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1D Localization

The transmission coefficient in these equations is natu-
rally expressed in terms of the total T-matrix of the stack
written on the basis of a running wave. Consider transmis-
sion of a plane wave, which is normal on the left to the stack
comprised of an even number N of layers and embedded into
free space. In the simplest case, the wave is described in
terms of two component vectors of, say, an electric field e.
Within a uniform medium with dielectric permittivity e and
magnetic permeability l, the field e has the form

eðzÞ ¼ eþeikz þ e%e%ikz; k ¼ x
c

ffiffiffiffiffi
el

p
; (2.3)

with z axis directed to the right (here and below all the
lengths in the problem are dimensionless and measured in
the mean layer thickness).

If the components of vector e are normalized in such a
way that the energy flux of the wave Eq. (2.3) is jeþj2% je%j2,
then the amplitudes,

eL;R ¼ eþL;R
e%L;R

" #
(2.4)

of the field from both sides out of the N-layer stack are
related by its transfer matrix T̂ NÞð ,

ejL ¼ T̂ NÞejR;ð (2.5)

which is expressed via transmission and reflection coeffi-
cients of the stack as

T̂ðNÞ ¼

1

TN

R&
N

T&
N

RN

TN

1

T&
N

$$$$$$$$

$$$$$$$$
; (2.6)

where the asterisk denotes complex conjugation.
Methods of calculating the transmission coefficient

T NÞ ¼ ðT̂11Þ%1
%

(2.7)

are discussed in the next subsection.
In what follows we consider stacks composed of weak

scattering layers with reflection coefficients of each layer
much smaller than 1. In spite of this, for a sufficiently long
stack the transmission coefficient is exponentially small jTNj
' exp(%jN) with decrement coinciding with reciprocal
localization length j¼ lT

%1 (localized regime). However, a
short stack comprising a comparatively small number of
layers is almost transparent jRNj2 ( 1 (ballistic regime).
Here, the transmission length takes the form

lN ) b ¼ hjRN j2i
2N

; (2.8)

involving average reflectance.50 This follows directly from
Eq. (2.1) by virtue of the current conservation relationship,
jRNj2þ jTNj2¼ 1. The length b in this equation is termed the
ballistic length.

Accordingly, in studies of the transport of classical
waves in one-dimensional random systems, the following
spatial scales arise in a natural way:

• lT — transmission length of a finite sample Eq. (2.1),
• l — localization length Eq. (2.2) related to transmission
properties, and

• b — ballistic length Eq. (2.8).

Exponential decrease of the transmission coefficient
with the stack size is only a manifestation of Anderson local-
ization. The phenomenon of localization itself is the local-
ized character of eigenstates in an infinite disordered system
with sufficiently fast decaying correlations. The quantitative
characteristic of such a localization is the Lyapunov expo-
nent, which is the increment of exponential growth of the
currentless state with a given value at a certain point far
from this point. The amplitude Eq. (2.4) of the currentless
state in inhomogeneous medium in the basis of running
waves can be parameterized as,

e ¼ en
eih

e%ih

" #
¼ R

eih

e%ih

" #
; (2.9)

where R(z) and h(z) are the modulus and the phase of the
considered currentless solution, respectively.

It is known2,41 that at given initial values n(0), (R(0)),
and h(0) the function n(z) at a sufficiently far point is
approximately proportional to its distance from the initial
point. In discrete terms, with probability of 1 the positive
limit exists

c ¼ lim
N!1

nðNÞ
N

¼ lim
N!1

1

N
ln
RðNÞ
R 0Þð

; (2.10)

which is called the Lyapunov exponent. Its reciprocal value
is also called localization length

ln ¼
1

c
: (2.11)

However, the index n reminds us that this localization length
is defined through the Lyapunov exponent.

To compare the two localization lengths l and ln we first
consider the continuous case where the corresponding
dynamic variable n(z) depends on the continuous coordinate
z. In this case, transmittance of the system with length L is
exactly expressed as,2,42

T L * jTLj2 ¼
4

e2ncðLÞ þ e2nSðLÞ þ 2
; (2.12)

where nc(z) and ns(z) are two independent solutions satisfy-
ing the so-called cosine and sine initial conditions hc(0)¼ 0
and h(0)¼ p/2 and having the same limiting behavior

c ¼ 1

ln
¼ lim

z!1

ncðzÞ
z

¼ lim
z!1

nSðzÞ
z

: (2.13)

Equations (2.12) and (2.13) evidently show that in the con-
tinuous case l and ln coincide exactly.
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Lyapunov exponent

currentless field
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Transmission 

transmission coefficient

3

T (L)

|TL| ⌧ 1 |RL| ⇡ 1

|RL| ⌧ 1|TL| ⇡ 1ballistic regime

localized regime

transmittivity T (L) = |T (L)|2

1

lT (L)
=

⌧
1

lT (L)

�
- transmission length of a finite sample 

- transmission length of a finite sample on a realization

lT (L)

lT (L)

continuous system |TL|2 =
4

e2⇠c(L) + e2⇠s(L) + 2

localization length lT ⌘ lim
L!1

lT (L) = lim
L!1

lT (L) = l⇠

L ⌧ lT (L) !

