\Leftrightarrow
O
IAEA

Joint ICTP-IAEA Workshop on Evaluating Groundwater Pathways and Residence Times as part of Site Investigations and Post-Closure Safety Assessments for Geological Repositories ${ }^{\prime}$

$$
\text { 17-21 June } 2013
$$

Shallow Active Systems Analysis and Recent Advances in Isotopic Methods for Residence Time Determinations $<\mathbf{5 0 , 0 0 0 y}$. "DATING GROUNDWATER OF AGES YOUNGER THAN 50,000 YEARS

Takuya MATSUMOTO
Isotope Hydrology Section Dept. of Nuclear Sciences \& Applicatons

IAEA
Austria

Dating groundwater of ages younger than 50,000 years

Takuya Matsumoto
Isotope Hydrology Section
Division of Physical and Chemical Sciences
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
t.matsumoto@iaea.org

Young ground water dating

- Young groundwater is typically found at depths from 0 to 50 meter in unconsolidated sediments and at depths up to 300 meter in fractured-rock systems.
- Shallow groundwater systems are commonly used for drinking water sources and they make up a large part of the baseflow in rivers and lakes.
- Because they are shallow (= recently recharged), they are more susceptible to contamination than deeper groundwaters.
- Groundwater age can be used to determine recharge rates and refine hydrologic models of groundwater systems and thus to predict the contamination potentia and estimate the time needed to flush contaminants through a groundwate system.
- The 0 - to 50 -year time scale is particularly relevant to environmentally sensitive shallow groundwater systems, but before 1980s, there were no reliable means of dating groundwater recharged during this time scale.

$)^{\text {Water }} \begin{aligned} & \text { wesor } \\ & \text { Reses }\end{aligned}$

Types of dating tools

1. Tracer Dating Technique: time vs. tracer's
concentration curve to date groundwater age CFC \& Tritium
2. Radioactive Decay Dating:
${ }^{3} \mathrm{He}-\mathrm{T},{ }^{14} \mathrm{C}$, Radio-Kryptons (half-life \& concentration of daughter (+ parent) isotopes)
3. Linear Accumulation Dating: Using timedependent input from external source
${ }^{4} \mathrm{He} \&{ }^{40} \mathrm{Ar}$ (ages from concentrations and known input rates).

Tritium \& CFCs

1. During the past 50 years, human activities have released an array of chemical substances to the atmosphere
2. Tritium $\left({ }^{3} \mathrm{H}\right)$ in water vapour from detonation of nuclear bombs in the 1950's and early 60'.
3. CFC (Chloro-Fluoro-Carbons) from refrigeration and other uses from 1950's to 80's, dissolve in precipitation.
4. These atmospheric substances became incorporated in the Earth's hydrologic cycle and can be found in groundwater that has been recharged within the past 50 years.

0
 Tritium

- Tritium (Half-life 12 years)
- Sources

Non-Human: Cosmic Ray bombardment on 14N in upper atmosphere (a fas neutron (which must have energy greater than 4.0 MeV) interacts with atmospheric
nitrogen). Tritium concentrations due to this natural process is estimated to be between 4 to 25 TU depending on location

0

Tritium

Tritium is a useful guide to distinguish between recharge that occurred before atomic weapons testing and more recent recharge:

- High continental latitudes <4TU
- Low continental latitudes < 1 TU (Fontes, 1979)

Estimating absolute age of young groundwater based on tritium concentration alone is not straight forward. Need assumption for groundwater flow models \& mixing with existing groundwater during recharge.

Age commonly can be reliably determined from data on tritium and its decay product (helium-3). The $3 \mathrm{H} / 3 \mathrm{He}$ age is based on a calculation that determines the amount of 3 He derived from radioactive decay of 3 H in the water.

() Nam

Tritium

- Tritium (3 He , Half-life 12 years)
- Man-made Tritium: Released during 1950-60s nuclear bomb tests
- >1000 TU in mid 60 s in Northern hemisphere
- Groundwater recharged after this time period is "labeled" with high Tritium signals.

