It is called critical, while the

puzzle piece Y
(n)
1 containing the critical value f(0) is called characteristic.

The following lemma summarizes obvious but crucial properties of the puzzle
pieces (that can be viewed as axioms of the puzzle):

Lemma 11.1. (i) Puzzle pieces are closed Jordan disks with piecewise analytic
boundary (“polygons”) that meet the Julia set at points of f−nα.

(ii) Under f , every puzzle piece Y
(n)
i of depth n > 0 is mapped onto some puzzle

piece Y
(n−1)
j of depth n − 1. This map is univalent if Y

(n)
i is off-critical, and is a

double covering if Y
(n)
i is critical (i.e., if i = 0).

(iii) Any two puzzle pieces are either nested or have disjoint interiors.

(iv) Markov Property: If f(Y
(n)
i ) intersects the interior of Y

(n)
j then f(Y

(n)
i ) ⊃

Y
(n)
j .

Proof. (i) By definition, any intY
(n)
i is a component of some f−n(intY

(0)
j ).

But for a polynomial map, the full preimage of an open Jordan disk is a disjoint

union of Jordan disks. Since each Y
(0)
j is a piecewise analytic triangle, Y

(n)
i is a

piecewise analytic polygon.

(ii) Since intY
(n)
i is a component of some f−1(intY

(n−1)
j ), the map f : Y

(n)
i →

Y
(n−1)
j is a branched covering. Since both pieces are simply connected, the conclu-

sion follows from the Riemann-Hurwitz formula.

(iii) Since f−n(∪Ri) ⊃ f−(n−1)(∪Ri), the tiling Y(n) is a refinement of Y(n−1)|Un.

(iv) It is obvious for n = 0, so let n > 0. Then by property (ii), f(Y
(n)
i ) =

Y
(n−1)
k for some k. By property (iii), Y

(n−1)
k contains Y

(n)
j . �

If the Julia set is connected, then all puzzles Y(n) are well defined, forming
finer and finer tilings of nested neighborhoods Un of the filled Julia set K(f) that
nicely behave under the dynamics. In the rest of the section, we will describe how
these puzzles capture the recurrence of the critical orbit.

If we consider below fn(0) or puzzle Y(n), we assume without mentioning that
fn(0) ∈ U0, so that Y(n) is well defined. (Not to be destracted by these details, we
suggest the reader to assume in the first reading that the Julia set is connected, so
the above assumptions hold automatically.)

46.2. Immediately renormalizable maps. By (46.1), fq(0) ∈ Y (0). So, if
fq(0) ∈ U1, it has two options: either fq(0) ∈ Y (1) (central return) or fq(0) ∈ Zκ

for some κ ∈ {1, . . . ,q} (non-central return). In the former case, if f2q(0) ∈ U1,
it has the same options: either f2q(0) ∈ Y (1) or f2q(0) ∈ Zκ for some κ, etc. So,
either the critical point always returns to Y (1),

(46.2) fnq(0) ∈ Y (1), n = 0, 1, . . . ,
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or else there exists the escaping moment n ∈ Z+ such that

(46.3) fnq(0) ∈ Z
κ

for some κ ∈ {1, . . . ,q}
(provided fnq(0) ∈ U1).

The map f is called immediately renormalizable if option (46.2) takes place.

Proposition 11.2. If the map f is immediately renormalizable then it is satel-
lite renormalizable with period q in the sense of §49.5, and
(46.4) K = {z : fnqz ∈ Y 1, n = 0, 1, 2, . . . },
is the corresponding little Julia set. The point α is the non-dividing fixed point of
Rqf , and the little Julia sets Ki = f iK, i = 0, 1 . . . ,q− 1, form a bouquet centered
at α. Moreover, q is the smallest renormalization period of f .

Proof. Let V be the puzzle piece Y 1 truncated by the equipotential Et/2q ,
and let V ′ = Y 0. Then V ⊂ V ′ and the map g = (fq : V → V ′) is a double
covering. However, the map g is not quadratic-like since ∂V touches ∂V ′ along arcs
of two external rays, Rθ and Rγ , landing at α (where θ ∈ ( 14 ,

1
2 ), γ ∈ ( 12 ,

3
4 )).

