HOLOGRAPHIC ENTANGLEMENT ENTROPY & CAUSAL HOLOGRAPHIC INFORMATION

Veronika Hubeny

Workshop on Ultracold Atoms and Gauge Theories Trieste, May 14, 2013

OUTLINE

- Motivation & Background
- Holographic Entanglement Entropy
- Causal Holographic Information
- Summary & Outlook

Holography

~ in theory of gravity, # of qubits describing a region ≤ its surface area
 ['t Hooft, Susskind, Bousso]

entropy S is not extensive: $S \not\sim V$ instead, $S \sim A$

~ Motivated by considerations of black holes

Black holes

- Black hole = region of spacetime which cannot communicate with the external Universe
- In Nature, results as endpoint of gravitational collapse
- In general relativity, specific solution of Einstein's equations:

$$R_{ab} - \frac{1}{2} R g_{ab} + \Lambda g_{ab} = 8\pi \mathcal{T}_{ab}$$

- Boundary of a black hole = event horizon
- Important properties: horizon area A and surface gravity κ

Black hole thermodynamics

Laws of BH mechanics mimic laws of thermodynamics:

- 0. κ is constant over horizon for stationary BH
- 1. $dM = (1/8\pi) \kappa dA + \Omega_H dJ$
- 2. $\delta A \ge 0$ in any process
- 3. Impossible to achieve $\kappa = 0$ by a physical process

- 0. T is constant over system in thermal equilibrium
- 1. dE = T dS + work terms
- 2. $\delta S \ge 0$ in any process
- 3. Impossible to achieve T = 0by a physical process
- hence natural to identify $S_{BH} = \frac{A}{4\hbar}$ and $T_{BH} = \frac{\hbar \kappa}{2\pi}$
- T substantiated by semi-classical calculations [Hawking]: black holes radiate
- entropy bound [Bekenstein] motivated holographic principle ['t Hooft, Susskind, Bousso]
- Natural question: statistical mechanics origin of BH?

Holography

~ in theory of gravity, # of qubits describing a region ≤ its surface area
 ['t Hooft, Susskind, Bousso]

entropy S is not extensive: $S \not\sim V$ instead, $S \sim A$

 More than just counting of # qubits: physical equivalence between two theories formulated in different # of spacetime dimensions

Concrete realization: AdS/CFT correspondence:

AdS/CFT correspondence

Key aspects:

- * Gravitational theory maps to non-gravitational one!
- * Holographic: gauge theory lives in fewer dimensions.

AdS/CFT correspondence

* better analogy: stereogram...

...but infinitely more complicated

AdS/CFT correspondence

String theory (\ni gravity) \iff gauge theory (CFT) "in bulk" asymp. AdS \times K "on boundary"

Key aspects:

- * Gravitational theory maps to non-gravitational one!
- * Holographic: gauge theory lives in fewer dimensions.
- * Strong/weak coupling duality.

Invaluable tool to:

- Use gravity on AdS to learn about strongly coupled field theory (as successfully implemented in e.g. AdS/QCD & AdS/CMT programs)
- Use the gauge theory to define & study quantum gravity in AdS
 Pre-requisite: Understand the AdS/CFT 'dictionary'...

Bulk geometries and CFT states

different bulk geometries ↔ different states in CFT (asymptotically AdS)

• Pure AdS \leftrightarrow vacuum state in CFT

Finite-mass deformations of the bulk geometry result in non-zero boundary stress tensor

Black holes in equilibrium

different bulk geometries \leftrightarrow different states in CFT

- Pure AdS \leftrightarrow vacuum state in CFT
- Black hole \leftrightarrow thermal state in CFT

Small deviations from equilibrium

evolving bulk geometries \leftrightarrow corresponding dynamics

- Pure AdS \leftrightarrow vacuum state in CFT
- Black hole \leftrightarrow thermal state in CFT
- Quasinormal modes of perturbed black hole → approach to thermal equilibrium [Horowitz, VH]
- Horizon response properties ↔ transport coefficients in CFT