12

Types of dating tools

1. Tracer Dating Technique: time vs. tracer's concentration curve to date groundwater age CFC \& Tritium
2. Radioactive Decay Dating:
${ }^{3} \mathrm{He}-\mathrm{T},{ }^{14} \mathrm{C}$, Radio-Kryptons (half-life \& concentration of daughter (+ parent) isotopes)
3. Linear Accumulation Dating: Using timedependent input from external source
${ }^{4} \mathrm{He} \&{ }^{40} \mathrm{Ar}$ (ages from concentrations and known input rates).

$\underbrace{}_{\substack{\text { nemer } \\ \text { pacoume } \\ \text { paname }}}$

Groundwater dating with isotopes

For young groundwater < 100 years, $\mathrm{He}-3, \mathrm{~T}, \mathrm{Kr}-85$ have applicable half-lives (the source for ${ }^{85} \mathrm{Kr}$ is reprocessing of nuclear fuel rods). Difficult to collect and analyse, thus is not yet a practical dating tool for groundwater studies.

Groundwater Dating with ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$

- Some characteristics of Helium
-5.24 ppm by volume in the atmosphere
- Not heavy enough to be gravitationally captured in the atmosphere - continuously escaped to space.
- Escape and addition from inside the earth is now in the steady state with helium residence time of 10^{6} years.
- 99.99986% is ${ }^{4} \mathrm{He}$ - natural abundance of ${ }^{3} \mathrm{He}$ is extremely low (Sensitive to addition of ${ }^{3} \mathrm{He}$ produced by decay of equally rare tritium in water).
$-{ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ ratios in the air is globally uniform with atmospheric mixing time of a few years. (Quantification for discriminating ${ }^{3}$ He derived from air and from the tritium decay)

Groundwater Dating with ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$

$$
D=D_{0}+N\left(e^{\lambda T}-1\right)
$$

$$
\left[{ }^{3} H e\right]_{t}=\left[{ }^{3} H e\right]_{0}+\left[{ }^{3} T\right]_{t}\left(e^{\lambda T}-1\right)
$$

$$
\left[{ }^{3} \mathrm{He}\right]_{0}=\text { constrainable }
$$

$$
T=\frac{1}{\lambda} \ln \left(\frac{\left.{ }^{3} \mathrm{He}\right]_{t}}{\left[{ }^{3} T\right]_{t}}+1\right)
$$

${ }^{3}$ He at the time of recharge can be estimated from recharge temperature (air contains small amount of ${ }^{3} \mathrm{He}$ which will be dissolved into the rain water)

Underlying assumption - The groundwater system should be closed in terms of
 tritium and its daughter ${ }^{3} \mathrm{He}$ from its isolation from air to sampling.

Saturated zone is a closed system with respect to dissolved gases.

Called "tritiugenic helium"
${ }^{3} \mathrm{He}$ concentration will begin to rise. ${ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}$ used to determine a time period for which groundwater has been isolated from the atmosphere (e.g., time since recharge)

(Separation of Helium Components

$$
\begin{array}{ll}
{ }^{3} \mathrm{He}_{\text {meas }} & ={ }^{3} \mathrm{He}_{\text {trit }}+{ }^{3} \mathrm{He}_{\mathrm{eq}}+{ }^{3} \mathrm{He}_{\mathrm{exc}}+{ }^{3} \mathrm{He}_{\text {terr }} \\
{ }^{4} \mathrm{He}_{\text {meas }} & ={ }^{4} \mathrm{He}_{\mathrm{eq}}+{ }^{4} \mathrm{He}_{\mathrm{exc}}+{ }^{4} \mathrm{He}_{\text {terr }}
\end{array}
$$

- $\mathrm{He}_{\mathrm{eq}}$: Solubility equilibrium, needs infiltration temperature (noble gases themselves can be a thermometer)
- He ${ }_{\text {exc }}$ Excess air determined via Ne
- He terr separation possible if either crustal $\mathrm{He}\left({ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}<10^{-8}\right)$ or mantle $\mathrm{He}\left({ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}>10^{-5}\right)$ present, not for both