It is not a big problem, though, as a little thickening of V and V ′ turn g into
a quadratic-like map (see Figure ??). Namely, let S be a little circle centered at α

which is mapped by f onto a bigger circle. Let Rθ′

and Rγ′

be two external rays
close to Rθ and Rγ respectively that do not intersect U (thus θ′ > θ, γ′ < γ). Since
the doubling map ω �→ 2ω mod 1 is expanding on the circle R/Z, the external rays

Rθ′

and Rγ′

are “pushed away” from Rθ and Rγ (respectively) under the map fq.

Let R̃θ′

and R̃γ′

stand for the shortest arcs of these rays connecting the equipo-
tential Et/2q to the circle S, and let Γ be the path composed of these two external
arcs and the arc of S connecting them that does not intersect U . Then Γ′ = fq(Γ)
is a path with endpoints on Et that does not cross Γ and lies “farther” from α than
Γ.

Let −Γ be the 0-symmetric path, and let Ũ ⊃ U be the Jordan disk bounded by
Γ, −Γ and two arcs of the equipotential Et/2q connecting them. It is mapped under
fq onto the Jordan disk Ũ ′ ⊃ U ′ bounded by Γ′ and the appropriate arc of the
equipotential Et. Moreover, Ũ � Ũ ′ and the map fq : Ũ → Ũ ′ is a double branched
covering. This is the desired pre-renormalization of f (we will keep notation g for
it).

Obviously, K ⊂ K(g). To see the inverse inclusion, notice that g : K → K is
two-to-one map. Indeed, fq : Ū → Ū ′ is a double branched covering, and obviously
K is completely invariant under this map.

Hence, K is completely invariant under the pre-renormalization g. It is also
closed and full. By Corollary 4.33 (and the Straightening Theorem), K must coin-
cide with the whole filled Julia set K(Rf).

Since Rγ is an g-invariant curve in the complement of K(g) landing at α, the
combinatorial rotation number of g at α is 0 (see Exercise 7.15). Hence α is the
non-dividing fixed point of g.

Of course, α is a common point of all little Julia sets Ki. Since α is the only
point where the limbs K(f) ∩ Y 0

i touch one another, it is the only point where the
little Julia sets Ki ⊂ K(f) ∩ Y 0

i do.

Let us now prove the last assertion. Assume p ∈ (2,q) is a smaller renor-
malization period of f ; let h be the corresponding pre-renormalization. Then
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fp(0) ∈ Y 0
p ∩ K(h). It follows that K(h) � α, for otherwise K(h) would not

intersect the curve Rθ ∪ Rγ ∪ {α} that separates 0 from fp(0) (contradincting
connectivity of K(h)).

Thus, α is a separating fixed point of K(h), and f(K(h))∩K(h) �= ∅ – contra-
dicting the almost disjointness property of §49.5. �

Let us consider two symmetric triangles

(46.5) L =

q−1⋃
i=1

Y
(1)
i , R =

q−1⋃
i=1

Zi.

Notice that the above little Julia set K of the satellite renormalization is obtained
from K(f) by chopping off infinitely many triangles: the preimages of R under all
iterates of the double covering fq : V → V ′ (where V and V ′ are defined in the
beginning of the above proof).

We will show in Chapter ?? that the set of parameters c ∈ Wp/q for which fc is
immediately renormalizable assemble a little copy of the Mandelbrot set attached
to the main cardioid (see Figure ??).

46.3. Principal nest. Consider a puzzle piece P of depth n and a point z
such that fmz ∈ intP for some n ≥ 0. The puzzle piece Q of depth n+m containing
z is called the pullback of P along the orbit {fkz}mk=0. Clearly, the map fm : Q→ P
is a branched covering of degree 2l, where l is the number of critical puzzle pieces
among fkQ, k = 0, 1, . . . ,m− 1. In particular, if there are no critical puzzle pieces
among them, then fm : Q→ P is univalent. This yields:

Lemma 11.3. Let P be a critical puzzle piece and let Q be the pull-back of P
along {fkz}mk=0.

If fmz is the first landing of the orb z at intP , m ≥ 0, then fm : Q → P is
univalent.

If z ∈ intP and fmz is the first return of the orb z to intP , m > 0, then
fm : Q → P is univalent or a double covering depending on whether Q is off-
critical or otherwise.

We are now ready to introduce the principal nest of critical puzzle pieces,

(46.6) V 0 ⊃ V 1 ⊃ V 2 ⊃ · · · � 0,

and associated double coverings gn : V n → V n−1.
Assume f is not immediately renormalizable, and let n be the first escaping

moment (46.3). We let V0 � 0 be the pullback of Zκ along the orbit {fnq}nn=0.

