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Holography

in theory of gravity,  # of qubits describing a region ≦ its surface area
[‘t Hooft, Susskind, Bousso]

Motivated by considerations of black holes
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Black holes

Black hole = region of spacetime which cannot communicate 
with the external Universe
In Nature, results as endpoint of gravitational collapse
In general relativity, specific solution of Einstein’s equations:

Boundary of a black hole = event horizon
Important properties:  horizon area     and surface gravity A

A 
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Black hole thermodynamics

Laws of BH mechanics mimic laws of thermodynamics:
0.  is constant over horizon

for stationary BH

1. dM = (1/8⇡) dA+ ⌦H dJ

2. �A � 0 in any process

3. Impossible to achieve  = 0

by a physical process

0. T is constant over system

in thermal equilibrium

1. dE = T dS +work terms

2. �S � 0 in any process

3. Impossible to achieve T = 0

by a physical process

hence natural to identify                     and
T substantiated by semi-classical calculations [Hawking]:  black holes radiate
entropy bound [Bekenstein] motivated holographic principle 

Natural question:  statistical mechanics origin of BH?

SBH =
A

4 ~ TBH =
~
2⇡

[‘t Hooft, Susskind,
Bousso]



Holography

Concrete realization:   AdS/CFT correspondence:

in theory of gravity,  # of qubits describing a region ≦ its surface area
[‘t Hooft, Susskind, Bousso]

More than just counting of # qubits:  physical equivalence 
between two theories formulated in different # of 
spacetime dimensions
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AdS/CFT correspondence

String theory (∋ gravity)  ⟺  gauge theory (CFT) 
“in bulk”  asymp. AdS × S “on boundary”

✴ Gravitational theory maps to non-gravitational one!
✴ Holographic:  gauge theory lives in fewer dimensions.

Key aspects:

‘soup can’ diagram of AdS:

t

r

here label is everything...

[Maldacena]



AdS/CFT correspondence

✴ better analogy: stereogram...

...but infinitely more complicated



AdS/CFT correspondence

String theory (∋ gravity)  ⟺  gauge theory (CFT) 
“in bulk”  asymp. AdS × K “on boundary”

✴ Gravitational theory maps to non-gravitational one!
✴ Holographic:  gauge theory lives in fewer dimensions.
✴ Strong/weak coupling duality.

Key aspects:

Invaluable tool to:

Use gravity on AdS to learn about strongly coupled field theory
(as successfully implemented in e.g.  AdS/QCD & AdS/CMT programs)

Use the gauge theory to define & study quantum gravity in AdS

Pre-requisite: Understand the AdS/CFT ‘dictionary’...



• Pure AdS  ⟷ vacuum state in CFT

different bulk geometries  ⟷ different states in CFT 
(asymptotically AdS)

Bulk geometries and CFT states

Finite-mass deformations of the bulk 
geometry result in non-zero boundary 
stress tensor 



• Black hole ⟷ thermal state in CFT
• Pure AdS  ⟷ vacuum state in CFT

Black holes in equilibrium

different bulk geometries  ⟷ different states in CFT 



evolving bulk geometries  ⟷ corresponding dynamics 

• Black hole ⟷ thermal state in CFT
• Pure AdS  ⟷ vacuum state in CFT

• Quasinormal modes of perturbed 
black hole ⟷ approach to thermal 
equilibrium [Horowitz,  VH]

Small deviations from equilibrium

• Horizon response properties ⟷ 
transport coefficients in CFT

[Kovtun, Son, Starinets]

• Generic long-wavelength dynamics of a black hole ⟷ 
relativistic conformal fluid dynamics [Bhattacharyya, VH, Minwalla, Rangamani]



Diagnostics of bulk geometry

The bulk metric can be extracted using various CFT probes 
(which are described by geometrical quantities in the bulk):

✴ expectation values of local 
gauge-invariant operators

✴ correlation functions of local 
gauge-invariant operators

✴ Wilson loop exp. vals.