$\mathrm{T} /{ }^{3} \mathrm{He}$ Dating of Groundwater: Separation of Helium Components

$$
\begin{array}{ll}
{ }^{3} \mathrm{He}_{\text {meas }} & ={ }^{3} \mathrm{He}_{\text {trit }}+{ }^{3} \mathrm{He}_{\mathrm{eq}}+{ }^{3} \mathrm{He}_{\mathrm{exc}}+{ }^{3} \mathrm{He}_{\text {terr }} \\
{ }^{4} \mathrm{He}_{\text {meas }} & =\quad{ }^{4} \mathrm{He}_{\mathrm{eq}}+{ }^{4} \mathrm{He}_{\mathrm{exc}}+{ }^{4} \mathrm{He}_{\text {terr }}
\end{array}
$$

- $\mathrm{He}_{\mathrm{eq}}$: Solubility equilibrium, needs infiltration temperature (based on Ne, Ar, Kr, Xe concentrations)
- He exc Excess air determined via $\mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$ and Xe concentrations
- He terr separation possible if either crustal $\mathrm{He}\left({ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}<10^{-8}\right)$ or mantle $\mathrm{He}\left({ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}>10^{-5}\right)$ present, not for both

2) pate

Mixng of Eq-Air \& excess Air

Analytical results cannot be directly used for ${ }^{3} \mathrm{He}-\mathrm{T}$ dating.

How to estimate Tritiogenic ${ }^{3} \mathrm{He}$ from analytical results?

Principle of $\mathrm{T} / 3 \mathrm{He}$ dating - Summary

$$
T=\frac{1}{\lambda} \ln \left(\frac{[3 H e]_{t}}{\left[{ }^{3} T\right]_{t}}+1\right)
$$

${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$ ages are obtained after assessing non-tritiugenic ${ }^{3} \mathrm{He}$ components based on analysis of $\mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ and on some additional assumptions.

Ages are independent from tritium input function - meritorious as relatively few continuous measurements of ${ }^{3} \mathrm{H}$ were made during the 1960 s and 1970 s, leading to uncertainties in the spatial and temporal distribution of the 3 H input function.

Current analytical methods are sufficient to date ground water ranging from about 0 to 50 years with a typical uncertainty of approximately ± 1 years.
It is an apparent age, - Not necessarily the true age of the groundwater (dispersion, mixing, degassing etc...).

Measurement Steps for Noble Gases in Water Samples:

Measurement Steps for Noble Gases in Water Samples:

(Q) $\begin{aligned} & \text { Water } \\ & \text { RAEA } \\ & \text { Rosorusas } \\ & \text { Prame }\end{aligned}$

Noble Gas Temperature Vs Mean Annual Temperature

()) Vertical Profile to Recharge Rate

A systematic increase in age with depth
Slope of a depth - age trend provides insights into a vertical component of groundwater flow velocity, which then converted to recharge rate with a knowledge of porosity of the aquifer.

2) Vertical Profile to Recharge Rate

$\underset{\substack{\text { Water fesuorce Reen } \\ 30,163-1708}}{\substack{\text { and }}}$
Groundwater ages are vertically stratified.
Meaning that, if sampled from wells with screens over a large interval, you sampled a mixture of groundwaters with several ages at once.
Ideally, wells with a very small screen interval ($<15 \mathrm{~cm}$) would be ideal to ensure that your sample represents groundwater of single generation.
At least, sampling would better be done on wells with well-documented depth and screen geometry.

$\underbrace{\substack{\text { water } \\ \text { prosurasese }}}_{\text {A }}$ Use of ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$ data to determine the origin and spreading rate of pollutants

Fuel-related organic contaminants in a shallow aquifer of Cap Cod, Massachusetts (Solomon et al., 1995).

Horizontal Flow Velocity is converted into Hydraulic Conductivity and utilized to refine groundwater flow model.

spreading rate of pollutants

Fuel-related organic contaminants in a shallow aquifer of Cap Cod, Massachusetts (Solomon et al., 1995).

Contaminants flow along a specific horizontal path.
With $\mathrm{T}^{3} \mathrm{He}$ ages of same samples, horizontal flow velocity was determined ($90 \mathrm{~m} / \mathrm{year}$).

into groundwater mixing

Area: Gacka Area, Croatia
Samples: Spring Water (2011 Wet Season and 2012 Dry Season) Age Tracers: CFC, Tritium \& 3He

Carried out as a part of IAEA's Coordinated Research Project to test usability of the $\mathrm{T}^{3}{ }^{3} \mathrm{He}$ method for different hydrologic settings.
Collaborators: Z. Roller-Lutz (Faculty of Medicine, University of Rijeka)

Apparently, Gacka groundwater system cannot be approximated by the "Piston Flow" model (green curve), as expected for karst aquifer.
In 2011 (before the dry season), Gacka groundwater is a mixture of young and older (CFC-free) components.

