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Noncommutative 
Geometric Means 

For,  in fact, wha t  is man in nature?  A Nothing in compar i son  with the  Infinite, an 
All in compar i son  with the Nothing, a mean  be tween  nothing and everything. 

- -B la i s e  Pascal 

eraging opera t ions  en te red  mathemat ics  ra ther  early. 
a sc ina ted  as they were  by geometr ic  propor t ions ,  the 

ancient  Greeks  def ined as many as  eleven different  means.  
The ar i thmetic ,  geometric ,  and harmonic  means  are  the 
three  bes t -known ones. If Pascal  had one of  these  in mind 
when  he c o m p o s e d  his Pensdes [P], he would  soon have 
rea l ised that  mixing zero and infinity is a source  of  as many  
p rob lems  as mixing mathemat ics  and divinity. 

For  centuries,  mathemat ic ians  pe r fo rmed  their  opera-  
t ions e i ther  on numbers  or  on geometr ica l  figures. Then in 
1855 Arthur  Cayley in t roduced  new objec ts  cal led matr i -  
ces, and soon af te rwards  he gave the laws of their  algebra.  

Seventy years  later, Werner  Heisenberg  found that  the  non- 
commuta t iv i ty  of  mat r ix  mult ipl icat ion offers jus t  the right 
conceptua l  f r amework  for descr ib ing the laws of  a tomic  

mechanics .  Matrices were  found to be useful in the de- 
scr ip t ion  of  c lass ical  vibrat ing sys tems  and electr ical  net- 
works  as  well. Fo r  mathemat ic ians ,  analysis  of  l inear  op- 
e ra tors  was a subjec t  of  in tense s tudy throughout  the 
twent ie th  century  and into the twenty-firs t  century.  

Many quanti t ies  of  bas ic  in teres t  such as  s ta tes  of  quan- 
tum mechanica l  sys tems and impedances  of  e lect r ica l  net- 
works  are defined in te rms of matr ices.  Mixing of  the un- 
der lying sys tems  in var ious  ways  leads  to cor responding  
opera t ions  on the mat r ices  represent ing  the systems.  Not 
surprisingly,  some of these  are  averaging opera t ions  or  

means.  

Of the three  most  famil iar  means,  the geometr ic  mean  

combines  the opera t ions  of  mul t ip l icat ion and square roots.  
When we replace  posi t ive numbers  by  posi t ive  definite ma- 
tr ices,  both  of  these  opera t ions  involve new subtlet ies.  In 

this ar t ic le  we in t roduce  the r eade r  to some of  them. 

G O � 9  

Let ~+ be the  set  of  all posi t ive real  numbers .  Given a 
and b in ~+ a m e a n  m(a,b)  could be def ined in different  

ways. It is reasonable  to expec t  that  the  b inary  opera t ion  
m on ~+ has  the following proper t ies :  

(i) m(a,b) = m(b,a). 
(ii) min(a,b)  <- m(a,b) <- max(a,b) .  

(iii) m(aa ,ab)  = a m(a ,b )  for  all a > 0. 

(iv) m(a ,b)  is an increas ing funct ion of  a and  b. 
(v) m(a,b) is a cont inuous  function of  a and  b. 

The three  famil iar  means,  ar i thmetic,  geometr ic ,  and  har-  

monic,  sat isfy all these  requirements .  Other  examples  of  

means  include the binomial  means ,  also cal led the  power  
means ,  defined as 

( a P + b P ) u p ,  < - - P < ~  
mp(a,b) = 2 - ~ -- " 

Here, it is under s tood  that  for the special  values  p = 0 and 
+ ~  we define mp(a,b)  as the l imits 

mo(a,b) = limp ~ omp(a,b) = k / -~ ,  
m~(a,b) = limp ~ .~mp(a,b) = max(a,b) ,  

m =(a,b) = limp ~ :~mp(a,b) = min(a,b).  