Let V 0 = P
(0)
0 . Assume inductively that we have defined the nest up to V n−1.

If the orb(0) never returns to intV n−1 then the construction stops here. Otherwise
consider the first return f ln0 of the critical point back to V n−1. Let V n be the
pullback of V n−1 along this orbit and let gn = f ln : V n → V n−1. By Lemma 11.3,
this map is a double covering. This completes the construction.

We call V n the principal puzzle piece of level n (pay attention to the difference
between the “level” and the “depth”).

A map f is called combinatorially recurrent if the critical orbit visits all critical
puzzle pieces. In this (and only this) case, the principal nest is infinite.



46. COMBINATORICS OF THE PUZZLE 241

46.4. Central returns and primitive renormalization. There are two dif-
ferent combinatorial possibilities on every level which are important to distinguish.
The return of the critical point to level n− 1 (and the level itself) is called central
if gn0 ∈ V n (see Figure ??). In this case, the critical orbit returns to level n − 1
at the same time as to level n, so that ln = ln+1 and gn+1 : V n+1 → V n is just
the restriction of gn to V n+1. Central returns indicate the fast recurrence of the
critical orbit.

If N consecutive levels, m− 1, m,. . . , m+N − 2, are central then the nest

(46.7) V m−1 ⊃ V m ⊃ · · · ⊃ V m+N−1

is called a central cascade of length N + 1. In this case, glm0 ∈ V m+N−1 and the
maps

gm+k : V m+k → V m+k−1, k = 1, . . . , N,

are just the restrictions of gm to the corresponding puzzle pieces.
If this cascade is maximal then the levels m−2 and m+N −1 are non-central.

In this case, the length N + 1 is equal to the escaping time it takes for the critical
orbit to escape V m under the iterates of gm.

If the return to level m − 1 is non-central, we will formally consider {V m−1}
to be a “central cascade” of length 1. With this convention, the whole principal
nest is decomposed into consecutive maximal central cascades. In fact, one of these
cascades, the last one, can have infinite length:

Proposition 11.4. A map f is renormalizable if and only if its principal nest
ends up with an infinite central cascade V m−1 ⊃ V m ⊃ . . . . Moreover, in this case
the map gm : V m → V m−1 is the renormalization of f .

Proof. We will explain the “if” direction of this assertion.
Assume that we immediately observe an infinite central cascade V 0 ⊃ V 1 ⊃ . . . .

In this case we say that f is immediately renormalizable. One can show that this
corresponds to parameters in the satellite M -copies attached to the main cardioid
(compare §II.?? and §II.??).

In the immediately renormalizable case, the critical orbit never escapes V 1

under the iterates of g1 = fp : V 1 → V 0 (where p is the number of α-rays).
The map g1 is a double covering of a smaller domain onto a bigger one but it is
not a quadratic-like map, since the domains V 1 and V 0 have a common boundary
(consisting of four external arcs). To turn this map into a quadratic-like, one should
“thicken” the domains V 0 and V 1 a little bit (see Figure ...).

Assume that f is not immediately renormalizable. One can show that in this
case, V m � V m−1, so that gm : V m → V m−1 is a quadratic-like map with non-
escaping critical point, which can be identified with the first renormalization of
f . �

Let us define the height of f as the number of the maximal central cascades
in the principal nest. We see that f is renormalizable if and only if it has finite
height.

Thus, the principal nest provides an algorithm to decide whether the map in
question is renormalizable, whether this renormalization is of satellite type or oth-
erwise, and to capture this renormalization.

On the negative side, the puzzle provides us with dynamical information only
up to the first renormalization level. If we wish to penetrate deeper, we need to
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cut the Julia set of the renormalization into pieces and to go through its principal
nest. Since the renormalization is a quadratic-like map rather than a quadratic
polynomial, this motivates the need of the puzzle for quadratic-like maps. It will
be discussed in §??.

46.5. Puzzle associated with periodic orbits.

47. Local connectivity of non-renormalizable Julia sets

Theorem 11.5. Assume that all periodic points of f are hyperbolic and f is
not infinitely renormalizable. Then the Julia set of f is locally connected.

Here is the main particular case of this result:

Theorem 11.6. Assume both fixed point of f are repelling, and f is non-
renormalizable. Then the Julia set of f is locally connected.

48. Local connectivity of of M at non-renormalizable points
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exersices



Chapter ??