In 2012, partial equilibration of helium with air introduces an additional disturbance in age tracers.

$\left.{ }_{\text {EA }}^{\substack{\text { EA }}}\right|_{\substack{\text { Waier } \\ \text { Reosurases } \\ \text { Prosame }}}$ Multi Age Tracer Approach to Karst aquifer: Insights

 into groundwater mixing

Both CFC and T-3He ages should be regarded as the apparent mean residence time of the karst waters.

Multip-age tracers allowed us to recognize the presence of two water components in this Karst system.

Types of dating tools

1. Tracer Dating Technique: time vs. tracer's concentration curve to date groundwater age CFC \& Tritium
2. Radioactive Decay Dating:
${ }^{3} \mathrm{He}-\mathrm{T},{ }^{14} \mathrm{C}$, Radio-Kryptons (half-life \& concentration of daughter (+ parent) isotopes)
3. Linear Accumulation Dating: Using timedependent input from external source
${ }^{4} \mathrm{He} \&{ }^{40} \mathrm{Ar}$ (ages from concentrations and known input rates).

(9) $\begin{gathered}\text { Water } \\ \text { heserces } \\ \text { Rosogamm }\end{gathered}$
 Linear Accumulation Method

Use age tracers consists of stable nuclides that are produced in the subsurface and accumulate in flowing groundwater.

The isotopes are produced by decay of naturally occurring nuclides with very long halflives (i.e., decay is slow enough that the parents' abundance, and hence the rate they produce daughter products, is nearly constants).

Linear Accumulation Method

Use age tracers consists of stable nuclides that are produced in the subsurface and accumulate in flowing groundwater.

The isotopes are produced by decay of naturally occurring nuclides with very long halflives (i.e., decay is slow enough that the parents' abundance, and hence the rate they produce daughter products, is nearly constants).

Age $=\frac{4 H e ~ c o n c e n t r a t i o n ~ i n ~ w a t e r ~}{}$ Age $=\quad$ Transfer Rate

Fundamentally, different from $\mathrm{T}^{-3} \mathrm{He}$ dating method

Linear Accumulation Method

Use age tracers consists of stable nuclides that are produced in the subsurface and accumulate in flowing groundwater.

The isotopes are produced by decay of naturally occurring nuclides with very long halflives (i.e., decay is slow enough that the parents' abundance, and hence the rate they produce daughter products, is nearly constants).

4He: U \& Th decay About 10^{9} years of $\mathrm{T}_{1 / 2}$

Groundwater Dating by ${ }^{4} \mathrm{He}$

$$
\begin{aligned}
& \text { Groundwater Residence Time } \\
& =\frac{{ }^{4} \text { He concentration }\left(\mathrm{Cm}^{3} S T P / \text { gram }\right)}{{ }^{4} \text { He transfer rate }\left(\mathrm{Cm}^{3}{ }^{3} \text { STP } / \text { aram } \cdot \text { vear }\right)}
\end{aligned}
$$

${ }^{4}$ He transfer rate $\left({ }^{\left(\mathrm{cm}^{3} S T P / \text { gram.year }\right)}\right.$:

- in situ component ($\mathrm{U}+$ Th decay within aquifer)
${ }^{\sim} 10^{-12} \mathrm{~cm}^{3} \mathrm{STP} / \mathrm{g} /$ year, significantly overestimated age vs. ${ }^{81} \mathrm{Kr}$ ages

(4) Groundwater Dating by ${ }^{4} \mathrm{He}$

```
Groundwater Residence Time
= }\mp@subsup{}{}{4}\mathrm{ He concentration( (cm 'STP}/\textrm{gram}
= }\overline{\mp@subsup{}{}{4}He transfer rate (cm}\mp@subsup{}{}{3}\textrm{STP}/\mathrm{ gram }\cdot\mathrm{ year )
```