The ar i thmet ic  and the harmonic  means  co r re spond  to the  

cases  p = 1 and - 1 ,  respectively.  Inequali t ies  be tween  

means  have been  s tudied for a long time. See the c lass ic  

[HLP], and the more  recent  [BMV]. A sample  resul t  here  is 
that  for f ixed a and b, mp(a,b) is an increas ing funct ion of  
p. This includes,  as a special  case, the inequali ty be tween  
the three  familiar  means.  

There exists  a fairly wel l -developed theory  of  means  for 
posi t ive definite matr ices .  Let M.,,(C) be the set  of  all n x 
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n complex matrices, 5n the collection of  all self-adjoint el- 
ements of  ~, ,(C),  and P~ that of  all positive definite ma- 
trices. The space 5,~ is a real vector  space and P~ is an 
open cone within it. This gives rise to a natural order  on 
~n- We say that A - B if A - B is positive definite or pos- 
itive semidefinite. Two elements of  5n are not always com- 
parable in this order. Every element X of  GLn (the group 
of  invertible matrices) has a natural action on Pn. This is 
given by the map Fx(A) = X*AX. We say that A and B are 
congruent if B = Fx(A) for some X E GLn. In the special 
case when X is unitary, we say that A and B are unitarily 
equivalent. The group of  unitary matrices is denoted by Un. 

Now we have enough structure to lay down conditions 
that a mean M(A,B) of two positive definite matrices A and 
B should satisfy. Imitate the propert ies (i)-(v) for means 
of  numbers. This suggests the following natural conditions: 

(I) M(A,B) = M(B,A). 
(II) If A -< B, then A <- M(A,B) <- B. 

(III) M(X*AX~X*BX) = X*M(A,B)X, for all X ~ GL~. 
(IV) M(A,B) is an increasing function of  A and B; i.e., if 

A1 -> A2 and B1 -> B2, then M(A1,B1) >- M(A2,B2). 
(V) M(A,B) is a continuous function of  A and B. 

The monotonici ty  condition (IV) is a source of  many in- 
triguing problems in construct ing matrix means. This is be- 
cause the order  A >- B is somewhat  subtle. For  example, if 

then A -> B but A 2 ~: B 2. 

What functions of  positive numbers,  when lifted to pos- 
itive definite matrices, preserve order? This is the subject 
of  an elegant and richly applicable theory developed by 
Charles Loewner. L e t f b e  a real-valued function on R+. If 
A is a positive definite matrix and A = "s is its spec- 
tral resolution, thenf (A)  is the self-adjoint matrix defined 
as f(A) = "Zf(Ai)uiu~. We say that f is a matrix  monotone 
function ff for all n = 1, 2 , . . . ,  the inequality A -> B in P.,~ 
implies f(A) >-fiB). One of  the theorems of  Loewner says 
t ha t f i s  matrix monotone if and only if it has an analytic con- 
tinuation to a mapping of  the upper half-plane into itself. As 
a consequence, the funct ionf(x)  = x p is matrix monotone if 
and only if 0 --< p -< 1. The function f (x)  = log x is matrix 
monotone, but f ( z )  = exp x is not. We refer the reader to 
Chapter V of.[B] for an exposition of  Loewner 's  theory. 

Returning to means, the arithmetic and the harmonic 
means of  A and B are defined, in the obvious way, as 
I (A + B) and [�89 -1 + B 1)1 1, respectively. It is easy to 
see that they satisfy the conditions (I)-(V) above. 

The notion of  geometric mean in this context  is more 
elusive, even treacherous.  Every positive definite matrix A 
has a unique positive definite square root  A 1/2. However, if 
A and B are positive definite, then unless A and B com- 
mute, the product  A1/2B 1/2 is not  self-adjoint, let alone pos- 
itive definite. This rules out using A1/2B 1/2 as our geomet- 
ric mean of  A and B, except  in the trivial case when AB = 
BA. We should look for other  good expressions in A and B 

that reduce to A1/2B 1/2 when A and B commute.  One plau- 
sible choice is the quantity 

(1) exp 2 = l i m p ~ 0  2 

The equality of  the two sides of  (1) was noted by Bhag- 
wat and Subramanian [BS], who studied in detail the 
"power means" occurring on the right-hand side. This 
too is not monotone  in A and B, as can be seen by choos- 
ing positive definite matrices X and Y, for which X-> g 
but exp X ~: exp Y, and then choosing A and B such that 

1 log B. 1 (log A + log B) and Y = ~ X = :  2 
The condition (III), sometimes called the transformer 

equation, is not  innocuous either. Our failed candidates fail 
on this count  too. 