 Generic long-wavelength dynamics of a black hole ↔ relativistic conformal fluid dynamics [Bhattacharyya,VH, Minwalla, Rangamani]

[[]Kovtun, Son, Starinets]

Diagnostics of bulk geometry

The bulk metric can be extracted using various CFT probes (which are described by geometrical quantities in the bulk):

Examples:

CFT probe

- * expectation values of local gauge-invariant operators
- * correlation functions of local gauge-invariant operators
- * Wilson loop exp. vals.
- entanglement entropy

bulk quantity

asymptotic fall-off of corresponding conjugate field

in WKB approx., proper length of corresponding geodesic

area of string worldsheet

vol of extremal co-dim.2 surface

E.g.: bulk-cone singularities

* Singularities in boundary correlation functions are sensitive to null geodesics through the bulk. [VH, Liu, Rangamani]

* Can be used to extract bulk metric from singularity locus

OUTLINE

- Motivation & Background
- Holographic Entanglement Entropy
- Causal Holographic Information
- Summary & Future directions

Entanglement Entropy (EE)

- ~ Divide a quantum system into two parts and use EE to characterize the amount of correlations between them
- For QFT these parts can be spatial regions, separated by a smooth entangling surface

- ~ Construct the reduced density matrix ρ_A for region A, by integrating out degrees of freedom in outside region B.
- \sim This characterizes information available in A
- ~ Entanglement entropy of A is the von Neumann entropy of $ho_{\mathcal{A}}$

В

$$\mathcal{S}_{\mathcal{A}} = -\mathrm{Tr}\,\rho_{\mathcal{A}}\,\log\rho_{\mathcal{A}}$$

Entanglement Entropy (EE)

Applications:

- * Quantum Information theory: computational resource
- * Condensed Matter theory: diagnostic to characterize topological phases, quantum critical points, ...
- * Quantum Gravity: suggested as origin of black hole entropy [Bombelli,Koul,Lee&Sorkin, Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...] and in fact as origin of macroscopic spacetime [van Raamsdonk et.al.]

Entanglement Entropy (EE)

Applications:

- * Quantum Information theory: computational resource
- * Condensed Matter theory: diagnostic to characterize topological phases, quantum critical points, ...
- * Quantum Gravity: suggested as origin of black hole entropy [Bombelli,Koul,Lee&Sorkin, Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...] and in fact as origin of macroscopic spacetime [van Raamsdonk et.al.]
- But: EE = non-local quantity, difficult to measure & to calculate

AdS/CFT to the rescue?

Is there a natural bulk dual of EE?
 (= ''Holographic EE'')

Yes!

bulk

Holographic Entanglement Entropy

Proposal [Ryu & Takayanagi] for static configurations:

* In the bulk this is captured by area of minimal co-dimension 2 bulk surface \mathfrak{E} anchored on $\partial \mathcal{A}$.

$$EE \equiv S_{\mathcal{A}} = \min_{\partial \mathfrak{E} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{E})}{4 G_N}$$

In time-dependent situations, prescription must be covariantized...

Holographic Entanglement Entropy

Proposal [Ryu & Takayanagi] for static configurations:

* In the bulk this is captured by area of minimal co-dimension 2 bulk surface \mathfrak{E} anchored on $\partial \mathcal{A}$.

$$EE \equiv S_{\mathcal{A}} = \min_{\partial \mathfrak{E} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{E})}{4 G_N}$$

In time-dependent situations, prescription must be covariantized: [VH, Rangamani, Takayanagi]

- * minimal surface → extremal surface
- * equivalently, E is the surface with zero null expansions; cf. light sheet construction [Bousso]

In case of multiple surfaces, S_A is given by the minimal area extremal surface homologous to A. [Headrick, Takayanagi, et.al.]