0.5. Use Exercise 0.4. For a counterexample, see [?], Fig. 25.1.

0.7. a) Fix some t ∈ [0, 1], and let γ(t) = x. Consider the decomposition of
γ−1(B(x, ε)) into connected components In and Jk , where In � t while Jk �� t.
Show that the paths γ(Jn) do not accummulate on x and conclude that γ is weakly
lc at x.

0.8. Construct a sequence of polygonal curves γn in Rn connecting x to y such
that:

• The vertices of the γn belong to K;

• γn+1 is a refinement of γn, i.e., the vertices of γn are also vertices of γn+1;

• ‖γn − γn+1‖ ≤ 1/2n, where ‖ · ‖ stands for the uniform norm.

Remark 11.1. In fact, this is true without assuming that K is emebdded into
Rn. Indeed, any compact metric space X embeds into a Banach space (for instance,
by associating to x ∈ X the distance function y �→ d(x, y)), where one can repeat
the above argument.

0.9. One direction: arc lc is stronger than weak lc. The other (non-trivial)
direction: use the argument for Exercise 0.8.

??. Use that J is path lc and show that K is such.

??. Have fun!
0.18. Otherwise there is a sequence of arcs γn ⊂ Uin whose diameter is bounded

away from 0. Take an accumulation point a for the “mid-points” an of the γn. Then
K is not lc at a.

??.
0.19. Consider the covering corresponding to the Ker of the monodromy action.

Chapter 1

1.5. The space of ε-separated triples of points is compact. The Möbius trans-
formation φ depends continuously on the triple (α, β, γ) = φ−1(0, 1,∞) as obvious
from the explicit formula

φ(z) =
z − α
z − γ ·

β − γ
β − α.

(This can also be used to verify equivalence of the two topologies.)

1.7. The curvature of a metric ρ(z)|dz| can be calculated by the formula:

κ(z) = −Δlog ρ(z)

ρ(z)2
.

PSL(2,R)-invariance of the hyperbolic metric in the H-model amounts to the iden-
tity:

Imφ(z) =
Im z

|cz + d|2 , φ(z) =
az + b

cz + d
.

Smooth isometries preserve angles between tangent vectors, and so conformal. In
fact, one does not need to impose smoothness a priori. Any isometry is quasi-
conformal (e.g., by the Pesin criterion, Theorem ??), and hence conformal by Weyl’s
Lemma (13.1).
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1.9. (It is a generality about discrete groups of isometries of locally compact
spaces.) If proper discontinuity (see the definition in §2) was violated, then there
would exist as sequence of distinct motions γn : D → D, and sequence of points
xn → x ∈ D such that γ(xn) → y ∈ D. Then, since the γn are isometries, for any
neighborhood U � D, the family of maps γn : U → D would be uniformly bounded
and equicontinuous. Hence it would be pre-compact, contradicting discreteness.

1.38. Formal rules of differentiation with respect to (z, z̄) look as if they are
independent variables (these rules are particularly clear on the level of formal power
series). For instance:

∂z̄(τ ◦ φ) = ((∂zτ) ◦ φ) · ∂z̄φ+ ((∂z̄τ) ◦ φ)) · ∂z̄φ̄.
(Here one should think of τ ◦ φ as τ(φ, φ̄).) In case of holomorphic φ, we have

∂z̄φ̄ = ∂zφ = φ′, ∂z̄φ = 0.

1.80. Let Un � U be an increasing sequence of domains exhausting U , and let

dist(φ, ψ) =
∑ 1

2n
sup
z∈Un

ds(φ(z), ψ(z)).

1.81. Consider a sequence of holomorphic functions 1/φn(z) (which are the
original functions written in terms of the local chart 1/z near ∞ in the target Rie-
mann sphere). Apply the Hurwitz Theorem on the stability of roots of holomorphic
functions.

1.76. Push the hyperbolic metric on H forward to D∗ by the universal covering
map H→ D∗, z �→ eiz.

1.110. (iii) An ideal quadrilateral consisting of two adjacent triangles of the
tiling gives us a fundamental domain of λ. In the H-model, we can normalize it so
that it is bounded by two vertical lines x = ±1 and two half-circles |z±1/2| = 1/2.
Then the boundary identifications are given by two parabolic deck transformations
z �→ z + 2 and z �→ z/(2z + 1). They generate the group of deck transformations,
on the one hand, and the group Γ2, on the other.