✴ entanglement entropy

Examples:

asymptotic fall-off of 
corresponding conjugate field

in WKB approx., proper length 
of corresponding geodesic

area of string worldsheet 

vol of extremal co-dim.2 surface

CFT probe bulk quantity



E.g.: bulk-cone singularities

Null geodesics in AdS:

Motivation Horizons Geometry Microstates Summary decoding geometry horizon formation

pure AdS

pure AdS = vacuum state in CFT
) expect only the usual bdy light cone singularities

(no additional bulk-cone singularities)

indeed bulk null geodesics connect antipodal points with
�t = ⇡ RAdS :

Veronika Hubeny Decoding bulk geometry from gauge theory correlators

cf. Null geodesics in AdS 
`star’ geometry:

const. t (r , t) plane

✴ Singularities in boundary correlation functions are sensitive to null 
geodesics through the bulk.

✴ Can be used to extract bulk metric from singularity locus

[VH, Liu, Rangamani]
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Entanglement Entropy (EE)

Divide a quantum system into two parts and use EE to 
characterize the amount of correlations between them
For QFT these parts can be spatial regions, separated by a 
smooth entangling surface

A
B

Construct the reduced density matrix        for region A, by 
integrating out degrees of freedom in outside region B.
This characterizes information available in A  
Entanglement entropy of A is the von Neumann entropy of 

SA = �Tr ⇢A log ⇢A

⇢A

⇢A



Entanglement Entropy (EE)

✴ Quantum Information theory:  computational resource
✴ Condensed Matter theory:  diagnostic to characterize topological 

phases, quantum critical points, ...
✴ Quantum Gravity:  suggested as origin of black hole entropy 

[Bombelli,Koul,Lee&Sorkin, Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...] 
and in fact as origin of macroscopic spacetime [van Raamsdonk et.al.]

Applications:



Entanglement Entropy (EE)

Is there a natural bulk dual of EE?
      (= ”Holographic EE”)

✴ Quantum Information theory:  computational resource
✴ Condensed Matter theory:  diagnostic to characterize topological 

phases, quantum critical points, ...
✴ Quantum Gravity:  suggested as origin of black hole entropy 

[Bombelli,Koul,Lee&Sorkin, Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...] 
and in fact as origin of macroscopic spacetime [van Raamsdonk et.al.]

Applications:

AdS/CFT to the rescue?

But: EE = non-local quantity, difficult to measure & to calculate

boundary

bulk

A
B

?Yes!



In time-dependent situations, prescription must be covariantized...

Proposal [Ryu & Takayanagi] for static configurations:

Holographic Entanglement Entropy

✴ In the bulk this is captured by area of 
minimal co-dimension 2 bulk surface  
anchored on        .@A

E boundary

bulk

A

E
EE ⌘ SA = min

@E=@A

Area(E)

4GN



[VH, Rangamani, Takayanagi]
In time-dependent situations, prescription must be covariantized:

Proposal [Ryu & Takayanagi] for static configurations:

Holographic Entanglement Entropy

✴ In the bulk this is captured by area of 
minimal co-dimension 2 bulk surface  
anchored on        .@A

E boundary

bulk

A

E

✴ minimal surface  ⇾  extremal surface
✴ equivalently,     is the surface with zero null expansions; 

cf. light sheet construction [Bousso] 
E

EE ⌘ SA = min
@E=@A

Area(E)

4GN

In case of multiple surfaces,        is given by the minimal area extremal surface 
homologous to     .    [Headrick, Takayanagi, et.al.]

SA
A



Evidence

✴ Leading contribution correctly reproduces the area law
✴ Recover known results of EE for intervals in 2-d CFT    [Calabrese&Cardy] 

both in vacuum and in thermal state
✴ Derivation of holographic EE for spherical entangling surfaces 

[Cassini,Huerta,&Myers]  
✴ Attempted proof by [Fursaev] elaborated & refined by [Headrick, Faulkner, 

Maldacena]

Further suggestive evidence:
✴ Automatically satisfies                   for pure states
✴ Automatically satisfies strong subadditivity [Lieb&Ruskai] & Araki-Lieb 

inequality -- easy to prove on the gravity side, far harder within field 
theory

SA = SB



Application 1:  proof of SSA

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

A1 A2



Application 1:  proof of SSA

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

In time-dependent configurations more involved but true  [Headrick et.al., Wall]

A1 A2

proof in static configurations  [Headrick&Takayanagi]   



[VH, Rangamani, Takayanagi]

Entanglement entropy growth during thermalisation:
Bulk geometry = collapsing black hole (in 3-d):

-2 -1 1 2 3 4
v!