The noncommutat ive  analogue of  ~ a b  with all desirable 
properties turns out to be the expression 

(2) A#B = A 1/2 (A -1/2 BA 1/2)1/2 A1/2,  

that  was introduced by Pusz and Woronowicz [PW] in 1975. 
At the outset  it does not  appear to be symmetric  in A and 
B; but it is, as we will soon see. The monotonici ty  in B is 
assured by the facts that congruence  preserves order  (B1 -> 
B2 implies X*BIX >- X*B2X) and the square root  function is 
matrix monotone.  

Symmetry in A and B is apparent more easily from an al- 
ternative characterisation of A#B due to T. Ando [A]. We have 

(3) A # B = m a x { X : X = X * a n d [  A BX] _> 0}. 

Among its other  characterisations, one describes A#B as 
the unique positive definite solution of  the Riccati equation 

(4) X A -  1X = B. 

We call A#B the geometric mean of  A and B. It has the de- 
sired properties (I)-(V) expected of  a mean M(A,B) : prop- 
erty (III) may be verified easily from (3) or (4). It satisfies 
the expected inequality 

( A  i + B - I ) - I  A + B  
(5) 2 -< A#B <- ~ ,  

and has other  pleasing properties. Many of  these were de- 
rived by Ando [A]. 

Two positive definite matrices A and B can be diago- 
nalised simultaneously by a unitary conjugation Fu if and 
only if they commute.  In the absence of  commutativity, A 
and B can be diagonalised simultaneously by a congruence 
in two steps: 

(A,B) FA ue) (/ ,4 1/2 BA-1/2) _~ (I,n), 

where U is a unitary such that U* (A-1/2BA-1/2)U is a di- 

agonal matrix D. This takes some of  the mystery out of  the 
formula (2). In fact, any mean m(a,b) of positive numbers  
leads to a mean M(A,B) of  positive definite matrices by the 
procedure  M(A,B) = FAI/~(m(I,D)). To ensure that M is an 
increasing function of  A and B, we have to assume that the 
funct ionf(x)  = m(1,x) is matrix monotone.  The formula (2) 
corresponds to the case when m(a,b) = (ab) 1/2. 
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The indirect  a rgument  we have used  to deduce  the sym- 

met ry  of  the geometr ic  mean  is not  necessary .  Let m(a,b) 
be any mean,  l e t f ( x )  = m(1,x),  and 

(6) M(A,B) = A1/2f (A 1/2BA -1/2) A 1/2. 

Though this express ion  seems  to be asymmetr ic  in A and 
B, in fact  M(A,B) = M(B,A). For  this  we need  to prove  

f (A 1/2BA 1 /2 )=A 1/2B1/2f(B-1/2AB 1/2)B1/2A 1/2. 

Using the po la r  decompos i t ion  A 1/2B1/2 = PU, where  P is 

posi t ive  definite and  U unitary, this s t a t ement  reduces  to 

f(p2)  = PU f(U*P 2U)U*P = P f (P 2)p. 

This, in turn, is equivalent  to saying that  for every eigen- 
value A of  P, we have 

m(1,A 2) = Am(1,A 2)A. 

But that  is a consequence  of  p roper t i e s  (i) and  (iii) of  the 
mean  m. A similar  a rgument  verif ies (III). 

