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Throughout these talks we assume that N is an interval or a circle
and that f : N → N is real analytic. For example:

f (x) = ax(1− x) or f (x) = x2 + c
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One of the reasons real one-dimensional dynamics has been such
an exciting field is because

the theory is far from trivial, yet almost complete;

the theory can be considered as a model for what can happen
in higher dimensions.

My first talk will be about theorems that can be obtained by
real tools.

The later talks will then discuss why one introduces complex
tools

Sebastian van Strien, Imperial College Real one-dimensional dynamics



Real methods: (for example) results about attractors

Notation: ω(x) is the set of accumulation points of the sequence
x , f (x), f 2(x), . . . .

It would be great to describe all orbits of f , but it turns out to be
much more fruitful to describe attractors and ergodic properties.

We say that a compact forward invariant set is a topological resp.
metric attractor if

B(X ) = {x ; ω(x) ⊂ X}

is of second Baire category (i.e. countable intersection of open
and dense) resp. has positive Lebesgue measure, and if for any
X ′ ! X , B(X ′) does not have this property.
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Why complex methods: density of hyperbolicity and rigidity

The nicest maps are those where each attractor is a hyperbolic
periodic orbits. These maps are called the hyperbolic.

We will sketch a proof that - in some sense - most maps are
hyperbolic.

These latter results rely on constructing an extension of f to the
complex plane.

This interplay of real and complex methods in interval dynamics
will be one of the main topics of these lectures.
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First Lecture

Real bounds and ergodic

properties.
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Description of attractors

Theorem

Each map has at least one and at most a finite number of
attractors. If X is an attractor then one of the following:

1 X is a periodic attractor;

2 X = ω(c) where c is a critical point of f so that ω(c) is a
Cantor set which is minimal and has zero Lebesgue measure;

3 X is equal to a finite union of intervals which contains a
critical point (or equal to the entire space N)

Definition: An invariant set is called minimal if each forward orbit
is dense in ω(c).

Corollary (Denjoy): An attractor of a circle diffeomorphism is
either the whole circle or a periodic orbit.
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Examples

Examples of maps f : [0, 1] → [0, 1]:

f (x) = 2x(1− x). Then x = 1/2 is an attracting fixed point.

f (x) = ax(1− x) is an infinitely renormalizable map where the
parameter a is at the accumulation of period doubling: there
exists a sequence of intervals Jn and integers p(n) so that

Jn, . . . , f
p(n)−1(Jn) have disjoint interiors

and
f p(n)(Jn) ⊂ Jn.

The resulting attractor is a Cantor set. It turns out this NOT
the only example of a Cantor attractor.

f (x) = 4x(1− x). In this case the attractor is [0, 1] and the
map is conjugate to a tent map with slope ±2. There are
infinitely many periodic orbits (or all periods), but a.e. point
x ∈ [0, 1] has a dense orbit in [0, 1].
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Historical Background

The proof in the non-invertible case has a long history:
[Guc79, dMvS89, BL89, Lyu89, MdMvS92, vSV04]

Note that the objects in the classification in the theorem is
the same, regardless whether the attractor is a topological or
a metric one.

Milnor posed the question whether a metric attractor is also a
topological attractor (and vice versa). The answer turns out
to be NO, as we will see.
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Nice Intervals and first return maps

For simple maps such as f (x) = 4x(1− x) one describe the map
through a Bernoulli or Markov setting:

J1 → J1 ∪ J2, J2 → J1 ∪ J2

where J1 = [0, 1/2] and J2 = [1/2, 1]. However, for most maps this
is not possible.

Instead: use first return maps to so-called nice intervals.

Let I be an interval, and assume that there exists a (minimal)
n > 0 so that f n(x) ∈ I . Then we denote the component of
f −n(I ) containing x by by Lx(I ).

An interval is called nice if no iterate of x ∈ ∂I ever gets
mapped into the interior of I .

If I is nice then Lx(I ) ⊂ I whenever x ∈ I .

This makes it useful to work with first return domains.
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If I is nice, then a pullback Lx(I ) is also nice.

Two pullbacks of I are either disjoint, or one is contained in
the other.

Nice intervals are easy to find.

Indeed, let’s say f is unimodal. Then take a periodic orbit,
choose p in the orbit ‘closest to the critical point’. Then
I = [p, p′] is a nice interval where p′ so that f (p′) = p.

The first return map RI : Dom(I ) → I to I has (usually
infinitely many) diffeomorphic branches and a folding branch.

One of the main challenges is to control the distortion. If all the
branches were linear, then one knows essentially everything.
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Notation and terminology

If T = [a− x , a+ x ] is an interval and τ > 0 then we define

τ · T = [a− τx , a+ τx ].

reminder: Lx(I ) is the component of f −n(I ) containing x
where n is minimal so that f n(x) ∈ I .

J1, . . . , Jk have intersection multiplicity m if any point x is
contained in at most m of the intervals J1, . . . , Jk .

If f n(x) ∈ T where n is minimal, then the pullback of T is
Lx(T ) and the pullback chain is the collection of intervals
Lx(T ),Lf (x)(T ),Lf n−1(x)(T ),Lf n(x)(T ) = T .