-0.3

-0.2

-0.1

0.1

0.2

0.3

L

v0 ! 0.1 v0 ! 0.5 v0 ! 1

v0 ! "2 v0 ! "1 v0 ! 0

behaviour of extremal surfaces
at times v0 during collapse

corresponding entanglement entropy:

Application 2:  Thermalization
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New & Simpler Construct

What is the most natural  bulk region 
associated to a given region     on the bdy?A

‘natural’: try to be minimalistic, use only bulk causality
Take     to be d-1 dimensional spatial region on bdy of asymp. 
AdSd+1 bulk spacetime.
The unique minimal construction gives a bulk causal wedge 
associated with    ,  and a corresponding d-1 dimensional bulk 
surface 
Using geometrical information, we can associate a number    
to    , corresponding to area of 

⌅A

⌅A

�A

A

A

A



Causal construction

Wednesday, 4 April 12

D+[A]

D�[A]

J+[A]

J�[A]

A

A

Fig. 1: Illustration of the causal sets D and J associated with a 1-dimensional spacelike region A. The

future (past) domain of dependence D±[A] is the set of points which are fully determined by future

(past) evolution of the ‘initial data’ on A. The future (past) domain of influence J±[A] is the set

of points which can be causally influenced by (or can influence) A.

region of interest, ⌥A. We define these notions precisely in §2; for now we simply motivate the

construction.

How can we construct a minimal d + 1 dimensional bulk region from a d � 1-dimensional

spatial region A on the boundary? Clearly, both bulk and boundary domains of influence of

A are infinite sets. Their union is likewise infinite, while their intersection is just the region A

itself, so none of these provides a good starting point. On the other hand, the bulk domain of

dependence of A is only the region A itself, which doesn’t extend into the bulk.2 This leaves

us with the boundary domain of dependence of A, which we’ll denote by ⌃A. This is a finite

d-dimensional region on the boundary, and we will use this boundary region to construct the

bulk region of interest ⌥A. While the bulk domain of dependence of ⌃A is still only ⌃A, and

the bulk domain of influence of ⌃A is still infinitely extended, the intersection of future and past

domains of influence of ⌃A is now a non-trivial bulk region which nevertheless does not extend

infinitely far into the bulk. This is our region ⌥A, called the causal wedge of ⌃A. For orientation

we refer the reader to Fig. 2 of the next section, where we explain the technical construction.

Having constructed a d+ 1 dimensional bulk region ⌥A associated with a d� 1 dimensional

boundary regionA, let us go one step further, and ask whether there is likewise a d�1 dimensional

bulk ‘surface’ naturally associated to A, as this may provide a more useful (albeit more limited)

quantity related to A. We can again answer in the a�rmative, by building on the construction

of ⌥A: keeping to only causally-defined quantities, we define the surface of interest ⌅A as the

(bulk) intersection of the boundaries of the past and future domains of influence of ⌃A. The

boundaries are null surfaces in the bulk which end on the boundary of ⌃A, so their intersection is

a spacelike co-dimension 2 bulk surface which is anchored on the AdS boundary at @A, and for

static geometries lies entirely within the same time slice3 as A. More generally, ⌅A corresponds to

2 As follows immediately from the definition we give in §2, the domain of dependence of a given region trivializes

to just the region whenever that region has co-dimension greater than 1.
3 For static bulk geometries, we use the natural time slices defined by the time translation symmetry, i.e.

– 3 –

Given     , we can determine observables in the entire 

domain of dependence           = region which must influence 
or be influenced by events in 
domain of influence          = region which can influence or 
be influenced by events in 

D±[A]

I±[A]

A

A

⇢A ⌃A

⌃A ⌘ D+[A] [D�[A]



Causal Wedge construction

Consider a bdy region

z

x

t

A

A



z

x

t

A

J+[A]

J�[A]

Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
(and bulk domain of dependence of       is 
just the region      itself).

A

A
A

Causal Wedge construction



Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
(observables in the entire region       can be 
determined solely from the initial conditions 
specified on     ) 

z

x

t

A

A

A

⌃A
⌃A

A

⌃A

Causal Wedge construction



Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
Its bulk domains of influence 
extend arb. deep, but their 
intersection doesn’t

z

x

t

A

A

A ⌃A

J+[⌃A]

J�[⌃A]

Causal Wedge construction



Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
Its bulk domains of influence 
extend arb. deep, but their 
intersection doesn’t
 This defines for us the bulk 
causal wedge of    , denoted