A s imple corol lary  of  this cons t ruc t ion  is the pers i s tence  
of  inequali t ies  l ike (5) when  one passes  f rom posi t ive  num- 
bers  to posi t ive  definite matr ices.  Kubo and Ando [KA] de- 
ve loped  a general  theory  of  mat r ix  means  and es tab l i shed  

a co r r e spondence  be tween  such means  and matr ix  mono-  

tone functions.  
What  happens  when we have three  posi t ive definite ma- 

t r ices  ins tead  of  two? The ar i thmet ic  and the harmonic  
means  p resen t  no problems.  Plainly, they  should  be defined 
as~(A + B  + C)and[31(A -1 + B  1 + C 1)] 1, respect ive ly  ' 

The geometric  mean, once again, raises interesting problems.  
We would like to have a geometr ic  mean G(A,B,C) that  

reduces  to A1/3B1/3C 1/3 when A, B, and C commute  with each 

other. In addit ion it should have the following propert ies.  

(c 0 G(A,B,C) = G(Tr(A,B,C)) for any pe rmuta t ion  7r of  

the t r iple  (A,B,C). 
(]3) G(X*AX~*BX~*CX) = X*G(A~B,~  for a l lX  C VLn. 
(7) G(A,B,C) is an increasing funct ion of  A, B, and C. 

(6) G(A,B,C) is a cont inuous  funct ion of  A, B, and C. 

None of the procedures  presented above for two matr ices  ex- 
tends readily to three. The expressions (2), (3), and (4) have 
no obvious generalisations that  work. The idea of  simulta- 
neous  diagonalisation does not  help either: while two posi- 
tive definite matr ices  can be diagonalised simultaneously by 
a congruence, generally three can not  be. Defining a suitable 
geometric  mean of  three positive definite matr ices has been 
a ticklish problem for many years. Recently some progress  
has been made in this direction, and we descr ibe it now. 

One geomet ry  cannot  be more  t rue than another;  it can only 

be more  convenient .  
--Henri  Poincard [Po] 

While the geometr ic  mean  A#B has been  much  s tudied  in 
connec t ion  with  p rob lems  of  mat r ix  analysis,  mathemat i -  
cal physics ,  and e lect r ica l  engineering,  a deepe r  under-  

s tanding of  it is achieved by  l inking it with some s tandard  

cons t ruc t ions  in Riemannian geometry.  
The space  ~ n ( C )  has  a natura l  inner  p roduc t  (A,B) = 

t r  A*B. The assoc ia ted  no rm ]~4]]2 = (tr  A'A)  1/2 is cal led the 

Frobenius ,  or  the Hilbert-Schmidt,  norm. If A is a mat r ix  
with eigenvalues A1, �9 . . , An, we  wri te  A(A) for  the  vec to r  
(A1, �9 �9 �9 , a~,) or  for the diagonal  mat r ix  d i a g ( a l , . . . ,  An). 

The set  P,, is an open  subse t  of  %~ and thus  is a differ- 
ent iable  manifold.  The exponent ia l  is a b i ject ion f rom S.,, 
onto P,,. The Riemannian metr ic  on the manifold  Pn is con- 
s t ruc ted  as follows. The e lement  of  arc  length is the dif- 

ferent ial  

(7) ds = NA 1/2 dA A-1/2ll 2. 

This gives the  prescr ip t ion  for  comput ing  the length of  a 

different iable curve in Pn. If 7 : [a,b] --> Pn is such  a curve, 
then its length, ob ta ined  by  integrat ing the formula  (7), is 

(8) L ( 7 )  = a/2(t)T'(t)T-1/2(t)l12 dt. 

If A and B are  two e lements  of  Pn, then  among all curves  
y joining A and B there  is a unique one of  min imum length. 
This is cal led the geodesic jo ining A and B. We wri te  this  

curve as  [A,B], and denote  its length, as def ined by  (8), by  
the symbol  Su(A,B). This gives a metr ic  on P,, cal led the 

Riemannian  metric.  
F rom the invar iance of t race  under  similari t ies,  it is easy  

to see  that  for every X in GLn the map  Fx  : P,~ ~ P,~ is a bi- 
jec t ive  i somet ry  on the metr ic  space  (P~,62). 