L � lT (L) !

1

lT (L))
= � ln |T (L)|

L
= �Re lnT (L)

L
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N = 104

4

Multilayered random stack 

Balluni & Willemsen 1985

lT / �2 � ! 1

lT ! const � ! 0

Ping Sheng et. al. 1986

de Sterke & McPhedran 1993
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⇥(�) < 0, µ(�) < 0 ⇥ k · (E�H) < 0

!
E⇥H k

 

Metamaterials
Left -handed materials Veselago 1968
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Expectations 
Anderson localization originates with interference of multiply scattered 
waves. In the case of comparatively long waves (where wave length is of 
order or larger than the layer thickness), the opposite signs of the phase 
velocity and group velocity in left-handed material result in well 
pronounced partial or complete cancellation of the phase accumulation in 
multilayered mixed stacks containing both normal and left-handed layers. 
This cancellation suppresses the interference and the localization itself and 
increases the stack length needed for manifestation of sharp transmission 
resonances.
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< dj >= 1

< L >= N

tially decreasing function of the sample size. The average of
this decrement is a size-dependent quantity, whose inverse
!i.e., reciprocal" is termed the transmission length, lN. In the
limit as the sample becomes of infinite length, the decrement
tends to a constant nonrandom value. The reciprocal of this
value determines another characteristic spatial scale of the
localized regime, which is the localization length, l. It is
commonly accepted in both the solid state physics and opti-
cal communities, that the inverse of the Lyapunov exponent,
!−1, and the localization length, l are always equal. While
this is true for media with a continuous spatial distribution of
the random dielectric constant, in the case of randomly lay-
ered samples, the situation, as we show in this paper, is more
complicated. In particular, the inverse of the Lyapunov ex-
ponent by itself, calculated, for example, in Ref. 20, does not
provide comprehensive information about the transport prop-
erties of disordered media. Furthermore, it is unlikely that it
can be measured directly, at least in the optical regime.

The first study of localization in metamaterials was pre-
sented in Ref. 21 where wave transmission through an alter-
nating sequence of air layers and metamaterial layers of ran-
dom thicknesses was studied. Localized modes within the
gap were observed and delocalized modes were revealed de-
spite the one-dimensional nature of the model. A more gen-
eral model of alternating sequences of right !R"- and left
!L"-handed layers with random parameters was studied in
Ref. 22. There, it has been shown that in mixed stacks !M
stacks" with fluctuating refractive indices, localization of
low-frequency radiation was dramatically suppressed so that
the localization length exceeded that for homogeneous stacks
!H stacks", composed solely of right- or left-handed slabs, by
many orders of magnitude and scaling as l"#6 or even
higher powers of wavelength !in what follows we refer to
this result as the #6 anomaly", in contrast to the well-known
dependence l"#2 observed in H stacks.23 As noted in Ref.
22, a possible physical explanation of this is the suppression
of phase accumulation in M stacks, related to the opposite
signs of the phase and group velocities in left- and right-
handed layers. Scaling laws of the transmission through a
similar mixed multilayered structure were studied in Ref. 24.
There, it was shown that the spectrally averaged transmission
in a frequency range around the fully transparent resonant
mode decayed with the number of layers much more rapidly
than in a homogeneous random slab. Localization in a disor-
dered multilayered structure comprising alternating random
layers of two different left-handed materials was considered
in Ref. 25, where it was shown that within the propagation
gap, the localization length was shorter than the decay length
in the underlying periodic structure, and the opposite of that
observed in the corresponding random structure of right-
handed layers.

In this paper, we study the wave transmission through
disordered M- and H-stacks of a finite size composed of a
weakly scattering right- and left-handed layers. In the frame-
work of the weak scattering approximation !WSA", we have
developed a unified theoretical description of the transmis-
sion and localization lengths over a wide wavelength range,
allowing us to explain the pronounced difference in the
transmission properties of M and H stacks at long wave-
lengths.

When both refractive index and layer thickness of the
mixed stack are random, the transmission length in the long
wavelength part of the localized regime exhibits a quadratic
power law dependence on wavelength with different con-
stants of proportionality for mixed and homogeneous stacks.
Moreover, in the localized regime, the transmission length of
a mixed stack differs from the reciprocal of the Lyapunov
exponent of the corresponding infinite stack !in all one-
dimensional disordered systems studied until now these two
quantities always coincide".

Both M and H stacks demonstrate a rather narrow cross-
over from the localized to the ballistic regime. The H stack in
the near ballistic region, and the M stack in the ballistic
region are weakly scattering disordered stacks, while in the
far ballistic region, the H stack transmits radiation as an ef-
fectively uniform medium.

We also consider the effects of loss and show that absorp-
tion dominates the effects of disorder at very short and very
long wavelengths. The crossover region is particularly sensi-
tive to losses, so that even small absorption suppresses oscil-
lations in the transmission length as a function of frequency.