A

A ⌃A
z

x

t

A⌥A

⌥AA

Causal Wedge construction



Bulk causal wedge

Causal information 
surface

Causal holographic 
information 

⌥A ⌘ J�[⌃A] \ J+[⌃A]

⌥A

⌅A ⌘ @+(⌥A) \ @�(⌥A)

⌅A

�A

�A ⌘ Area(⌅A)

4GN

= { bulk causal curves which 
begin and end on       }⌃A

z

x

t

A⌥A
⌅A

Causal Wedge

[VH & Rangamani]



Conjectured meaning of       : �A

We conjecture that       characterizes the amount of 
information contained in     which can be used to reconstruct 
the bulk geometry (entirely in       but possibly further)...

cons. set of local bulk `observers’ starting & ending on bdy inside 
these have access to full     , but the info contained can be reduced:

bulk evolution:  suffices to consider just Cauchy slice for 
holography:  suffices to consider just screen:   natural region associated to      =  

hence natural to identify        with amount of info contained in    
This has entropy-like behavior,  however, it does not 
correspond to a Von Neumann entropy:

e.g. it violates strong subadditivity.
However, it provides a bound on Entanglement entropy;

and coincides in special, maximally-entangled, cases.

�A
A

⌥A

⌥A

⌃A

⌥A

⌅AA
�A A



Main question:

What is the CFT 
interpretation 
of        and       ?�A⌅A

Gather hints 
by considering 
geometrical 
properties and 
behavior of       ... ⌅A

z

x

t

A⌥A
⌅A



General properties of       : ⌅A

Causal information surface        
is a d-1 dimensional spacelike 
bulk surface which:

is anchored on 
lies within (on boundary of)  
reaches deepest into the bulk from 
among surfaces in 
is a minimal-area surface among 
surfaces on             anchored on 

⌅A

@A

@(⌥A)

⌥A

⌥A

However,        is in general not 
an extremal surface       in the 
bulk.

⌅A
EA

@A

z

x

t

A⌥A
⌅A



Cases when       and       coincide:⌅A EA

(a) (b) (c)

Fig. 4: Illustration of the causal wedges ⌥A in three dimensional asymptotically globally AdS3 spacetimes.

The three figures correspond to the three geometries described in Table 2. For convenience we

have chosen the region A to be a half of the boundary S1
, i.e., '0 = ⇡. At the intersection of the

@+(⌥A) and @�(⌥A) lies the causal information surface ⌅A which as we discuss in the text is the

same as the extremal surface EA in these examples. Note that for the static spacetimes (a) and

(b) which correspond to AdS3 and the static BTZ geometry, the surfaces at a fixed time slice t = 0

as shown, while for the stationary rotating BTZ geometry (c), this surface dips above and below

the t = 0 slice in the bulk. [Note that for ease of visualization, we have changed the viewpoint

between the three plots. Also, note that the ‘seams’ are just numerical glitches.]

Finally, to obtain the surface ⌅A we realize that all we need to do owing to the symmetries

of the geometry is to look at the spacelike surface at t = 0 on @M(⌥A). Essentially one inverts

the second expression to obtain j in terms of ': j = cot'0 tan', and substitutes back into r to

get ⌅A:

(a). ⌅A : t = 0 , r2(') =
cos2 '0

sin2 '0 cos2 '� cos2 '0 sin2 '
(3.28)

which indeed agrees with the minimal surface (3.19).

(b). For the static BTZ geometry one can proceed along similar lines. The null geodesics of

interest (emanating from ('0, 0)) are given by:

t(r) = '0 +
1

2r+
ln

p
(1� j2) r2 + j2 r2+ � r+p
(1� j2) r2 + j2 r2+ + r+

(3.29)

'(r) =
1

2r+
ln

p
(1� j2) r2 + j2 r2+ + j r+p
(1� j2) r2 + j2 r2+ � j r+

(3.30)

which determines @+(⌥A). Again using the symmetries we realize the the past and future

Rindler horizons must intersect at t = 0. Then setting t = 0 above and solving for j =

coth(r+'0) tanh(r+') then leads to the desired co-dimension two surface:

(b). ⌅A : t = 0 , r2(') = r2+
cosh2(r+ '0)

sinh2(r+ '0) cosh
2(r+ ')� cosh2(r+ '0) sinh

2(r+ ')
(3.31)

– 21 –

CFT vacuum: thermal density matrix: grand canonical 
density matrix:

pure AdS:

bdy:

static BTZ: rotating BTZ:bulk:

However, in all cases where one is able to compute 
entanglement entropy in QFT from first principles, 
independently of coupling, the surfaces         and         agree!
= When EE can be related to thermal entropy...                 cf. [Myers et.al.]