An important  feature of  this metric is the exponential met- 
ric increasing property (EMI). This says that  the map exp 

from the metric space (~n,]]" 112) to (~ ,62 )  increases  distances. 
More precisely, if H and K are Hermitian matrices,  then 

(9) ]]H - / ~ ] 2  -< 62(eH, eg) - 

To prove this, one uses  the formula  (8) and an infinitesi- 

mal vers ion of  (9): 

(10) 11 12 -< lie H/2 DeH(K)e-H/2112 

for all H, K ~ S,~. Here Dell(K) is the derivat ive of  the  map  
exp at the poin t  H evaluated  at  K, i.e., 

eH+t~ - 

(11) Dell(K) = limt-~0 t 

There is a wel l -known formula  due to Daleckii  and  Krein 
(see [B], chap te r  V, for example)  giving an express ion  for 
this  derivative. Choose  an or thonormal  bas is  in which  H = 

diag(A1, . . . , An). Then 

Dell(K) = [ eA~ - e~j 

(The nota t ion  here  is that  [x~j] s tands  for  a mat r ix  with en- 

t r ies  xij.) From this, one sees  that  the (i  j )  en t ry  of  
e-H/2DeH(K)e -HI2 is 

sinh(A~: - Aj)/2 
(12) (Ai - Aj)/2 k~j. 

Since sinhx _ 1, the inequali ty (10) fol lows f rom this. 
x 
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In the special case when H and K commute, a calcula- 
tion shows that there is equality in (9). In this case the func- 
tion exp maps the line segment [H,K] in the Euclidean 
space ~,~ isometrically onto the geodesic segment [eH, e K] 
in P~. IfA = e H and B = e K, this says that the geodesic seg- 
ment joining A and B is the path 

T(t) = e(1 t )H+tg = e(1 t )Hetg --_ A l - t  B t, 0 <- t <- 1. 

Further, #2(A,~/(t)) = ta2(A,B) for each t in [0,1]. 
The case of noncommuting A and B can be reduced 

to the commuting case using the fact that FA 1~.~ is an isom- 
etry on the space (P~,62). The geodesic segment 
[LA 1/2 B A  1/2] is parametrised by T0(t) = (A-1/2BA-1/2) t, 

by what we said about the commuting case. So, the geodesic 
[Aj/] = [FA,2(I),FAI/2(A-1/2BA-1/2)] is parametrised by 

(13) T(t) = A 1/2 (A 1/2 B A  u2)t A1/2, 0 <- t <- 1. 

This shows that the geometric mean A # B  defined by the 
formula (2) is nothing but the midpoint of the geodesic join- 
ing A and B in the Riemannian manifold P~. Thus while (2), 
(3), and (4) might have appeared as over-imaginative non- 
commutative variants of ~a-b, very natural geometric con- 
siderations lead to the same notion of m e a n  as is given by 
(2). Note that for each t, ~/(t) defined by (13) is a mean of 
A and B corresponding to the functionf(x) = x t in the for- 
mula (6). Those means are not symmetric, however: (I) fails 
unless t = 1/2. 

This discussion also gives an explicit formula for 
the metric ~2. We have 62 (A~)=  62 (I,A 1/2BA 1/2)= 

]llog I - log  (A-U2BA 1/2)112 = jllog(A 1/2BA lJ2)112. The  ma- 
trices A 1/2BA- 1/2 and A-  1B have the same eigenvalues. So, 
this can be expressed as 

(14) 52(A,B) = Illog A(A 1B)112 = (log Ai (A-1B) )  2\1/2. 