1.88. Without loss of generality, we can assume that U = D, the functions ψ
do not collide in D∗, ψ1 ≡ ∞ and ψ ≡ ψ2 has a pole at 0. Then the functions φn
are holomorphic on D and form a normal family on D∗. By Exercise 1.85, we can
assume that the φn are either uniformly bounded on each Tr, r ∈ (0, 1), or

(48.1) φn →∞ uniformly on Tr.

In the first case, the Maximal Principle completes the proof, so assume (48.1) occurs.
If φn(k)(0) �= 0 for a subsequence n(k), then by the Minimum Principle φn(k) →∞
uniformly on Dr, and we are done. So, we can assume that φn(0) = 0 for all n.
Then the winding number of the curve φn : Tr → C∗ around 0 is positive. But by
(48.1), the curve φn−ψ : Tr → C∗ eventually has the same winding number around
0 (r should be selected so that ψ does have poles on Tr) and hence the equation
φn(z) = ψ(z) has a solution in Dr.

1.67. The path family Γ overflows the half-annulus A(1, R)∩H, which implies
tha lower estimate for θ(R). Similarly, one can obtain the lower estimate for the
dual path family Γ′ (connecting (−∞, 0] to [1, R] in H. This yields the upper
estimate for θ(R) = 1/L(Γ′).
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1.113 Associate to a point a ∈ T the prime end of D represented by nests of
cross-cuts shrinking to a.

1.120. Use the Schwarz Reflection Principle.

1.143 Apply the Index Formula to the gradient vector field ∇G in a region
{z : 0 < ε < G(z) < R}. (Or apply the Morse theory.)

Chapter 2

2.5. If |μ| < 1 then A can be deformed to z �→ az through invertible operators.

2.6. Start with equivariance. Let T ∈ SL#(2,R). It acts on CR as z �→ αz+βz̄
with |α|2− |β|2 = 1. The Beltrami coefficient of the pullback T ∗(dz+μdz̄) is equal
to (ᾱμ+ β)/(β̄μ+ α), which is the standard action of SL(2,R) on D.

Now we can check that the correspondence Conf(V ) ≈ D is isometry. Since
both actions of SL(2,R) preserve the hyperbolic metrics, it is suficient to check that
disthyp(σ, μ) = disthyp(0, μ), where the former distance in measured in Conf(V ),
while the latter is measured in D. But this is what the first formula of (11.3) tells
us.

2.22 Consider the points zn = x + (z − x)/2n, 0 ≤ n ≤ N , where 1/2 <
|zN+1| ≤ 1, and use |z′n − z′n−1| ≤ L|z′n| inductively.

??: Ahlfors-Beurling Extension. See [A], Ch IV, Theorem 2.

Chapter 3

3.6. A quadratic differential φ ∈ Q can be represented as φ(z)dz2 where φ(z)

is a holomorphic function on Ĉ � P. Since
∫
|φ| < ∞, this function can have at

most simple poles at finite points zi, i = 1, . . . , n− 1, and φ(z) = O(|z|−3) near ∞
(which is equivalent to sayng that the differential φ(z)dz2 has a simple pole at ∞).
Hence

φ(z) =
n−1∑
i=1

λi
z − zi

with
∑
λi = 0 and

∑
λi
∑
k 
=i

zk = 0. These two linear conditions are independent,

and in fact, (λ1, . . . , λn−3) can be selected as global coordinates on the correspon-
dent subspace (as the the right-most minor of the corresponding 2× (n− 1) matrix
is equal to zn−1 − zn−2 �= 1).

3.10. Let [Sn, φn] converge to [S, φ] in T (S0). Then one can select representa-
tives φn and qc maps hn : Sn → S with Dil(hn) → 0 such that hn ◦ φn = φ. Lift
these maps to H normalizing the Φn at three points. Then use Theorem 2.31 to
show that the Φn converge to Φ uniformly on H.

3.14. Let {gα} be the projective atlas on V . Let us write f in the local
parameter z = gα(x) (i.e., consider the function fα = f ◦ g−1

α ), and let us take its
Schwarzian Sfα(z) dz

2. Let ζ = gβ(x) be another local chart (with an overlapping
domain), and let ζ = Aβα(z) be the transit Möbius map. Then fβ ◦Aβα = fα, and
the Chain Rule (19.4) translates into the property that the quadratic differential
Sfα(z) dz

2 is the pullback of Sfβ(ζ) dζ
2 under Aβα. This means by definition that

these local expressions determine a global quadratic differential on V .
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Chapter 4

4.9. It follows from the chain rule: Dfn(z) =

n−1∏
k=0

Df(fkz).