${ }^{4} \mathrm{He}$ transfer rate $\left({ }^{\left(\mathrm{cm}^{3} S T P\right.} /\right.$ gram \cdot year $)$:
in situ component ($U+$ Th decay within aquifer)
$\sim 10^{-12} \mathrm{~cm}^{3} \mathrm{STP} / \mathrm{g} /$ year, significantly overestimated age vs. ${ }^{81} \mathrm{Kr}$ ages
Crustal Flux (radiogenic ${ }^{4} \mathrm{He}$ produced in crustal basement rocks) ${ }^{\sim} 10^{-9} \mathrm{~cm}^{3} \mathrm{STP} / \mathrm{g} /$ year, significantly underestimated age vs. ${ }^{81} \mathrm{Kr}$

Knowledge on Helium flux specific to study area is a key for dating by ${ }^{4} \mathrm{He}$.

- He-flux within aquifer is depth dependent (Max at the bottom)

He-flux depends also on the age

- Smaller flux in a rear closer to the recharge area (Younger water)

()) Groundwater Dating by ${ }^{4} \mathrm{He}$

$$
\begin{aligned}
& \text { Groundwater Residence Time } \\
& =\frac{{ }^{4} \text { He concentration }\left(\mathrm{cm}^{3} \mathrm{STP} / \mathrm{gram}\right)}{{ }^{4} \mathrm{He} \text { transfer rate }\left(\mathrm{cm}^{3} \mathrm{STP} / \mathrm{gram} \cdot \text { year }\right)}
\end{aligned}
$$

${ }^{4}$ He transfer rate $\left({ }^{\left(\mathrm{cm}^{3} S T P\right.} /\right.$ gram \cdot year $)$:
-in situ component ($U+$ Th decay within aquifer)
${ }^{\sim} 0^{-12} \mathrm{~cm}^{3} \mathrm{STP} / \mathrm{g} /$ year, significantly overestimated age vs. ${ }^{81} \mathrm{Kr}$ ages
Crustal Flux (radiogenic ${ }^{4} \mathrm{He}$ produced in crustal basement rocks)
${ }^{\sim} 10^{-9} \mathrm{~cm}^{3} \mathrm{STP} / \mathrm{g} /$ year, significantly underestimated age vs. ${ }^{81} \mathrm{Kr}$

Difficulty in obtaining appropriate helium flux is the major obstacle in ${ }^{4} \mathrm{He}$ dating.

$$
\text { model with } 4 \mathrm{He} \text { flux from the aquifer base }
$$

Might be possible to directly estimate groundwater residence time from 4 H concentration without having a difficulty in parameterizing 4 He flux distribution (that depends on age and depth).

Types of dating tools

1. Tracer Dating Technique: time vs. tracer's concentration curve to date groundwater age CFC \& Tritium
2. Radioactive Decay Dating:
${ }^{3} \mathrm{He}-\mathrm{T},{ }^{14} \mathrm{C}$, Radio-Kryptons (half-life \& concentration of daughter (+ parent) isotopes)
3. Linear Accumulation Dating: Using timedependent input from external source
${ }^{4} \mathrm{He} \&{ }^{40} \mathrm{Ar}$ (ages from concentrations and known input rates).
()) Comparison with GW flow model
```
|
```

[Torgersen and Ivey, 1985)

Age (years)

$0=$

(4)

Concluding Remarks

Each dating technique has advantages and limitations - Important to realize these before using outcomes of analysis as "groundwater ages". Water is mobile, and tracers are not 100% conservative - Isotope ages are always considered to be model age and/or apparent age.

Combination of information from multiple isotope methods is desirable. If agreed, more confidence

- If not, discrepancy itself can be valuable information to identify processes within aquifers.

In any case, selection of appropriate sampling sites and wells, as well as proper sampling is an important first step for groundwater dating.

Activities

Research and development \rightarrow
Coordinated Research Projects (CRP)
Development/adaptation of field and laboratory methods
Technology transfer \rightarrow Technical Cooperation Projects
sotope Hydrology Lab.
Operation of Global Isotope networks and isotope data dissemination
Analytical services/support to labs in Member States
Quality Control of isotope analysis - Intercomparison Exercises Education and training

Information exchange (Symposia, workshops, sci. meet.)
Partnerships with other UN-Agencies (UN-Water) and other organizations