All of the theoretical results mentioned above are con-
firmed by, and are shown to be in excellent agreement with,
the results of extensive numerical simulation. In M stacks
with only refractive-index disorder, Anderson localization
and transmission resonances are effectively suppressed and
the crossover region between the localized and ballistic re-
gimes is orders of magnitude greater. A more detailed study
of the #6 anomaly shows that the genuine wavelength depen-
dence of the transmission length is not described by any
power law and rather is nonanalytic in nature.

In what follows, Sec. II presents a detailed description of
our model. Section III is devoted to the analytical studies of
the problem, while the results of numerical simulations and a
discussion of these are presented in Sec. IV

II. MODEL

A. Mixed and homogeneous stacks

We consider a one-dimensional alternating M stack, as
shown in Fig. 1. It comprises disordered mixed L- and
R-handed layers, which alternate over its length of N layers,
where N is an even number. The thicknesses of each layer
are independent random values with the same mean value d.
In what follows, all quantities with the dimension of length
are measured in units of d. In these units, for the thicknesses
of a layer we can write

RH LH RH LH

N N!1

! ! !

dj

2m 2m!1

! ! !

4 3 2 1

1

RN

TN

FIG. 1. !Color online" Structure geometry.

ASATRYAN et al. PHYSICAL REVIEW B 81, 075124 !2010"
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Model and methods
The simplest model

dj = 1 + �(d)j
µj = ±1

�(a)j ⇠ U [�Qa, Qa]

"j = ±(1 + �(�)j )2

⌫j = ±(1 + �(�)j ) Zj =
q
µj/⇥j = 1/(1 + �(�)j )

Qa ⌧ 1

weak disorder

a = d, "
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Methods

lT (L), lT (L) lT � weak scattering approximation (WSA)

Tj =
Tj�1tj

1�Rj�1rj
Rj = rj +

Rj�1t2j
1�Rj�1rj

Rj = rj +Rj�1t
2
jlnTj = lnTj�1 + ln tj +Rj�1rj

|rJ | ⌧ 1

Thursday, July 11, 13



9

Methods

lT (L), lT (L) lT � weak scattering approximation (WSA) |rn| ⌧ 1

Fokker-Plank equation for  

⇠n � ⇠n�1 = �(✓n�1)

n = 2j

Tj =
Tj�1tj

1�Rj�1rj
Rj = rj +

Rj�1t2j
1�Rj�1rj

Rj = rj +Rj�1t
2
jlnTj = lnTj�1 + ln tj +Rj�1rj

l⇠ = ��1 � = lim
n!1

⇠n
n

✓n � ✓n�1 = ⇥ (✓n�1)
perturbation theory                    

� = lim
n!1

(⇠n � ⇠n�1) = h� (✓)ist ⇢ (✓)

}

T-matrix approach
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N = 105

and !42"; and !c" asymptotics for short #Eq. !29"$ and long
wavelengths #Eqs. !33", !36", and !49"$. For the mean reflec-
tivity, we used the asymptotic forms !35" and !52".

In all cases, unless otherwise is mentioned, the ensemble
averaging is taken over Nr=104 realizations. The results up
to Sec. IV C are for lossless stacks !!=0" only.

A. Refractive-index and thickness disorder

We first consider stacks having refractive-index and thick-
ness disorder, with Q"=0.25 and Qd=0.2. Shown in Fig. 2
are transmission spectra for a M stack of N=105 layers and a
H stack of length N=103. There are two major differences
between the results for these two types of samples: first, in
the localized regime !N# lN", the transmission length of the
M stack exceeds or coincides with that of the H-stack; sec-
ond, in the long wavelength region, the plot of the transmis-
sion length of the M-stack exhibits a pronounced bend, or
kink, in the interval $! #102 ,103$, while there is no such
feature in the H-stack results. These two types of behavior
are discussed in more detail below.

1. Mixed stacks

The weak scattering approximation !WSA" of Eq. !18" is
an excellent method by which to calculate the transmission
length for M stacks. This is seen in Fig. 2 where the curves
obtained by numerical simulations and by the WSA are in-
distinguishable !solid line". The characteristic wavelengths
#Eq. !40"$ of this mixed stack are $1%148 and $2%839.
Therefore, the transmission length describes the localization
properties of a random sample in the region $%148, whereas
longer wavelengths, $&839, correspond to the ballistic re-
gime. The crossover from the localized to the ballistic regime
demonstrates the kink-type behavior that occurs within the
region $1%$%$2. The short and long wavelength behavior
of the transmission length is also in excellent agreement with
the calculated asymptotics in both regimes.

To analyze the long wavelength region !$&10" more
carefully, we plot in Fig. 3 the transmission lengths of M
stacks of three different sizes, N=103, 105, and 107. In all
cases, there is excellent agreement between the simulations
and the WSA predictions. The characteristic wavelengths for
N=103 are $1=14.8 and $2=83.9, while for N=107 they are
$1=1480 and $2=8390, and we see that the observed cross-
over regions are bounded exactly by these characteristic
wavelengths in all three cases.