The inequality (9) captures an essential feature of P~ : it 
is a manifold of nonpositive curvature. To understand this, 
consider a triangle with three vertices O, H, and K in S~. 
Under the exponential map, this is mapped to a "triangle" 
with vertices/, exp H and exp K in Pn. The lengths of the 
two sides [O,H] and [O,K] measured by the norm 11"112 are 
equal to the lengths of their images [/, exp HI and [I, exp 
K] measured by the metric 62. By the EMI (9), the length 
of the third side [exp H, exp K] of the triangle in Pn is larger 
than (or equal to) IIH -/~12. The general case of a geodesic 
triangle with vertices exp A, exp B, exp C in P,, may be re- 
duced to the special case by applying the congruence 
Fexp(A/2) to all points and thus changing one of the ver- 
tices t o / .  This is often described by saying that two geo- 
desics emanating from a point in Pn spread out faster than 
their pre-images (under the exponential map) in ~ .  

It is instructive here to compare the situation with that 
of Un, a compact manifold of non-negative curvature (Fig- 
ure 1). In this case the real vector space iSn consisting of 
skew-Hermitian matrices is mapped by the exponential 
onto U~. The map is not injective; it is a local diffeomor- 
phism. 

Using the formula (11) with H and K in i~n, we reduce 

Figure 1. Three curvatures, showing a comparison of a Euclidean (curvature zero) triangle in S2 with its images under exp(.) in P2 (nonposi- 

tive curvature) and exp(i-) in U2 (non-negative curvature). The colours indicate matching vertices. Note that the geodesics emanating from 

exp(A) spread out faster than Euclidean ones (compare the straight lines at A), whereas those emanating from exp(iA) spread more slowly. 
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Figure 2. Geodesic distance from A#B to A#C is no more than half 

that from B to C. Joining the midpoints of the sides of a geodesic 

triangle in Pn results in a triangle with sides no more than half as 

long. Iterating this procedure leads to the construction of Ando, Li, 

and Mathias, described in the text. 

H to diag(ih 1,. . .  , iA~) with Aj real. Instead of (12) we have 
n o w  

sin(Ai - A])/2 
(Ai -- Aj)/2 kij. 

s i n  x Since I~--I -< 1, the inequality (10) is reversed in this case, 
as is its consequence (9), provided e H and e g are close to 
each other. 

Returning to Pn and the geometric mean, it is not diffi- 
cult to derive from the information at our disposal the fact 
that given any three points A, B, and C in Pn we have 

1 
(15) ~2(A#B~A#C) -~ ~62(B,C). 

This inequality says that in every geodesic triangle in P~, 
with vertices A, B, and C, the length of the geodesic join- 
ing the midpoints of two sides is at most half the length of 
the third side. (If the geometry were Euclidean, the two 
sides of (15) would have been equal.) Figure 2 illustrates 
(15). 

We saw that the geometric mean A#B is the midpoint of 
the geodesic [A,B]. This suggests that we may possibly de- 
fine the geometric mean of three positive definite matrices 
A, B, and C as the "centroid" of the geodesic triangle 
A(A,B,C) in P~. 

In a Euclidean space %, the centroid ~ of a triangle with 
vertices xl, x2, x3 is the point 2 = 13(xl + x2 + x3). This is 
the arithmetic mean of the vectors x~, x2, and x3. This point 
may be characterised by several other properties. Three of 
them are: 

(M1) 2 is the unique point of intersection of the three 
medians of the triangle h(Xl,X2,X3), as in Figure 3; 

(M2) 2 is the unique point in % at which the function 

IIx - x l i j  2 + l ix  - x2i l  2 + nix - x3i i  2 

attains its minimum; 
(M3) ~ is the unique point of intersection of the nested 

sequence of triangles {An} in which hi = h and 
Aj§ is the triangle obtained by joining the mid- 

Figure 3. In the hyperbolic geometry medians may not meet. While the medians of a Euclidean triangle intersect at the centroid, the corre- 

sponding median geodesics of a triangle in P.  may not intersect at all. A 3-D wire model would make it clear that, generically, the medians 

do not even intersect in pairs. 
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points of the three sides of hj (Figure 2 mimics this 
construction in the non-Euclidean setting of P~). 