Evidence

- * Leading contribution correctly reproduces the area law
- * Recover known results of EE for intervals in 2-d CFT [Calabrese&Cardy] both in vacuum and in thermal state
- * Derivation of holographic EE for spherical entangling surfaces [Cassini,Huerta,&Myers]
- * Attempted proof by [Fursaev] elaborated & refined by [Headrick, Faulkner, Maldacena]

Further suggestive evidence:

- * Automatically satisfies $S_{\mathcal{A}} = S_{\mathcal{B}}$ for pure states
- * Automatically satisfies strong subadditivity [Lieb&Ruskai] & Araki-Lieb inequality -- easy to prove on the gravity side, far harder within field theory

Application I: proof of SSA

• strong subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$ $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

$$\mathcal{A}_1 \qquad \mathcal{A}_2$$

Application I: proof of SSA

strong subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$ $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

• proof in static configurations [Headrick&Takayanagi]

In time-dependent configurations more involved but true [Headrick et.al., Wall]

Application 2: Thermalization

Entanglement entropy growth during thermalisation: Bulk geometry = collapsing black hole (in 3-d):

> behaviour of extremal surfaces at times vo during collapse

corresponding entanglement entropy:

[VH, Rangamani, Takayanagi]

OUTLINE

- Motivation & Background
- Holographic Entanglement Entropy
- Causal Holographic Information
- Summary & Future directions

New & Simpler Construct

What is the most natural bulk region associated to a given region \mathcal{A} on the bdy?

- 'natural': try to be minimalistic, use only bulk causality
- Take \mathcal{A} to be d-l dimensional spatial region on bdy of asymp. AdS_{d+l} bulk spacetime.
- The unique minimal construction gives a bulk causal wedge associated with \mathcal{A} , and a corresponding d-1 dimensional bulk surface $\Xi_{\mathcal{A}}$
- Using geometrical information, we can associate a number χ_A to \mathcal{A} , corresponding to area of Ξ_A

Causal construction

- domain of dependence $D^{\pm}[\mathcal{A}] = \text{region which must influence}$ or be influenced by events in \mathcal{A}
- domain of influence I[±][A] = region which can influence or be influenced by events in A

• Given $\rho_{\mathcal{A}}$, we can determine observables in the entire $\Diamond_{\mathcal{A}}$

• Consider a bdy region \mathcal{A}

- Consider a bdy region \mathcal{A}
- Its bulk domains of influence extend arb. deep into the bulk and have trivial intersection

(and bulk domain of dependence of \mathcal{A} is just the region \mathcal{A} itself).

- Consider a bdy region \mathcal{A}
- Its bulk domains of influence extend arb. deep into the bulk and have trivial intersection
- Consider a bdy domain of dependence of \mathcal{A} , denoted $\Diamond_{\mathcal{A}}$

(observables in the entire region $\Diamond_{\mathcal{A}}$ can be determined solely from the initial conditions specified on \mathcal{A})

t

 \mathcal{X}

 $\langle \rangle_{\mathcal{A}}$

 \mathcal{Z}

 $J^{-}\Diamond_{\mathcal{A}}$

- Consider a bdy region \mathcal{A}
- Its bulk domains of influence extend arb. deep into the bulk and have trivial intersection
- Consider a bdy domain of dependence of \mathcal{A} , denoted $\Diamond_{\mathcal{A}}$
- Its bulk domains of influence extend arb. deep, but their intersection doesn't

- Consider a bdy region \mathcal{A}
- Its bulk domains of influence extend arb. deep into the bulk and have trivial intersection
- Consider a bdy domain of dependence of \mathcal{A} , denoted $\Diamond_{\mathcal{A}}$
- Its bulk domains of influence extend arb. deep, but their intersection doesn't
- This defines for us the bulk causal wedge of \mathcal{A} , denoted $\blacklozenge_{\mathcal{A}}$