To confirm the ballistic nature of the transmission in the
region $'$2, we plot in Fig. 4!a" the logarithm of the mean
value of the reflectance for the same three stack sizes as a
function of the logarithm of the wavelength. In all cases, the
plots exhibit a linear dependence ln&'RN'2(=const+2 ln $ in
the ballistic regime, which is bounded from below by the
crossover wavelength $2. The straight lines are calculated
from Eq. !35" and confirm that the reflection coefficient in
the mixed stack is proportional to the stack length. Within
the localized region $%$1, the reflection coefficient is close
to unity in all three cases.

The behavior of the transmission length is illustrated by
the phase diagram in the !$ ,N" plane shown in Fig. 4!b". The
two slanted lines N= l!$" and N= l̄!$" separate the plane into
three parts corresponding to the localization !I", the cross-
over region !II", and the ballistic region !III". The intersec-
tions of these lines with the horizontal lines N=103, N=105,

10!2 10!1 100 101 102 103
101

102

103

104

105

106

107

Λ

lN

FIG. 2. !Color online" Transmission length lN vs $ for M stack
!thick solid line" and H stack !thick dashed line". Asymptotics of the
localization length l !thin straight lines", the short wavelength
asymptotic !thin dotted line #Eq. !29"$ and the long wavelength
asymptotics—thin solid line for the M stack #Eq. !36"$ and a thin
dashed line for the H stack #Eq. !44"$.

lN

101 102 103 104

103

104

105

106

107

108

109

Λ

FIG. 3. !Color online" Transmission length lN vs $ for a M stack
of N=103 !thick solid line", 105 !thick dashed line" and 107 !thick
dotted line" layers showing both numerical simulations and the
WSA theory. The long-wave asymptotics for the localization length
#Eq. !36"$ and the ballistic length #Eq. !33"$ are shown respectively
in the thin solid and dashed lines respectively.

ASATRYAN et al. PHYSICAL REVIEW B 81, 075124 !2010"

075124-10

General properties

Suppression of localization
Q" = 0.25, Qd = 0.2

blue solid curve - 

red dashed  curve - 

lT (L) mixed alternating stack

lT (L) normal stack
direct simulation and WSA}

We PRB 81, 075124 (2010) 

lT =
3�2

2⇡2Q2
"

3Q2
" + 2Q2

d

Q2
" + 2Q2

d

lT =
3�2

2⇡2Q2
"
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and !42"; and !c" asymptotics for short #Eq. !29"$ and long
wavelengths #Eqs. !33", !36", and !49"$. For the mean reflec-
tivity, we used the asymptotic forms !35" and !52".

In all cases, unless otherwise is mentioned, the ensemble
averaging is taken over Nr=104 realizations. The results up
to Sec. IV C are for lossless stacks !!=0" only.

A. Refractive-index and thickness disorder

We first consider stacks having refractive-index and thick-
ness disorder, with Q"=0.25 and Qd=0.2. Shown in Fig. 2
are transmission spectra for a M stack of N=105 layers and a
H stack of length N=103. There are two major differences
between the results for these two types of samples: first, in
the localized regime !N# lN", the transmission length of the
M stack exceeds or coincides with that of the H-stack; sec-
ond, in the long wavelength region, the plot of the transmis-
sion length of the M-stack exhibits a pronounced bend, or
kink, in the interval $! #102 ,103$, while there is no such
feature in the H-stack results. These two types of behavior
are discussed in more detail below.

1. Mixed stacks

The weak scattering approximation !WSA" of Eq. !18" is
an excellent method by which to calculate the transmission
length for M stacks. This is seen in Fig. 2 where the curves
obtained by numerical simulations and by the WSA are in-
distinguishable !solid line". The characteristic wavelengths
#Eq. !40"$ of this mixed stack are $1%148 and $2%839.
Therefore, the transmission length describes the localization
properties of a random sample in the region $%148, whereas
longer wavelengths, $&839, correspond to the ballistic re-
gime. The crossover from the localized to the ballistic regime
demonstrates the kink-type behavior that occurs within the
region $1%$%$2. The short and long wavelength behavior
of the transmission length is also in excellent agreement with
the calculated asymptotics in both regimes.

To analyze the long wavelength region !$&10" more
carefully, we plot in Fig. 3 the transmission lengths of M
stacks of three different sizes, N=103, 105, and 107. In all
cases, there is excellent agreement between the simulations
and the WSA predictions. The characteristic wavelengths for
N=103 are $1=14.8 and $2=83.9, while for N=107 they are
$1=1480 and $2=8390, and we see that the observed cross-
over regions are bounded exactly by these characteristic
wavelengths in all three cases.

To confirm the ballistic nature of the transmission in the
region $'$2, we plot in Fig. 4!a" the logarithm of the mean
value of the reflectance for the same three stack sizes as a
function of the logarithm of the wavelength. In all cases, the
plots exhibit a linear dependence ln&'RN'2(=const+2 ln $ in
the ballistic regime, which is bounded from below by the
crossover wavelength $2. The straight lines are calculated
from Eq. !35" and confirm that the reflection coefficient in
the mixed stack is proportional to the stack length. Within
the localized region $%$1, the reflection coefficient is close
to unity in all three cases.