4.12. (i) Consider fixed points of f and their preimages.
(ii) It is a generality about full sets: a non-trivial loop γ in intK would break

Ĉ �K into two pieces.

4.36. For z ∈ Df (α), fn → α uniformly on a neighborhood of z. Let D be
the component of intK(f) containing z. Then by normality of the family {fn|D},
the fn → α uniformly on compact subsets of D.

4.37 (i) D0(α) is the component of {z : fpn(z)→ α as n→∞} containing α.

(ii) Let P∞ = ∪Pn. Then f
p(∂P∞) = ∂P∞ since fp(∂Pn) = ∂Pn−1.

4.60. The size of the gap in D(z, ρ) depends lower semi-continuous on z.

5.12. Note that the foliation by round circles is defined dynamically as the
closures of the equivalence classes

z ∼ ζ : ∃n : gnz = gnζ,

sometimes called “small orbits”. Hence a germ φ commuting with g must respect
this foliation. It follows that φ is linear (even if it mapped just one round circle
onto a round circle).

4.70 Since f : D → D1 is a conformal isomorphism, the push-forward f∗μ0 is
a conformal structure of D1 with the same dilatation as μ0. For the same reason,
f2∗μ0 is a conformal structure of D2 with the same dilatation, etc. By pushing it
further by all iterated of f , we obtain an invariant measurable conformal structure
μ on orbD with the same dilatation as the original structure on D.

Let us now pull this structure back to preimages of the domains Dn. Of course,
one of these preimages can contain the critical point, where the pullback is not
well defined. However, it does not cause a problem since a measurable conformal
structure needs to be defined only almost everywhere. Since f is locally conformal
outside the critical point, the pullback preserves the dilatation of the structure.
Iterating this procedure, we obtain an invariant conformal structure on the grand

orbit OrbD =
∞⋃

m=0

f−m(orbD) (undefined on the critical set Cf (21.1)) with the

same dilatation as the initial structure.
Let us extend this structure to Ĉ �OrbD as the standard one, σ. As σ is in-

variant in the first place (and has no dilatation), we obtain an invariant measurable
structure with bounded dilatation on the whole Riemann sphere.

4.79. Take a Jordan curve Γ close to ∂U with winding number 1 around the
origin and, look at the curve g : Γ→ C, and apply the Argument Principle.

??. First consider any diffeomorphism h1 : ∂U ′ → Tr2 , then lift it to a diffeo-
morphism h2 : ∂U → Tr satisfying (49.3), and finally interpolate in between h1
and h2.

4.84. The fixed point is attracting by the Schwarz Lemma.
By Exercise 1.118, g extends continuously to the unit circle T . By the Schwarz
Reflection Principle, g extends to the whole sphere making it a degree two Blyaschke
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product. To bring it to the normal form (28.2), put the fixed point α to the origin.
To show that it is expanding on T, use the hyperbolic metric in C̄ � cl orb{c, 1/c̄},
where c ∈ D is the critical point of g (compare Theorem 4.53). Finally, B′

a(0) = −a.
4.85. For a tangent vector v, let

‖v‖ρ = sup
n

max
1≤i≤2n

λn|Dg−n
i v|,

where g−n
i are the inverse branches of gn.

4.86. Uniqueness easily follows from the expanding property. To prove ex-
istence, lift g to the universal covering. We obtain an orientation preserving dif-
feomorphism G : R → R with the equivariance property: G(x + 1) = G(x) + 2.
Obviously, the equation G(x) = x has a solution.

Or, apply the Lefschetz formula instead: the Lefschetz number of g is equal to
1 and the index of any fixed point is also 1 (since it is repelling).

Chapter 6

6.1. (iii) Recall the proof of Proposition 4.11.

(iv) It follows from the dichotomy: φn →∞ locally uniformly on C �M , and
|φn(z)| < 2 on M (as in Proposition 4.29).

6.6. (Compare with Theorem ?? (i) Since the family of functions φn is not
normal near c∗ ∈ ∂M , one of the equations φn(c) = 0 or φn(c) = ±

√
c should have

roots arbitrary close to c∗ ∈ ∂M .