Let f have b critical points ci with critical order li . Then we
say that f has type b = (l1, . . . , lb).
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Tools: Schwarzian derivative

The theorem require estimates on high iterates of a map. Since f
is non-linear, as there are critical points, this is not so easy.

Schwarzian derivative: Define

Sf (x) =
f ′′′(x)f ′(x)− (3/2)f ′′(x)

[f ′(x)]2
.

Then S(f ◦ g) = Sf [g ′(x)]2 + Sg . Hence

Sf < 0 =⇒ Sf n < 0 for all n ∈ N.

Koebe: Then for δ > 0 there exists K so that the following
holds. If Sg < 0 and g : T → T ′ := g(T ) is a diffeomorphism
then for each x , y ∈ J so that g(x) ∈ (1− δ)g(T ) one has
|Dg(x)|/|Dg(y)| ≤ K . See blackboard

Sebastian van Strien, Imperial College Real one-dimensional dynamics



Negative Schwarzian appear naturally:

Let f be a polynomial of degree ≥ 2 with real coefficients and
assume that all zeros of Df are real. Then Sf < 0.

(Hint: By assumption Df (x) = A
∏n

j=1(x − aj) where aj are
real. Then

Sf (x) = 2
∑

i<j

1

(x − ai )(x − aj)
−

3

2

[

∑

i

1

(x − ai )

]2

.

It is not hard to see that this is negative for x real. (There is
a more insightful way of showing this, which we will discuss
briefly below.)
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Many papers assumes that a map has negative Schwarzian. This
simplifies because

each periodic attractor has a critical point in its immediate
basin

one has Koebe control on diffeomorphic branches.

It turns out that the assumption Sf < 0 - with extra work - can
always be replaced by assuming:

all periodic points of f are hyperbolic and repelling.
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Cross-Ratio distortion

Schwarzian derivative is closely related to cross-ratio (there is
a formula...)

Here J ⊂ T , then C (T , J) =
|T ||J|

|L||R |
where L,R are the

components of T − J.

If f : T → f (T ) is a continuous bijection then one can
consider the expansion of the cross-ratio:

C (fT , fJ)

C (T , J)
.
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Cross-Ratio and Poincaré metric

Expansion of cross-ratio corresponds to Sf < 0 and also to
contraction of Poincaré metric.

One can put the Poincaré metric on CT = (C− R) ∪ T .
Then C (T , J) is equal to the Poincaré metric of J.

Another way of showing Sf < 0 for certain polynomials:

Take f : C → C a real polynomial with only real critical points
and so that f |T is a diffeomorphism.

Then define f −1 : Cf (T ) → CT by analytic continuation.

Example f (z) = z2, T = [1, 2], f (T ) = [1, 4], see blackboard.

The map f −1 : Cf (T ) → f −1(Cf (T )) is a conformal bijection
and therefore an isomorphism w.r.t. the Poincaré metric on
these sets.

Since f −1(Cf (T )) ⊂ CT we get that f −1 : Cf (T ) → CT is
contracts w.r.t. the Poincaré metric on these sets. This proves
Sf < 0.
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Distortion control due to disjointness

Many maps do not have negative Schwarzian. It turns out that
one can use distortion of cross-ratios instead.

Theorem (Koebe in the case of disjoint intervals)

Assume that J ⊂ T and f n|T is a diffeomorphism, and the
intersection multiplicity of T , . . . , f n−1(T ) is at most m.

Then Koebe holds (with bounds depending on m).
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Real Bounds

One of the most basic tools in real one-dimensional dynamics are
real bounds

Theorem

[vSV04] Assume that I is a nice interval with x ∈ I and assume
that RI (x) /∈ Lx(I ). Then (1 + δ)L2

x(I ) ⊂ Lx(I ).

Let’s explain some of the ideas behind the proof and why this is
helpful.

Sebastian van Strien, Imperial College Real one-dimensional dynamics



The smallest interval argument

Let J, . . . , f n(J) be disjoint intervals. Then one of them, f k(J), is
the smallest. Assume the smallest is not the left or right most
interval. Then the smallest f k(J) has two larger intervals f l(J)
and f r (J) to its right and its left. Now take

T ′ = [f l(J), f r (J)] ⊃ f k(J)

and pullback T ′ ⊃ f n(J) to T ⊃ J.

the resulting chain has multiplicity ≤ 3;

(1 + δ)T ⊃ J.
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The spiral structure argument

Let’s take x ∈ I and assume that x visits I at least n times. Let
J0, J1, J2, . . . be the return domains x visits consecutively.

Fix ρ > 0. For each n there exists i0 ≤ n so that

P1 (1 + ρ)Ji0 ⊂ I ;

P2 Ji0 has (at least) one ρ-small side and Ji0+1 is contained in a
ρ-small side of Ji0 ;

P3 For all i < i0 properties [P1] and [P2] do not hold (which
means that one has a spiral structure up to time i0) and the
interval Ji0+1 breaks the spiral structure;

P4 Properties [P1] and [P2] do not hold and the spiral structure
holds until time n.

In each situation one obtains space, see blackboard.