The behavior of the transmission length is illustrated by
the phase diagram in the !$ ,N" plane shown in Fig. 4!b". The
two slanted lines N= l!$" and N= l̄!$" separate the plane into
three parts corresponding to the localization !I", the cross-
over region !II", and the ballistic region !III". The intersec-
tions of these lines with the horizontal lines N=103, N=105,

10!2 10!1 100 101 102 103
101

102

103

104

105

106

107

Λ

lN

FIG. 2. !Color online" Transmission length lN vs $ for M stack
!thick solid line" and H stack !thick dashed line". Asymptotics of the
localization length l !thin straight lines", the short wavelength
asymptotic !thin dotted line #Eq. !29"$ and the long wavelength
asymptotics—thin solid line for the M stack #Eq. !36"$ and a thin
dashed line for the H stack #Eq. !44"$.

lN

101 102 103 104

103

104

105

106

107

108

109

Λ

FIG. 3. !Color online" Transmission length lN vs $ for a M stack
of N=103 !thick solid line", 105 !thick dashed line" and 107 !thick
dotted line" layers showing both numerical simulations and the
WSA theory. The long-wave asymptotics for the localization length
#Eq. !36"$ and the ballistic length #Eq. !33"$ are shown respectively
in the thin solid and dashed lines respectively.

ASATRYAN et al. PHYSICAL REVIEW B 81, 075124 !2010"

075124-10

Long wave behavior: localization-ballistic crossover

Q" = 0.25, Qd = 0.2

red solid line - 

brown dashed line - 

blue dotted line - 

N = 103

N = 105

N = 107
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and !42"; and !c" asymptotics for short #Eq. !29"$ and long
wavelengths #Eqs. !33", !36", and !49"$. For the mean reflec-
tivity, we used the asymptotic forms !35" and !52".

In all cases, unless otherwise is mentioned, the ensemble
averaging is taken over Nr=104 realizations. The results up
to Sec. IV C are for lossless stacks !!=0" only.

A. Refractive-index and thickness disorder

We first consider stacks having refractive-index and thick-
ness disorder, with Q"=0.25 and Qd=0.2. Shown in Fig. 2
are transmission spectra for a M stack of N=105 layers and a
H stack of length N=103. There are two major differences
between the results for these two types of samples: first, in
the localized regime !N# lN", the transmission length of the
M stack exceeds or coincides with that of the H-stack; sec-
ond, in the long wavelength region, the plot of the transmis-
sion length of the M-stack exhibits a pronounced bend, or
kink, in the interval $! #102 ,103$, while there is no such
feature in the H-stack results. These two types of behavior
are discussed in more detail below.

1. Mixed stacks

The weak scattering approximation !WSA" of Eq. !18" is
an excellent method by which to calculate the transmission
length for M stacks. This is seen in Fig. 2 where the curves
obtained by numerical simulations and by the WSA are in-
distinguishable !solid line". The characteristic wavelengths
#Eq. !40"$ of this mixed stack are $1%148 and $2%839.
Therefore, the transmission length describes the localization
properties of a random sample in the region $%148, whereas
longer wavelengths, $&839, correspond to the ballistic re-
gime. The crossover from the localized to the ballistic regime
demonstrates the kink-type behavior that occurs within the
region $1%$%$2. The short and long wavelength behavior
of the transmission length is also in excellent agreement with
the calculated asymptotics in both regimes.

To analyze the long wavelength region !$&10" more
carefully, we plot in Fig. 3 the transmission lengths of M
stacks of three different sizes, N=103, 105, and 107. In all
cases, there is excellent agreement between the simulations
and the WSA predictions. The characteristic wavelengths for
N=103 are $1=14.8 and $2=83.9, while for N=107 they are
$1=1480 and $2=8390, and we see that the observed cross-
over regions are bounded exactly by these characteristic
wavelengths in all three cases.

To confirm the ballistic nature of the transmission in the
region $'$2, we plot in Fig. 4!a" the logarithm of the mean
value of the reflectance for the same three stack sizes as a
function of the logarithm of the wavelength. In all cases, the
plots exhibit a linear dependence ln&'RN'2(=const+2 ln $ in
the ballistic regime, which is bounded from below by the
crossover wavelength $2. The straight lines are calculated
from Eq. !35" and confirm that the reflection coefficient in
the mixed stack is proportional to the stack length. Within
the localized region $%$1, the reflection coefficient is close
to unity in all three cases.