Causal Wedge

- Bulk causal wedge ♦_A
 - $\blacklozenge_{\mathcal{A}} \equiv J^{-}[\diamondsuit_{\mathcal{A}}] \cap J^{+}[\diamondsuit_{\mathcal{A}}]$
 - $= \{ \text{ bulk causal curves which } \\ \text{begin and end on } \Diamond_{\mathcal{A}} \}$
- Causal information surface $\Xi_{\mathcal{A}}$

 $\Xi_{\mathcal{A}} \equiv \partial_+(\blacklozenge_{\mathcal{A}}) \cap \partial_-(\diamondsuit_{\mathcal{A}})$

• Causal holographic information χ_A

$$\chi_{\mathcal{A}} \equiv \frac{\operatorname{Area}(\Xi_{\mathcal{A}})}{4 \, G_N}$$

[VH & Rangamani]

Conjectured meaning of χ_A :

- We conjecture that XA characterizes the amount of information contained in A which can be used to reconstruct the bulk geometry (entirely in ♦A but possibly further)...
 - cons. set of local bulk `observers' starting & ending on bdy inside $\Diamond_{\mathcal{A}}$
 - these have access to full \blacklozenge_A , but the info contained can be reduced:
 - bulk evolution: suffices to consider just Cauchy slice for $\blacklozenge_{\mathcal{A}}$
 - holography: suffices to consider just screen: natural region associated to $\mathcal{A} = \Xi_{\mathcal{A}}$
 - hence natural to identify $\chi_{\mathcal{A}}$ with amount of info contained in \mathcal{A}
- This has entropy-like behavior, however, it does not correspond to a Von Neumann entropy:
 - e.g. it violates strong subadditivity.
- However, it provides a bound on Entanglement entropy;
 - and coincides in special, maximally-entangled, cases.

Main question:

What is the CFT interpretation of Ξ_A and χ_A ?

Gather hints by considering geometrical properties and behavior of $\Xi_{\mathcal{A}}$...

General properties of $\Xi_{\mathcal{A}}$:

- Causal information surface $\Xi_{\mathcal{A}}$ is a *d*-*I* dimensional spacelike bulk surface which:
 - is anchored on $\partial \mathcal{A}$
 - lies within (on boundary of) $\blacklozenge_{\mathcal{A}}$
 - reaches deepest into the bulk from among surfaces in ♦_A
 - is a minimal-area surface among surfaces on $\partial(\blacklozenge_{\mathcal{A}})$ anchored on $\partial\mathcal{A}$
- However, $\Xi_{\mathcal{A}}$ is in general not an extremal surface $\mathfrak{E}_{\mathcal{A}}$ in the bulk.

Cases when $\Xi_{\mathcal{A}}$ and $\mathfrak{E}_{\mathcal{A}}$ coincide:

• However, in all cases where one is able to compute entanglement entropy in QFT from first principles, independently of coupling, the surfaces $\mathfrak{E}_{\mathcal{A}}$ and $\Xi_{\mathcal{A}}$ agree!

cf. [Myers et.al.]

(c)

• = When EE can be related to thermal entropy...

(a)

(b)

bdy: CFT vacuum: thermal density matrix: grand canonical density matrix: bulk: static BTZ: rotating BTZ: pure AdS:

General properties:

- In general $\Xi_{\mathcal{A}}$ does not penetrate as far into the bulk as the bulk extremal surface $\mathfrak{E}_{\mathcal{A}}$ associated with \mathcal{A}
- The causal wedge construction is mildly "teleological" (but only on light-crossing timescale)
- Causal Holographic Information χ_A in general bounds EE S_A (and coincides in special cases)
- However XA can violate strong subadditivity -- hence it cannot be a von Neumann entropy...
- While Ξ_A cannot penetrate black hole event horizons, \mathfrak{E}_A can penetrate dynamical black hole horizons (by a limited amount).
- Even if \mathcal{A} is simply connected region, the causal wedge $\blacklozenge_{\mathcal{A}}$ can be topologically complicated.