Combining these ideas one obtains the proof of the real bounds.
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Corollary (Absence of wandering intervals)

If W , f (W ), . . . are disjoint, then f n(W ) converges to an
attracting periodic orbit.

Sketch of proof of Corollary (proof by contradiction):

By ‘surgery’ one can always assume that f has periodic orbits
(and therefore has nice intervals), see blackboard.

Let x be an accumulation point of the orbit of W .
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Sketch of the proof of absence of wandering intervals

Using (a small part of) the proof of real bounds, one can show that
there exists a nested sequence of nice intervals In ⊃ I ′n ∋ x so that

(1 + ρ)I ′n ⊂ In
the first visit of W to In is contained in I ′n
after some further time W enters In+1.

Any pullback of In+1 which intersects I ′n is contained in I ′n.

This gives

(1 + ρ′)LW (I ′n) ⊂ LW (In) and LW (In+1) ⊂ LW (I ′n).

Combining this gives

(1 + ρ′)LW (In+1) ⊂ LW (In)

and therefore

(1 + ρ′)nW ⊂ (1 + ρ′)nLW (In+1) ⊂ LW (I0).

But since the length of (1 + ρ′)nW tends to infinity, this gives a
contradiction.

Sebastian van Strien, Imperial College Real one-dimensional dynamics



Application of real bounds

Theorem [Koebe without disjointness]

Assume all periodic orbits of f are hyperbolic and repelling.

Then Koebe holds on diffeomorphic branches.
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Examples of results one can obtain using real methods:
Invariant measures

Definition: f has an absolutely continuous invariant probabiltiy
measure or an acip, if there exists a probability measure µ, so that

µ(f −1(B)) = µ(B) for each measurable set B and

µ(B) is small when B has small Lebesgue measure.

Theorem

The map f (x) = 4x(1− x) has an acip.

It is enough to show that ∀ǫ > 0 there exists δ > 0 so that for
each measurable set A ⊂ [0, 1] of Lebesgue measure < δ one
has f −n(A) has Lebesgue measure < ǫ for any n ≥ 0.

If A is an interval which does not contain 0 or 1, then this
immediately follows from Koebe.

One can reduce the general case to this situation.

Sebastian van Strien, Imperial College Real one-dimensional dynamics



Invariant Measures

There is a long history of results on this (going back to the 50’s),
with well-known results by Misiurewicz, Benedicks-Carleson,
Collet-Eckmann, Nowicki-vS and others. The sharpest result is:

Theorem ([BSvS03] and [BRLSvS08])

Assume that f is real analytic and has no periodic attractors. Then
there exists constant C (b) such that if

lim inf
n

|(f n)′(f (c))| ≥ C

for each critical point c then f has an acip.

There is a remarkable sequel to this result, by Rivera-Lettelier and
& Shen: one has superpolynomial decay of mixing in this case.
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Method of Proof: decomposing pullbacks

Consider a set A of small size

Aim: estimate f −n(A).

Distinguish components of f −n(A).

A ‘good’ component J is one for where exists a
neighbourhood T ⊃ J so that

f n|T is a diffeomorphism
f n(T ) ⊃ (1 + ξ)f n(J) where ξ is large

The Lebesgue measure of all good components of f −n(A) is
obtained in this way

Other components: decompose these branches and use an
inductive estimate.
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Wild attractors

Theorem (Existence of Wild attractors, [BKNvS96])

There exist maps of the form f (z) = zd + c with c ∈ R and d
even (and large) with an invariant Cantor set which is a metric,
but not a topological attractor.

Theorem (Non-existence of Wild attractors in the quadratic case,
[Lyu94])

Assume that f is unimodal and has a quadratic critical point then
the notions of topological and metric attractor coincide.

Note that wild attractors also exist for certain real polynomials of
higher degree with only non-degenerate critical points.
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Method of proof: Random Walks

One can decompose the space into disjoint intervals Jn

Each interval Jn maps diffeomorphically onto a countable
union of such intervals

One has sufficient control on non-linearity

Probabilistic proofs to show what happens with points, see
blackboard.
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Intemingled attractors

A map with several critical points can have several attractors
whose basins are intermingled:

Theorem ([vS96])

There exists a polynomial f : [0, 1] → [0, 1] with two critical points
with two disjoint invariant Cantor sets Λi so that the basin of each
of these sets is dense and has positive Lebesgue measure.
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Some questions for Marco Martens

Question (Wild attractors for two-dimensional diffeomorphisms)

Let M = S2. Are there diffeomorphisms f : M → M which have
wild Cantor attractors? (That is, metric but not topological
attractor.) It is well-known that Hénon maps can have a Cantor set
as an attractor, see [GvST89], [DCLM05] and Martens’ lectures.
Do these Cantor sets necessarily have to be of solenoidal type?

Question (Wandering domains for Hénon maps)

Let H be a Hénon map. Is it possible for H to have wandering
domains, i.e. is it possible that there exists an open set U so that
U, f (U), . . . are all disjoint and so that U is not contained in the
basin of a periodic attractor?

Remark: Dima Turaev has proven that cubic diffeomorphism of the
plane can have such wandering domains.
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