(ii) Consider, for instance, the β-fixed point as a function of c (it branches
only at the main cusp 1/4). Then one of the equations φn(c) = β(c) or φn(c) =√
β(c)− c should have roots arbitrary close to c∗ ∈ ∂M .
6.33. For a point ζ = z2 ∈ A′ = A[R2, R4], let Hc(ζ) = (Hc(z))

2. This
map is correctly defined (does not depend on the choice of z =

√
ζ), and is a

self-homeomorphism of the annulus A′ identical on ∂A′ and commuting with the
group of rotations. Moreover, it commutes with z �→ z2 (by definition) and depends
holomorphically on c. Now extend it further to A[R4, R8], and so on.

Chapter 9: Quadratic-like maps

9.4: Dilatation of tubing. Since ∂U ′ is 0-symmetric κ(δ)-quasicircle, there
is a L′(κ)-qs homeomorphism B : ∂U ′ → Tr2 . Since g : ∂U → ∂U ′ has a C(δ)-
bounded distortion, B lifts to a L(D,L′)-qc homeomorphism B : ∂U → Tr. These
two qs homeomorphisms can be interpolated by a K-qc homeomorphism B : A→
A[r, r2], with K depending only on L′, L and bounds for modA (see Exersice ??).

9.6: Canonical extension of μ. Pull μ back from the fundamental annulus
A = S2

0 ∩ S2
∞ to its preimages An = F−nA, μ|An = (Fn)∗(μ|A). Since F is

holomorphic in the local chart φ0 (namely, equal to g), all these structures (in this
local chart) have the same dilatation as μ|A. Hence they form a single F -invariant
measurable conformal structure with bounded dilatation on S2�φ−1

0 K(g). Finally,
let μ = (φ0)

∗σ on φ−1
0 K(g).

Chapter 10: Primitive copies
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??: Solid torus. The map H : V→ ∂Λ× D, (λ, z) �→ (λ, h−1
λ (z)) straightens

the tube V to the solid torus. In this chart, the homotopy ψt can be given by
moving the point H(φ(λ)) straight to 0.

10.8: Hyperbolic components. Compare §28.4.

49. Index

Abelian differential §1.8
automorphism of f §20.2
adjustment §49.1
almost renormalization (canonical) §45.1.1

Banach slice §??
Basic Dichotomy §21.3
Beltrami differential §1.8, ??
Bers’ Lemma §13.3
bifurcation saddle-node/superattracting/period doubling §21.5
Blyaschke product §28.1
Böttcher function/coordinate/equation §??
Böttcher motion §42.2
branched coverings §2.1

Carathéodory convergence §4.8
Carathéodory Theorem (First/Second) §§??, ??
characteristic ray §32.2
chordal metric §2
conectedness locus C §??
conformal Riemannian metric §??
conformal sphere/plane/disk §??
Conformal Schönflis Theorem ??
continuum §2.2
convex hull (hyperbolic) §1.5.2
critical set Critf §§21.1, 21.9
critical rays and equipotential §32.2

∂z and ∂z̄ partial derivatives §1.8.2
∂ and ∂̄ operators §1.8.2
dilatation §§11.1, 11.2
dilatation macroscopic/upper §§4.4, 12.2
dilatation quasisymmetric §12.3
Dirichlet barrier §7.7
Dirichlet Problem §7.3,7.7
distance ration §12.3

elementary Fuchsian group §1.5.3
embedding §2
end, end-region, end-nest §1.1.2
equator §2, §1.6.1
equipotential §§7.9, 32.2, 32.3, tubing equipotential §??
equipped q-l family §42.1
equivariant map §31.2
ergodicity §31.6.3
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expanding circle maps §28.1
extension of a conformal structure (invariant/canonical) §26.1.4
external coordinates §??
external rays Rθ

c and equipotentials Etc ≡ Erc §32.2
external neighborhood §2.4
external conjugacy §??

Fatou’s Conjecture §28.4
Fatou set §21.3
fiber of a ql family §42.1
full set, filling in the holes §§2.2 21.3
fundamental annulus §27.1.1
fundamental domain §20.8

Green function §§7.9, 32.3
harmonic functions and differentials §7.1

Harnak Inequality §7.4
Hausdorff distance distH (2.1) §2
holomorphic motion §??
holomorphic equivalence relation §20.8
Hubbard tree §23.4
hull §2.2
hybrid conjugacy/equivalence/class §49.2
hyperbolic maps/sets/parameters §§22.2, ??, 28.4

ideal circle, boundary §§1.1.2,1.5.3
immersion §2
invariant set, completely invariant set §20.1

Julia set §21.3
J-stability §31.2
Jordan curve and disk §??