The behavior of the transmission length is illustrated by
the phase diagram in the !$ ,N" plane shown in Fig. 4!b". The
two slanted lines N= l!$" and N= l̄!$" separate the plane into
three parts corresponding to the localization !I", the cross-
over region !II", and the ballistic region !III". The intersec-
tions of these lines with the horizontal lines N=103, N=105,

10!2 10!1 100 101 102 103
101

102

103

104

105

106

107

Λ

lN

FIG. 2. !Color online" Transmission length lN vs $ for M stack
!thick solid line" and H stack !thick dashed line". Asymptotics of the
localization length l !thin straight lines", the short wavelength
asymptotic !thin dotted line #Eq. !29"$ and the long wavelength
asymptotics—thin solid line for the M stack #Eq. !36"$ and a thin
dashed line for the H stack #Eq. !44"$.

lN

101 102 103 104

103

104
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FIG. 3. !Color online" Transmission length lN vs $ for a M stack
of N=103 !thick solid line", 105 !thick dashed line" and 107 !thick
dotted line" layers showing both numerical simulations and the
WSA theory. The long-wave asymptotics for the localization length
#Eq. !36"$ and the ballistic length #Eq. !33"$ are shown respectively
in the thin solid and dashed lines respectively.
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and N=107 define the characteristic wavelengths !1 and !2
for the three stack sizes considered here. It is easy to see that
these wavelengths, determined with the aid of the phase dia-
gram, perfectly bound the crossover regions in both Figs. 3
and 4!a".

Until now, we have dealt only with the transmission
length lN!!", which was defined through an average value.
However, more detailed information can be obtained from
the transmission length l̃N!!" for a single realization, defined
by the equation

1

l̃N

= −
ln#TN#

N
. !63"

In the localized regime, for a sufficiently long !i.e., N" l"
M stack, the transmission length for a single realization l̃N!!"
is practically nonrandom and coincides with lN!!", while in
the ballistic region it fluctuates. The data displayed in Fig. 5"
enable us to estimate the difference between the transmission
length lN!!" !solid line" and the transmission length l̃N!!" for
a single randomly chosen realization !dashed line", and the
scale of the corresponding fluctuations. Both curves are

smooth, coincide in the localized region, and differ notice-
ably in the ballistic regime. The separate discrete points in
Fig. 5 present the values of the transmission length l̃N!!"
calculated for different randomly chosen realizations. It is
evident that fluctuations in the ballistic region become more
pronounced with increasing wavelength.

2. Homogeneous stacks

The absence of any kink in the H-stack transmission
length spectrum in Fig. 2 follows from Sec. III B 3 in which
it was shown that the crossover to the far ballistic regime
occurs at the wavelength !2!N" $Eq. !45"%. For N=103, this is
of the order of 104 and so the kink does not appear.

In order to study the crossover, we plot in Fig. 6 the
transmission lengths of H stacks with N=103 and 104 over
the wavelength range extended up to !&106. As for the M
stack, the simulation results for H stacks cannot be distin-
guished from those of the WSA $Eq. !42"%. The transition
from the localized to the near ballistic regime occurs without
any change in the analytical dependence of transmission
length, in complete agreement with the results of Sec.
III B 3. The crossover from the near to the far ballistic re-
gime is accompanied by a change in the analytical depen-
dence that occurs at !=!2!N", which for these stacks is of
the order of 104 and 105, respectively. The crossover is ac-
companied by prominent oscillations described by Eq. !52".
Finally, we note that the vertical displacement between the
moderately long and extremely long wavelength ballistic as-
ymptotes does not depend on wavelength, but grows with the
size of the stack, according to the law

ln
bn

bf
= ln

NQ#
2

12
, !64"

which stems from Eq. !50".
To study the ballistic transmission regime in the region

!$!1 more closely, we plot in the upper panel of Fig. 7!a"
!on a logarithmic scale" the mean value of the reflection co-
efficient for the same two stack sizes. That part of each plot
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FIG. 4. !Color online" !a" Average reflectance for M-stacks of
length N=103 !solid line", 105 !dashed line" and 107 !dotted line"
layers !numerical simulation and WSA". Long-wave asymptotic for
the average reflectance for the same stacks !thin solid lines". !b"
Phase diagram of M stacks. The thick solid line corresponds to a
stack size equal to the localization length. The dashed line corre-
sponds to a stack size equal to the crossover length. The localized,
crossover, and ballistic regimes occur in regions I, II, and III,
respectively.

10#2 10#1 100 101 102 103 104 105 106
102

104

106

108

1010

1012

1014

1016

Λ

l
%
N

lN

FIG. 5. !Color online" Transmission lengths lN !solid black line"
and the transmission length for a single realization l̃N !dashed blue
line" vs ! for a M-stack with Q#=0.25, Qd=0.2 and N=104 layers.
Each separate point corresponds to a particular wavelength with its
own realization of a random stack.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.
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0:25. The inset shows the legend for M- and H stack spectra. The
fitted straight line is lT ' 5:1!6 (6). To facilitate comparison of
the single realization (Fig. 2) and ensemble averaged calcula-
tions, l" for the M stack of Fig. 2 is also plotted on this graph.
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tially from that for H stacks. Moreover, the width of the
crossover region on the lN axis remains of the same order of
magnitude, although on the ! axis it grows for N=109 to four
orders of magnitude, being much wider for longer stacks. In
the long wavelength region corresponding to the ballistic re-
gime, the transmission length of the RID M stack coincides
with that of RID H stack.

2. Transmission resonances

An important signature of the localization regime is the
presence of transmission resonances !see, for example, Refs.
33–35", which appears in sufficiently long, open systems and
which are a “fingerprint” of a given realization of disorder.
These resonances are responsible for the difference between
two quantities that characterize the transmission, namely,
#ln$T$2% and ln#$T$2%. The former reflects the properties of a
typical realization, while the main contribution to the latter is
generated by a small number of almost transparent realiza-
tions associated with the transmission resonances.