Causal wedge can have "holes"

- Even if \mathcal{A} is simply connected region, the causal wedge $\blacklozenge_{\mathcal{A}}$ can be topologically complicated.
- e.g. in Schw-AdS_d with d>3, for sufficiently large region (and fixed BH size), the causal wedge `wraps around' the BH.
- conversely, for fixed region \mathcal{A} > hemisphere, \exists small enough BH s.t. the causal wedge has a hole
- $\Rightarrow \Xi_A$ can have two disconnected pieces. [VH, Rangamani, Tonni]

Implication for entanglement entropy

- Important implication: whenever \mathcal{A} is large enough for $\Xi_{\mathcal{A}}$ to have two disconnected pieces, there cannot exist a single connected extremal (minimal) surface $\mathfrak{E}_{\mathcal{A}}$ homologous to \mathcal{A} !
 - However, by the homology constraint, part of $\mathfrak{E}_{\mathcal{A}}$ must reach around the BH.
 - So $\mathfrak{E}_{\mathcal{A}}$ must likewise have two disconnected pieces, one on the horizon and one homologous to \mathcal{A}^c (=complement of \mathcal{A})
- Hence we have the universal formula for the entanglement entropy, whenever ${\cal A}$ is large enough:

 $S_{\mathcal{A}} = S_{\mathcal{A}^c} + S_{BH}$

- Automatically saturates the Araki-Lieb inequality
- So we can extract BH (thermal) entropy from entanglement entropy [cf. Azeyanagi, Nishioka, Takayanagi]

EE is fine-grained observable!

- In contrast to the static (i.e. eternal) black hole, for a collapsed black hole, there is no non-trivial homology constraint on extremal surfaces.
- Hence we always have $S_{\mathcal{A}} = S_{\mathcal{A}^c}$ as for a pure state.
- Correspondingly no extremal surface can actually sit precisely at the horizon since there is no 'neck' (bifurcation surface).
- Hence entanglement entropy is sensitive to very 'finegrained' information: it can tell whether the black hole is eternal or collapsed, arbitrarily late after the collapse (when all 'coarse-grained' observables have thermalized).
- And this in spite of its classical geometrical nature...
- Other diagnostics of thermal vs. pure state (e.g. periodicity in imaginary time appear much more subtle).

OUTLINE

- Motivation & Background
- Holographic Entanglement Entropy
- Causal Holographic Information
- Summary & Future directions

Summary for entanglement entropy

- The extremal surfaces $\mathfrak{E}_{\mathcal{A}}$
 - can exist in large multiplicities
 - need not exist for static black hole in single homologous piece
 - can penetrate horizon of a collapsed black hole
- The entanglement entropy $S_{\mathcal{A}}$
 - always behaves causally
 - need not be continuous in region size
 - allows us to extract full thermal entropy
 - need not increase monotonically during thermalization
 - distinguishes between pure and thermal states (collapsed versus eternal black holes), arbitrarily long after 'themalization'
 - hence is a 'fine-grained' observable

Summary for causal wedge & CHI

- The causal wedge $\blacklozenge_{\mathcal{A}}$
 - is the most natural (minimal nontrivial) bulk spacetime region related to ${\cal A}$
 - corresponds to bulk region most easily reconstructed from $ho_{\mathcal{A}}$
 - cannot penetrate event horizon of a black hole, but can have 'holes'
- The causal holographic information $\chi_{\mathcal{A}}$
 - coincides with entanglement entropy S_A in certain special cases (when DoFs in A are maximally entangled with those outside)
 - in general provides an upper bound on entanglement entropy
 - monotonically increases during thermalization
 - may behave quasi-teleologically, but only on light-crossing timescales
 - remains smooth as a function of time and the size of ${\cal A}$

Future directions

Most important questions still remain:

- What is the direct boundary interpretation/construction of the causal holographic surface Ξ_A and 'information' χ_A ?
- What is the bulk dual of the reduced density matrix $\rho_{\mathcal{A}}$?
- Given a bulk location, how do we extract the geometry there from the CFT?
- How does the CFT encode bulk locality and causality?