To define a geometric mean of A, B, and C in Pn we may 
try to imitate one of these definitions, now modified to suit 
the geometry of Pn. Here fundamental differences between 
Euclidean and hyperbolic geometry come to the fore, and 
(M1), (M2), and (M3) lead to three different results. 

The first definition using (M1) fails. The triangle 
A(A,B,C) may be defined as the "convex set" generated by 
A, B, and C. (It is clear what that should mean: replace line 
segments in the definition of convexity by geodesic seg- 
ments.) It turns out that this is not a 2-dimensional object 
as in ordinary Euclidean geometry (see Figure 4). So, the 
medians of a triangle may not intersect at all in some cases 
(again, see Figure 3). 

With (M2) as our motivation, we may ask whether there 
exists a point X0 in Pn at which the function 

f(X) = 8~(A~ + f i~(B~ + a ~ ( C ~  

attains a minimum. It was shown by l~lie Cartan (see, for 
example, section 6.1.5 of [Be]) that given A, B, and C in Pn, 
there is a unique point X0 at which f has a minimum. Let 
G2(A,B,C) -- Xo, and think of it as a geometric mean of A, 
B, and C. This mean has been studied in two recent papers 
by Bhatia and Holbrook [BH] and Moakher [M]. 

In another recent paper [ALM], Ando, Li, and Mathias 
define a geometric mean G3(A,B,C) by an iterative proce- 
dure. This iterative procedure has a nice geometric inter- 
pretation: it amounts to reaching the centroid of the geo- 
desic triangle A(A,B,d) in P~ by a process akin to (M3). 

Starting with A 1 a s  the triangle A(A,B,C) one defines A2 to 
be A(A#B,A#C,B#C), and then iterates this process. Figure 
2 shows the beginning of this process. The inequality (15) 
guarantees that the diameters of these nested triangles de- 
scend to zero as 1/2*L It can then be seen that there is a 
unique point in the intersection of this decreasing sequence 
of triangles. This point, represented by Ga(A,B,C), is the 
geometric mean proposed by Ando, Li, and Mathias. 

It turns out that the two objects G2(A,B,C) and G3(A,B,C) 
are not always equal (Figure 5 illustrates this phenome- 
non). Thus we have (at least) two competing notions of the 
centroid of A(A,B,C). How do they do as geometric means? 
The m e a n  Gu(ArB, C) has all of the four desirable properties 
(a)-(fi) that we listed for a mean G(A,B,C). Properties (a), 
(fl), and (6) are almost obvious from the construction. Prop- 
erty 0/)--monotonicity--is a consequence of the fact that 
the geometric mean A#B is monotone in A and B. So mo- 
notonicity is preserved at each iteration step. The mean 
G2(A,B,C) does have the desirable properties (a), (fl), and 
(8). Property (/3) follows from the fact that Fx is an isome- 
try of (Pn,82) for every X in GL,~. However, we have not been 
able to prove that G2(A,B,C) is monotone in A, B, and C. We 
have an unresolved question: Given positive definite matri- 
ces A, B, C, and A' with A --> A', is G2(A,B,C) >- Ge(A',B,C)? 

An answer to this question may lead to better under- 
standing of the geometry of Pn, the best-known example 
of a manifold of nonpositive curvature. Certainly this is of 
interest in matrix analysis. Computer experiments suggest 
an affirmative answer to the question. 

Finally, we make a brief mention of two related matters. 
The Frobenius norm is one of a large class of norms called 

Figure 4. Conv (A,B,C) is not two-dimensional. In the hyperbolic (nonpositive curvature) geometry of Pn, the convex hull of a triangle (formed 

by successively adjoining the geodesics between points that are already in the object) is not a surface but rather a "fatter" object. 