The natural characteristic of the transmission resonances
is the ratio of the two quantities mentioned above,

s =
#ln$T$2%
ln#$T$2%

.

In the absence of resonances, this value is close to unity,
while in the localization regime s"1. In particular, in the
high-energy part of the spectrum of a disordered system with
Gaussian white-noise potential, this ratio takes the value 4.14

In Fig. 11, we plot the ratio s!!" as a function of the
wavelength for RID M and H stacks and for the correspond-
ing stacks with thickness disorder. In all cases, the stack
length is N=103 and it is evident that for the RID M stack
s!!"&1, i.e., the stack length is too short for the localization
regime to be realized. In other three cases, however, s!!"
#2, which means that the localization takes place even in a
comparatively short stack.

Thus, there are two ways in which to introduce transmis-
sion resonances. The first is to increase the length of the

stack. Figure 12 displays the RID M-stack transmittance $T$2
for a single realization as a function of ! for two lengths:
N=105 !solid line" and N=103 !dotted line". It is readily seen
that while there are no resonances in the shorter stacks, they
do appear for the longer sample. The second way to generate
transmission resonances is to introduce thickness disorder.
To demonstrate this, we plot in Fig. 13 the transmittance of a
single M stack with both thickness and refractive-index dis-
order. It clearly shows that while the RID M stack is too
short to exhibit transmission resonances at !"3, resonances
do emerge at longer wavelengths for the M stack with thick-
ness disorder.

3. Effects of the thickness disorder and uncorrelated paring

Here, we analyze the effect of thickness disorder on the !6

anomaly—that is the !6 dependence of the transmission
length. In Fig. 14, we plot the transmission length lN for an
M stack with fixed refractive-index disorder !Q$=0.25" for
various values of the thickness disorder. It is evident that the
transmission length changes from l%!6 to the classical de-
pendence l%!2 as the thickness disorder increases from Qd

s
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FIG. 11. !Color online" Ratio s!!" vs wavelength ! for Q$

=0.25 and the stack length N=103. Solid and dashed curves are for
the RID H stack and H stack with Qd=0.2, respectively. The middle
dashed-dotted curve is for an M-stack with Qd=0.25, and the bot-
tom dotted line is for a RID M-stack.
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FIG. 12. !Color online" Single realization transmittance $T$2 vs
wavelength ! for RID M-stacks with Q$=0.25 and Qd=0 for N
=105 layers !solid line" and N=103 layers !dotted line".
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FIG. 13. !Color online" Single realization transmittance $T$2 vs !
for M stack of N=103 layers with Q$=0.25. Solid line corresponds
to an M stack with Qd=0.2, and the dashed line to M stack with no
thickness disorder, i.e., Qd=0.0.
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Transmission length and Lyapunov exponent

and !42"; and !c" asymptotics for short #Eq. !29"$ and long
wavelengths #Eqs. !33", !36", and !49"$. For the mean reflec-
tivity, we used the asymptotic forms !35" and !52".

In all cases, unless otherwise is mentioned, the ensemble
averaging is taken over Nr=104 realizations. The results up
to Sec. IV C are for lossless stacks !!=0" only.

A. Refractive-index and thickness disorder

We first consider stacks having refractive-index and thick-
ness disorder, with Q"=0.25 and Qd=0.2. Shown in Fig. 2
are transmission spectra for a M stack of N=105 layers and a
H stack of length N=103. There are two major differences
between the results for these two types of samples: first, in
the localized regime !N# lN", the transmission length of the
M stack exceeds or coincides with that of the H-stack; sec-
ond, in the long wavelength region, the plot of the transmis-
sion length of the M-stack exhibits a pronounced bend, or
kink, in the interval $! #102 ,103$, while there is no such
feature in the H-stack results. These two types of behavior
are discussed in more detail below.

1. Mixed stacks

The weak scattering approximation !WSA" of Eq. !18" is
an excellent method by which to calculate the transmission
length for M stacks. This is seen in Fig. 2 where the curves
obtained by numerical simulations and by the WSA are in-
distinguishable !solid line". The characteristic wavelengths
#Eq. !40"$ of this mixed stack are $1%148 and $2%839.
Therefore, the transmission length describes the localization
properties of a random sample in the region $%148, whereas
longer wavelengths, $&839, correspond to the ballistic re-
gime. The crossover from the localized to the ballistic regime
demonstrates the kink-type behavior that occurs within the
region $1%$%$2. The short and long wavelength behavior
of the transmission length is also in excellent agreement with
the calculated asymptotics in both regimes.

To analyze the long wavelength region !$&10" more
carefully, we plot in Fig. 3 the transmission lengths of M
stacks of three different sizes, N=103, 105, and 107. In all
cases, there is excellent agreement between the simulations
and the WSA predictions. The characteristic wavelengths for
N=103 are $1=14.8 and $2=83.9, while for N=107 they are
$1=1480 and $2=8390, and we see that the observed cross-
over regions are bounded exactly by these characteristic
wavelengths in all three cases.

