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How Dirac’s singleton
organizes the spectrum of a
3D particle moving in a
non-Abelian gauge potential




Towards a geometrical
understanding of 3D Landau
Levels and Topological
Insulators




Radially symmetric problems in 3D

QM 101: V(r)=V(r)

Radially symmetric potential V(r) leads to a manifest
SO(3) symmetry in the 1-particle spectrum

I=0

I=1 levels labeled by 1;
1=0 — per level a total of
2]+1 states:
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Enhanced symmetry (i) — Harmonic Osc.

= 2
OM 102: Viry=r"/2

Spin-less particle in harmonic potential displays
degeneracies organized by an SU(3) symmetry

=0 =2 1=4

I=0 I=2

1=1 N-th level: single
SU(3) irrep with

Dynkin labels (no),
dimension n(n+1)/2

I=0




Enhanced symmetry (ii) — Runge Lenz

Spin-less particle in 1/r potential displays
degeneracies organized by an SO(4) symmetry

E 1=0 1=1 =2
3s 3p 3d
28 2p

n-th level: single

SO(4) irrep of
dimension n2

1S
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Enhanced symmetry (ii) — Runge Lenz

QM SO(4) degeneracies can be traced back to an
higher integral of motion (Laplace-Runge-Lenz
vector) of the classical Kepler orbits
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Enhanced symmetry (iii) — SO coupled HO

2 ~
2 2

today:

Spin-1/2 particles in harmonic potential and with SO
coupling of specific strength displays degeneracies
organized by a "stretched SO(3,2)’ non-compact
symmetry.

Physical states grouped into (truncations of) singleton
representation of SO(3,2).
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Enhanced symmetry (iii) — SO coupled HO

2 2
P | r g
HHO,SO= 5 + 5 -2L-S

quick determination spectrum:

SO term shifts HO energies according to

2L-S=+I for j=l+%

1
=-[-1 for j=[l-—
/ 2




Enhanced symmetry (iii) — SO coupled HO

+ branch: j=1+1/2

B levels with infinite
degeneracies 1=0,1,2,...
at E=2k*+3/2:
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Enhanced symmetry (iii) — SO coupled HO

- branch: j=I-1/2
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spin-1/2 particle in
non-Abelian gauge connection

[Yi Li and Congjun Wu, arXiv:1103.5422]

1
a b _.c
Aaﬁ = 5 g gabc Ga[o’ r

H = L(ij _g;{)z +V(r) V(r)= —%ma)grz

2m C

o, =98
2mc

H reduces to Hy go by direct expansion
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spin-1/2 particle in
non-Abelian gauge connection

[Yi Li and Congjun Wu, arXiv:1103.5422]

H=L-24+v(r)
2m C

« Aharanov-Casher potential, TR symmetry unbroken
* 3D generalization of quantum spin Hall hamiltonian

» possible physical realization in strained
semiconductors or with ultracold atoms with
synthetic spin-orbit coupling




Symmetries of SO coupled HO

2 2
P | r g
HHO,SO= 5 + 5 -2L-S
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Conserved charges: J2, L2, J,, A,, with A, = L-G+1

Lzl/}klm = l(l + 1)wklm ‘]Zwklm = .](] + 1) Wklm
AWy, =Ty, S Yo = MYy,

Energies of +/- branches

E"=2k" +§, k' =0,1,... E =2k +§, k= =1,2,...
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Spectrum of Hy0.50

_1
HHO,SO /2
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Symmetry operators

angular momentum J*, J-, J,

step-operators for A, :




Spectrum of Hy0.50

_1
HHO,SO /2

PN

O O ’ 4
A 3
<—
~ 2--
A, 1




-

Symmetry operators

A, = \%(E . Gal — L+a1 —~L_al)
A_ = %(Ggﬁ' ¢—a,L_—a_L,)

B, = %(li Gal + Lial — L al)
B_ = %(a_l—; G+a_Ls—a3zL_)
Cy = \%(E gal — Laal — L_al)
C_ = %(m_l—f 0 —a+Ls —a3Ly)

Further commutators give more complicated
expressions -> not a closed Lie algebra ... ?!

o




Symmetry operators - ctd

after rescaling (with F=Hyo+A,)

f‘i_'_: (F— %)§A+
A_=a_(F-3)

obtain commutators of an SO(2,1) Lie algebra

[ABaAi] =+Ay [A+s A—] = —Aj




Symmetry operators - ctd

Rescaling explains that
physical symmetry
operators A, can give
finite representations
whereas those of SO(2,1)
generators A, are
necessarily infinite

k'=1 states in — branch
annihilated by A_
since F=3/2

A_*_:(F—
A_=A_(F-




Holstein-Primakoff

non-linear transformation maps canonical boson (a*, a)
with semi-infinite representations, into Lie algebra
SU(2) with finite (dimension 2s+1) representation

5 < 0=
S~ =h~2sa* \/(1——) S/’

S‘=h(s—a’a)

Sz=-g state
annihilated

ata=2s




Algebra of rescaled symmetry operators

[A3a B:i::
[J3, B+
[V, Ax]
[, Ax
[Aqia B:E:
[A:ts CJZ:

= +B4
=+B,
= +B4
= +C4
= +J+
= FJ+

[A3s C:i::
[J3,Cx
[Jq:a Bﬂ::
[J+, C4]
[B-H B—:

[C-I-a C—

=+C+
= FC4
=+A4
=+A4

= —A3 — J3
= —A3z + J3

Cy

A+ B+

this is non-compact Lie algebra SO(3,2)

A_ C_




Algebraic structure — further results

Hyio,50- 72
f " spectrum generating
@ , / operators sending
i Hyo50 2 Hyoso * 2;
0 O * 4 ¥

SO(3,2) x SO(2,1)

of o4 / full dynamical
2 | > algebra takes form




Basic SO(3,2) irrep — the singleton

[PAM Dirac, J Math Phys 1963]
17

3D Landau levels (LL)
organized as singleton
representation of SO(3,2)

1/2
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3D Landau levels and topological insulator

[Yi Li and Congjun Wu, arXiv:1103.5422]

e

 Lowest LL: quaternionic analyticity l,
q8

» density profile peaks near r= [, v(2l’)

 with open boundary conditions in radial direction
states with I’ > [, are located near surface — these
take form of gapless helical Dirac fermions

* bulk states with odd number of LL filled represent
nontrivial topological insulator (TT)
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Perspective
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 implications of
“stretched SO(3,2)’
for LL structure

 geometrical picture
in relation to AdS4

* 3D LL in finite
geometry (3-sphere
or 3-torus) to allow
for numerics on
fractional TT’s