�9 2006 Springer Science+Business Media, Inc., Volume 28, Number 1, 2006 3 7  



u n i t a r i l y  i n v a r i a n t  n o r m s  or Scha t t en - von  N e u m a n n  

n o r m s .  These norms I1"]1r have the invariance property 
I IUA~tr  = I~A]Ir for all unitary Uand  V. Each of  these norms 
corresponds to a s y m m e t r i c  n o r m  r on ~"; that is, a norm 
(I) that is invariant under permutat ions and sign changes of  
coordinates. The correspondence is given by 1~4]1r = 
q) (Sl(A) . . . . .  s,,(A)), where s l (A)  >-- �9 �9 �9 >-- s,~(A) are the 
singular values of  A. Common examples are the HSIder  

n o r m s  r = (Zlxjp)  lip and the corresponding Scha t t en  

,~orms = (~ sP(A)) l/p, 1 -< p _< oc. The Frobenius norm 
is the special case p = 2. 

For each of these norms we may define a metric 8r on 
Pn as in the formula (14). The EMI in the form (9) or (10) 
remains true (see [B2]). The import of  this remark is that, 
with any of  these metrics, P,, is a F i n s l e r  man iJb ld  of non- 
positive curvature; the special Frobenius norm arises from 
an inner product  and gives rise to a Riemannian structure. 
In recent years m e t r i c  spaces o f  nonpos i t i v e  curva ture  have 
been studied in great detail; see the comprehensive book by 
Bridson and Haefliger [BrHa]. The spaces P,, with norms I1.11r 
are interesting and natural examples of  such spaces. 

But the whole wondrous  complications of  interference, 
waves, and all, result from the little fact that  :2~ -/5~- is not 
quite zero. 

- - R i c h a r d  F e y n m a n  [FLS]  

The generalised version of  EMI has a fascinating 
connect ion with yet another subject: inequalities for 

the matrix exponential function discovered by 
physicists and mathematicians. Many such in- 

equalities compare eigenvalues of the matri- 
ces e H+K and erie K, and are much used in 

quantum statistical mechanics and lately 
in quantum information theory. In IS] I. 

Segal proved for any two Hermitian 
matrices H and K the inequality 

Figure 5. The "Cartan surface" contains G2(A,B,C) but not G3(A,B,C). 
The Cartan surface consists of points minimizing the convex combi- 

nations a82(A,X) + b62(B,X) + c82(C,X); here the colours of the points 

shown are chosen to reflect the relative strengths of the weights a,b,c. 
Thus G2(A,B,C) corresponds to 1/3, 1/3, 1/3 (see yellow dot on sur- 

face). The small black circle locates G3(A,B,C), which is not on the 

surface in general. Thanks to J.-P. Shoch for computing this picture 

of a Cartan surface. 

(16) AI(e H+K) -~/~1 (eH/2eKeH/2) �9 

Here A I(X) is the largest eigenvalue of  a matrix X with real 
eigenvalues. In a similar vein, we have the famous Golden- 
Thompson inequality 

(17) tr (e H+K) -< tr (eH/2ege~t/2). 

The matrices e H+K and eW2eKe H/2 are positive definite. So, 
the inequalities (16) and (17) say 

IleH+~lp --< Iret*/2eKeH/211~, for p = 1,~. 

The EMI (9) generalised to all unitarily invariant norms is 
the inequality 

(18) II H +/~1r -< I[log (eH/2eKeH/2)llr 

By well-known properties of  the matrix exponential, this 
implies 

(19) i id,+, , l l , ,  _< 

This inequality, called the generalised Golden-Thompson 
inequality, includes in it the inequalities (16) and (17). The 
origins of  these inequalities and their connect ions  with 
quantum statistical mechanics  are explained in Simon [Si] 
(page 94). Still more general versions have been discovered 
by Lieb and Thirring, and by Araki, again in connect ion with 
problems of  quantum physics. See Chapter IX of  [B]. Gen- 
eralisations in a different direction were opened up by 
Kostant [K], where the matrix exponential  is replaced by 
the exponential  map in more abstract  Lie groups. 

A common  thread running between matrix analysis, Rie- 
mannian and Finsler geometry, and physics! Pascal would 
have approved. 
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