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  How Dirac’s singleton 
organizes the spectrum of a 

3D particle moving in a  
non-Abelian gauge potential 



  Towards a geometrical 
understanding of 3D Landau 

Levels and Topological 
Insulators 



Radially symmetric problems in 3D  

QM 101:   

Radially symmetric potential V(r) leads to a manifest 
SO(3) symmetry in the 1-particle spectrum 

V (!r ) =V (r)

E 

l=0 
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l=2 
l=0 

levels labeled by l; 
per level a total of  

2l+1 states: 



Enhanced symmetry (i) – Harmonic Osc. 

QM 102:   

Spin-less particle in harmonic potential displays 
degeneracies organized by an SU(3) symmetry 

V (!r ) = r2 / 2

E 

l=0 

l 

l=1 

l=2 l=0 

l=1 l=3 

l=2 l=0 l=4 

N-th level: single 
 SU(3) irrep with 

Dynkin labels (n0), 
dimension n(n+1)/2 



Enhanced symmetry (ii) – Runge Lenz 

QM 103:   

Spin-less particle in 1/r potential displays 
degeneracies organized by an SO(4) symmetry 

V (!r ) = !q2 / r

E l=0 

2p 

3d 

2s 

3p 3s 

n-th level: single 
 SO(4) irrep of 
dimension n2 

1s 

l=1 l=2 



Enhanced symmetry (ii) – Runge Lenz 

QM SO(4) degeneracies can be traced back to an 
higher integral of motion (Laplace-Runge-Lenz 
vector) of the classical Kepler orbits 

V (!r ) = !q2 / r

!
A = !p!

!
L "mkr̂



Enhanced symmetry (iii) – SO coupled HO 

today:   

Spin-1/2 particles in harmonic potential and with SO 
coupling of specific strength displays degeneracies 
organized by a `stretched SO(3,2)’ non-compact 
symmetry. 

Physical states grouped into (truncations of) singleton 
representation of SO(3,2). 
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Enhanced symmetry (iii) – SO coupled HO 

quick determination spectrum:  

SO term shifts HO energies according to  

HHO,SO =
p2
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S = +l for j = l + 1
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Enhanced symmetry (iii) – SO coupled HO 

+ branch: j=l+1/2 

E 

l=0 l=1 l=2 l=3 

levels with infinite 
degeneracies l=0,1,2,… 

at E=2k++3/2: 
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Enhanced symmetry (iii) – SO coupled HO 

- branch: j=l-1/2 

E 

l=1 l=2 l=3 

finite degeneracies  
at E=2k-+5/2: 

5/2 

9/2 k-=1 

k-=2 13/2 

17/2 



spin-1/2 particle in  
non-Abelian gauge connection 

H =
1
2m
( !p! q

c

!
A)2 +V (r)

H reduces to HHO,SO  by direct expansion 

A!"
a =

1
2
g#abc$!"

b rc

V (r) = ! 1
2
m!0

2 r2

!0 =
qg
2mc

[Yi Li and Congjun Wu, arXiv:1103.5422] 



spin-1/2 particle in  
non-Abelian gauge connection 

H =
1
2m
( !p! q

c

!
A)2 +V (r)

•  Aharanov-Casher potential, TR symmetry unbroken 

•  3D generalization of quantum spin Hall hamiltonian 

•  possible physical realization in strained 
   semiconductors or with ultracold atoms with  
   synthetic spin-orbit coupling 

[Yi Li and Congjun Wu, arXiv:1103.5422] 



Symmetries of SO coupled HO 

Conserved charges: J2, L2, Jz, A3, with 

HHO,SO =
p2
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A3 =
!
L !
!
! +1

L2!klm = l(l +1)!klm J 2!klm = j( j +1)!klm

A3!klm = !l !klm Jz!klm =m!klm

E+ = 2k+ + 3
2
, k+ = 0,1,... E! = 2k! + 5

2
, k! =1,2,...

Energies of +/- branches 



Spectrum of HHO,SO 
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Symmetry operators 

angular momentum J+, J-, Jz 

step-operators for A3 : 



 J+ 
 

Spectrum of HHO,SO 
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HHO,SO - ½ 
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Symmetry operators 

Further commutators give more complicated 
expressions -> not a closed Lie algebra … ?! 

Commuting with J+, J-  leads to  



Symmetry operators - ctd 

after rescaling (with F=HHO+A3) 

obtain commutators of an SO(2,1) Lie algebra 
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HHO,SO - ½ 
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Symmetry operators - ctd 

Rescaling explains that 
physical symmetry 
operators  Ã±  can give 
finite representations 
whereas those of SO(2,1) 
generators  A±  are 
necessarily infinite 

k-=1 states in – branch  
annihilated by Ã-   

since F=3/2  

m 
 



Holstein-Primakoff 

non-linear transformation maps canonical boson (a+, a) 
with semi-infinite representations, into Lie algebra  
SU(2) with finite (dimension 2s+1) representation 

S+ = ! 2s (1! a
+a
2s
) a

S! = ! 2s a+ (1! a
+a
2s
)

Sz = !(s! a+a)
Sz=-s state 
annihilated 
by S- since  

a+a=2s 

S- 

Sz=-s 

Sz=+s 



Algebra of rescaled symmetry operators 

this is non-compact Lie algebra SO(3,2) 