EA ⌅A



General properties: 

In general        does not penetrate as far into the bulk as the 
bulk extremal surface       associated with
The causal wedge construction is mildly “teleological”  (but only 
on light-crossing timescale) 
Causal Holographic Information       in general bounds EE         
(and coincides in special cases)
However       can violate strong subadditivity -- hence it cannot 
be a von Neumann entropy...
While       cannot penetrate black hole event horizons,       can 
penetrate dynamical black hole horizons (by a limited amount).
Even if      is simply connected region, the causal wedge      can 
be topologically complicated.

EA A
⌅A

A ⌥A

�A

�A

⌅A EA

SA



A

BH

A

BH

Causal wedge can have “holes”

⌅A ⌅A

⌅A

In 3 dimensions: In 5 dimensions:



Causal wedge can have “holes”

Even if      is simply connected region, the causal wedge      
can be topologically complicated.
e.g. in Schw-AdSd with d>3, for sufficiently large region (and 
fixed BH size), the causal wedge `wraps around’ the BH.
conversely, for fixed region     > hemisphere,  ∃ small enough 
BH s.t. the causal wedge has a hole 
⇒        can have two disconnected pieces.  

A ⌥A

⌅A

A

A⌅A
A⌅A

[VH, Rangamani, Tonni]



Implication for entanglement entropy

Important implication:  whenever      is large enough for      
to have two disconnected pieces, there cannot exist a single 
connected extremal (minimal) surface       homologous to    !

A ⌅A

AEA

However, by the homology constraint, part of       must reach around 
the BH.
So       must likewise have two disconnected pieces, one on the 
horizon and one homologous to       (=complement of     )

Hence we have the universal formula for the entanglement 
entropy, whenever      is large enough: 

Automatically saturates the Araki-Lieb inequality
So we can extract BH (thermal) entropy from entanglement 
entropy  [cf. Azeyanagi, Nishioka, Takayanagi]  

EA

Ac

A

A

SA = SAc + SBH

EA



EE is fine-grained observable!

In contrast to the static (i.e. eternal) black hole, for a 
collapsed black hole, there is no non-trivial homology 
constraint on extremal surfaces. 
Hence we always have                    as for a pure state.    
Correspondingly no extremal surface can actually sit precisely at the 
horizon since there is no ‘neck’ (bifurcation surface).
Hence entanglement entropy is sensitive to very ‘fine-
grained’ information:  it can tell whether the black hole is 
eternal or collapsed, arbitrarily late after the collapse (when 
all ‘coarse-grained’ observables have thermalized).
And this in spite of its classical geometrical nature...
Other diagnostics of thermal vs. pure state (e.g. periodicity in imaginary 
time appear much more subtle).

SA = SAc
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Summary for entanglement entropy

The extremal surfaces
can exist in large multiplicities
need not exist for static black hole in single homologous piece
can penetrate horizon of a collapsed black hole

The entanglement entropy
always behaves causally
need not be continuous in region size 
allows us to extract full thermal entropy
need not increase monotonically during thermalization
distinguishes between pure and thermal states (collapsed versus eternal 
black holes), arbitrarily long after ‘themalization‘    
hence is a ‘fine-grained’ observable

EA

SA



Summary for causal wedge & CHI

The causal wedge
is the most natural (minimal nontrivial) bulk spacetime region related to
corresponds to bulk region most easily reconstructed from
cannot penetrate event horizon of a black hole,  but can have ‘holes’

The causal holographic information
coincides with entanglement entropy       in certain special cases              
(when DoFs in     are maximally entangled with those outside)
in general provides an upper bound on entanglement entropy
monotonically increases during thermalization
may behave quasi-teleologically, but only on light-crossing timescales
remains smooth as a function of time and the size of       

⌥A
A

A

A

⇢A

SA

�A



Future directions

What is the direct boundary interpretation/construction of 
the causal holographic surface        and ‘information‘       ?   
What is the bulk dual of the reduced density matrix      ?
Given a bulk location, how do we extract the geometry there 
from the CFT?
How does the CFT encode bulk locality and causality?

⇢A

�A⌅A

Most important questions still remain:



THE END...?


