

2464-22

Earthquake Tectonics and Hazards on the Continents

17 - 28 June 2013

The nature of the hazard: Introduction to earthquakes, their sizes, intensities, and distribution in space and time (continents vs oceans and plate tectonics)

Part .2

P. England
University of Oxford
"""UK

Continental Tectonics

How do the tectonics of continents and oceans differ?

Philip England, ICTP June 2013

Global earthquake epicentres between 1980 and 1996

Global earthquake epicentres between 1980 and 1996

Fundamental Tenet of Plate Tectonics

The surface of the Earth is split into a small number of rigid plates, whose relative motions are taken up in narrow bands around their edges.

Rotation of a rigid body on the surface of a sphere

Euler's fixed-point theorem applied to a rigid shell on the surface of a sphere

The Governing Equation of Plate Tectonics:

$$\mathbf{v} = \omega \times \mathbf{r}$$

The motion of all parts of the same plate can be described by rotation about a **single axis** passing through the centre of the earth.

Velocities in the No-Net-Rotation Frame of Reference

Boxes show poles for African, Arabian, Australian, Antarctic, Caribbean, Cocos, European, Indian, North American, Nazca, Pacific, Philippine and South American plates.

Relative motions on the surface of a sphere

Angular velocities are vectors, so can be added or subtracted.

Motion of Plate A can be described by rotation about $_{\text{A}}\omega$ and Plate B by $_{\text{B}}\omega$

The relative motion between plate A and B is $_{A}\omega_{B}.$

$$_{A}\omega_{B} = _{A}\omega - _{B}\omega$$

Angular velocities are often given by their poles

- longitude,
- latitudeand
- rate of rotation (usually in deg/Myr)
 <u>anti-clockwise positive</u>

McKenzie and Parker 1967

Geologically current plate motions

Charles DeMets,¹ Richard G. Gordon² and Donald F. Argus³

Geophys. J. Int. (2010) 181, 1-80

But

Epicentres of Shallow Earthquakes M>4 1964-2004

Epicentres of Shallow Earthquakes M>4 1964-2004

Morphology of Deforming Zones

- Significant contrasts in elevation occur over length scales of 100s to 1000s of km
- 'Significant' means +5/-3 km from sea level or, equivalently, +35/-20 km in crustal thickness
- Seismic activity coincident with regions of significant topographic relief
- Significant (millimetres per year) velocity differences within these zones.

Plate Tectonics on a small scale?

- IF plate tectonics:
- THEN relative motions must be equivalent to rotations about an axis.

Plate Tectonics on a small scale?

- IF plate tectonics:
- THEN relative motions must be equivalent to rotations about an axis.

Fig. 3.1 Euler's theorem. Diagram illustrating how the motion of a continent on the Earth can be described by an angle of rotation about a pole of rotation.

Velocities relative to Eurasia: GPS data of Floyd et al., 2010

Velocities relative to Eurasia: GPS data of Floyd et al., 2010

Velocities relative to Eurasia: GPS data of Floyd et al., 2010

Velocities relative to Eurasia: GPS data of Floyd et al., 2010

Velocities relative to Eurasia: GPS data of Floyd et al., 2010

Velocities in Asia are perpendicular to contours of their magnitude. England and Molnar, 2005.

Jackson and McKenzie 1988, G. J. Int. 'Microplates' in E. Mediterranean

As with Plate Tectonics, we can use the slip vectors of earthquakes to estimate relative motions of 'micro-plates'. Those motions don't reveal a simple underlying picture, but that's OK -- neither do the motions of the major plates. BUT: these micro-plates are small compared with the whole deforming zone.

Relative motions of micro-plates do not allow prediction of deformation in diffuse zones around their edges.

England and Jackson Ann Rev E. P. Sci 1989

Asia Seismicity

Instantaneous strain inconsistent with finite strain

Plate Tectonics is not a useful description of continental deformation

- Micro-plates small compared with whole deforming regions
- Relative motions of micro-plates do not allow prediction of deformation
- Micro-plates aren't plates, anyway, because they have strained
- Active strain rates do not explain finite strain

Why does this matter?

The State of the Art

Sendai 2011

Death rate 0.4% in MVIII+ shaking. (Mostly tsunami.)

The State of the Art

Christchurch 2011

Death rate in MVIII+ shaking 0.1%

Bam 2003, M6.6: Death rate 30%. >26,000 deaths

Devastating Earthquakes

I) Plate Boundaries
Faults of known location slip at 10-100 mm/year

Devastating Earthquakes

- I) Plate Boundaries
 Faults of known location slip at 10-100 mm/year
- 2) Continental Interiors
 Fault locations frequently unknown
 Slip at 0.1- Imm/yr

Continental Interiors

The killers are M ~7 Earthquakes:

- 3 metres of slip
- Slip at 0.1- Imm/yr
- 1/3,000 1/30,000 yr

At an individual location:

- Earthquakes are extremely rare devastating events.
- Collective memory fades.
- Lack of effective action.