2

A+

A−

J− J+

B+

B−

C+

C−

FIG. 1: Spectrum of 3D HO with and without spin-orbit cou-
pling. Black dots are the pure HO states. The green dots
are the SO(3) multiplets of the +branch. The green line con-
nects the multiplets of equal energy, showing that each level
is infinitely degenerate. The blue dots are the –branch mul-
tiplets, again the once connected by a blue line are (finitely)
degenerate.

operators that do this are

Ã+ = 1√
2
(�L · �σa†3 − L+a†+ − L−a†−) (5)

Ã− = 1√
2
(a3

�L · �σ − a+L− − a−L+) (6)

where the ai and a†i operators are the usual step oper-
ators of the oscillator and the Li are the orbital angu-
lar momentum operators. The above generators do not
commute with the Ji, upon commuting we obtain the
following operators

B̃+ = 1√
2
(�L · �σa†− + L3a

†
− − L+a†3) (7)

B̃− = 1√
2
(a−�L · �σ + a−L3 − a3L−) (8)

C̃+ = 1√
2
(�L · �σa†+ − L3a

†
+ − L−a†3) (9)

C̃− = 1√
2
(a+

�L · �σ − a+L3 − a3L+) (10)

However, these operators as yet do not form a closed Lie
algebra. Upon calculating all the commutators, one finds
10 generators but some of the commutators yield non-
linear expressions in them. We do not write them down
here because surprisingly, this algebra can be turned into
a (linear) Lie algebra by performing a non-linear trans-
formation à la Holstein-Primakoff [4]. Using the operator
F = H0 + A3 which commutes with H and A3, we can
factorize the raising and lowering operators as

Ã+ =
�
F − 3

2

� 1
2 A+ (11)

Ã− = A−
�
F − 3

2

� 1
2 (12)
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FIG. 2: Root diagram of the rescaled algebra corresponding
to SO(3, 2).

yielding the SO(2, 1) commutation relations together
with A3

[A3, A±] = ±A± [A+, A−] = −A3 (13)

Now we can extend this algebra, constructing the appro-
priate B and C operators, using the commutation rela-
tions of these A generators with the Ji. This way we find
the 10-dimensional Lie algebra of rank 2 corresponding
to the noncompact algebra SO(3, 2). As Cartan subal-
gebra we choose {J3, A3}, the root diagram is shown in
FIG. 2 and the non-zero commutators are

[A3, B±] = ±B± [A3, C±] = ±C± (14)
[J3, B±] = ±B± [J3, C±] = ∓C± (15)
[J±, A±] = ±B± [J∓, B±] = ±A± (16)
[J∓, A±] = ±C± [J±, C±] = ±A± (17)
[A∓, B±] = ±J± [B+, B−] = −A3 − J3 (18)
[A±, C∓] = ∓J± [C+, C−] = −A3 + J3 (19)

B±, C± are the generators in (9–8) with the same rescal-
ing factor as in A±. The coefficients of the above opera-
tors when acting on an eigenstate of H are

J±ψnlm =
�

1
2 (l −m∓ 1

2 )(l + m ± 1
2 )ψnlm±1 (20)

A±ψnlm =
�

1
2 (l −m ± 1

2 )(l + m ± 1
2 )ψnl±1m (21)

B±ψnlm = 1
2

�
(l + m ± 1

2 )(l + m ± 3
2 )ψnl±1m±1 (22)

C±ψnlm = 1
2

�
(l −m ± 1

2 )(l −m ± 3
2 )ψnl±1m∓1 (23)

where we use a new label n for which n = 2k for positive
l and n = 2k− 2l + 1 for negative l. Of course we should
worry about the definition of the above operators when
the eigenvalues of

�
F − 3

2

�
would become ≤ 0. Acting on

the physical states gives

(F − 3
2 )ψnlm = (n + 2l − 1)ψnlm (24)

The +branch does not cause any problems since n ≥ 0
and l ≥ 1. For the –branch we see that we have to
be careful. Actually, this is exactly why the algebra of
the physical operators can have both finite and infinite



Algebraic structure – further results 

spectrum generating 
operators sending  
HHO,SO  HHO,SO ± 2; 

 

full dynamical 
algebra takes form 
SO(3,2) x SO(2,1) j 

 

HHO,SO - ½ 
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Basic SO(3,2) irrep – the singleton 

[PAM Dirac, J Math Phys 1963] 
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3D Landau levels (LL) 
organized as singleton 

representation of SO(3,2) 



3D Landau levels and topological insulator 

[Yi Li and Congjun Wu, arXiv:1103.5422] 

•  Lowest LL: quaternionic analyticity 

•  density profile peaks near r= lg √(2l’) 

•  with open boundary conditions in radial direction 
states with l’ > lcrit are located near surface – these 
take form of gapless helical Dirac fermions 

•  bulk states with odd number of LL filled represent 
nontrivial topological insulator (TI) 

lg =
!c
qg



Perspective 

•  implications of 
`stretched SO(3,2)’ 
for LL structure 

•  geometrical picture 
in relation to AdS4 

•  3D LL in finite 
geometry (3-sphere 
or 3-torus) to allow 
for numerics on 
fractional TI’s 

•  … 
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