kneading sequence
Koebe Distortion Theorem §4.4

limit set of a Fuchsin group §1.5.3
local sections of an equivalence relation §20.8

Mandelbrot set
Mandelbrot set of a ql family §42.1
Mean Value Property (MVP) §7.2,7.5
Montel Theorem (Little, Big and Refined) §4.3
multiplier §22
Multiplier Theorem §30
normal families, §4.3 , 4.8, 7.4

one-point-per-end compactification §1.1.2
orbit (grand/small) §20.1

path metric §2
perfect set §21.3
periodic point and cycle §20
– attracting/repelling §22
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– neutral/parabolic §22
– Siegel/Cremer §??
Perron method §7.6
phase-parameter relation §42.5, Eq. (42.4)
Poisson Formula §7.3
porousity §23.6
proper map §2
pullback §20

quadratic differential §1.8
quadratic-like (q-l) map/conventional/real §27.1.1
quadratic-like family: equipped/proper/unfolded §42.1
quadrilateral §3.3.5
quasiconformal (qc) map §11.4
qc rigidity §31.7
quasiregular (qr) map §11.4
quasisymmetric (qs) map §??

ray (external) §§7.9, 32.2, 32.3, proper ray §32.2, tubing ray§??
renormalization complex/real, primitive/satellite §§27.3, 49.5
radius inner/outer §4.4
rectangle §3.3.5
removability qc/dynamical §23.7, §??
restricted quadratic family §42.2
Riemann-Hurwitz formula §2.2
rotation number §22

saturation §20.8
Schwarz Lemma §4.1
set of discontinuity of a Fuchsian group §1.5.3
semicontinuity (upper/lower) §2
simple closed curve §??
spider §18.2
straightening §§49.2, 51, ??
structural stability §31.1
subharmonic and superharmonic functions §7.5
subpotential disk §32.2

tensor §1.8
topologically holomorphic maps §2.1
topological entropy
tube (of a q-l family) §42.1
tubing §49.3: Eq. 49.3, §42.5: Eq. 42.1
tubing position of the critical value §42.5: Eq. (42.5)

unimodal map §21.5
wandering set, weakly wandering set §20.1

wandering domains §26.2
Weyl’s Lemma §13.1
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[H] J.H. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of

J.-C. Yoccoz. In: “Topological Methods in Modern Mathematics, A Symposium in Honor

of John Milnor’s 60th Birthday”, Publish or Perish, 1993.

[HPS] R.H.Herman, I.F.Putnam, C.F.Skau, Ordered Bratteli diagrams, dimension groups and

topological dynamics, International J. of Math., v.3 (1992), 827-864.

[HJ] J. Hu & Y. Jiang. The Julia set of the Feigenbaum quadratic polynomial is locally con-

nected. Preprint 1993.

[K] J. Kahn. Holomorphic removability of Julia sets. Thesis, 1995.

[Kr] S.L. Krushkal. Quasi-conformal mappings and Riemann surfaces. John Wiley 1979.

[KN] G. Keller & T. Nowicki. Fibonacci maps re(al)visited. Ergod. Th. & Dynam. Syst., v. 15

(1995), 99-120.

[LS] G. Levin, S. van Strien. Local connectivity of Julia sets of real polynomials, Preprint IMS

at Stony Brook, 1995/5.

[LSc] E. Lau & D Schleicher. Internal addresses in the Mandelbrot set and irreducibility of

polynomials. Preprint IMS at Stony Brook, # 1994/19.

[L1] M. Lyubich. The dynamics of rational transforms: the topological picture. Russian Math.

Surveys, v. 41 (1986), 43-117.
[L2] M. Lyubich. On the Lebesgue measure of the Julia set of a quadratic polynomial, Preprint

IMS at Stony Brook, #1991/10.

[L3] M. Lyubich. Milnor’s attractors, persistent recurrence and renormalization, “Topological

Methods in Modern Mathematics, A Symposium in Honor of John Milnor’s 60th Birth-

day”, Publish or Perish, 1993.

[L4] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of

Math., v. 140 (1994), 347-404.

[L5] M. Lyubich. Teichmüller space of Fibonacci maps. Preprint IMS at Stony Brook,

#1993/12.

[L6] M. Lyubich. On the borderline of real and complex dynamics. Proc. IMS, Zürich 1994.
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[Poi] H. Poinvaré. Les methodes nouvelle de la mécanique cêleste.
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