To confirm the ballistic nature of the transmission in the
region $'$2, we plot in Fig. 4!a" the logarithm of the mean
value of the reflectance for the same three stack sizes as a
function of the logarithm of the wavelength. In all cases, the
plots exhibit a linear dependence ln&'RN'2(=const+2 ln $ in
the ballistic regime, which is bounded from below by the
crossover wavelength $2. The straight lines are calculated
from Eq. !35" and confirm that the reflection coefficient in
the mixed stack is proportional to the stack length. Within
the localized region $%$1, the reflection coefficient is close
to unity in all three cases.

The behavior of the transmission length is illustrated by
the phase diagram in the !$ ,N" plane shown in Fig. 4!b". The
two slanted lines N= l!$" and N= l̄!$" separate the plane into
three parts corresponding to the localization !I", the cross-
over region !II", and the ballistic region !III". The intersec-
tions of these lines with the horizontal lines N=103, N=105,
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FIG. 2. !Color online" Transmission length lN vs $ for M stack
!thick solid line" and H stack !thick dashed line". Asymptotics of the
localization length l !thin straight lines", the short wavelength
asymptotic !thin dotted line #Eq. !29"$ and the long wavelength
asymptotics—thin solid line for the M stack #Eq. !36"$ and a thin
dashed line for the H stack #Eq. !44"$.

lN

101 102 103 104

103

104

105

106

107

108

109

Λ

FIG. 3. !Color online" Transmission length lN vs $ for a M stack
of N=103 !thick solid line", 105 !thick dashed line" and 107 !thick
dotted line" layers showing both numerical simulations and the
WSA theory. The long-wave asymptotics for the localization length
#Eq. !36"$ and the ballistic length #Eq. !33"$ are shown respectively
in the thin solid and dashed lines respectively.
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Transmission length and Lyapunov exponent

and !42"; and !c" asymptotics for short #Eq. !29"$ and long
wavelengths #Eqs. !33", !36", and !49"$. For the mean reflec-
tivity, we used the asymptotic forms !35" and !52".

In all cases, unless otherwise is mentioned, the ensemble
averaging is taken over Nr=104 realizations. The results up
to Sec. IV C are for lossless stacks !!=0" only.

A. Refractive-index and thickness disorder

We first consider stacks having refractive-index and thick-
ness disorder, with Q"=0.25 and Qd=0.2. Shown in Fig. 2
are transmission spectra for a M stack of N=105 layers and a
H stack of length N=103. There are two major differences
between the results for these two types of samples: first, in
the localized regime !N# lN", the transmission length of the
M stack exceeds or coincides with that of the H-stack; sec-
ond, in the long wavelength region, the plot of the transmis-
sion length of the M-stack exhibits a pronounced bend, or
kink, in the interval $! #102 ,103$, while there is no such
feature in the H-stack results. These two types of behavior
are discussed in more detail below.

1. Mixed stacks

The weak scattering approximation !WSA" of Eq. !18" is
an excellent method by which to calculate the transmission
length for M stacks. This is seen in Fig. 2 where the curves
obtained by numerical simulations and by the WSA are in-
distinguishable !solid line". The characteristic wavelengths
#Eq. !40"$ of this mixed stack are $1%148 and $2%839.
Therefore, the transmission length describes the localization
properties of a random sample in the region $%148, whereas
longer wavelengths, $&839, correspond to the ballistic re-
gime. The crossover from the localized to the ballistic regime
demonstrates the kink-type behavior that occurs within the
region $1%$%$2. The short and long wavelength behavior
of the transmission length is also in excellent agreement with
the calculated asymptotics in both regimes.

To analyze the long wavelength region !$&10" more
carefully, we plot in Fig. 3 the transmission lengths of M
stacks of three different sizes, N=103, 105, and 107. In all
cases, there is excellent agreement between the simulations
and the WSA predictions. The characteristic wavelengths for
N=103 are $1=14.8 and $2=83.9, while for N=107 they are
$1=1480 and $2=8390, and we see that the observed cross-
over regions are bounded exactly by these characteristic
wavelengths in all three cases.

To confirm the ballistic nature of the transmission in the
region $'$2, we plot in Fig. 4!a" the logarithm of the mean
value of the reflectance for the same three stack sizes as a
function of the logarithm of the wavelength. In all cases, the
plots exhibit a linear dependence ln&'RN'2(=const+2 ln $ in
the ballistic regime, which is bounded from below by the
crossover wavelength $2. The straight lines are calculated
from Eq. !35" and confirm that the reflection coefficient in
the mixed stack is proportional to the stack length. Within
the localized region $%$1, the reflection coefficient is close
to unity in all three cases.

The behavior of the transmission length is illustrated by
the phase diagram in the !$ ,N" plane shown in Fig. 4!b". The
two slanted lines N= l!$" and N= l̄!$" separate the plane into
three parts corresponding to the localization !I", the cross-
over region !II", and the ballistic region !III". The intersec-
tions of these lines with the horizontal lines N=103, N=105,
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FIG. 2. !Color online" Transmission length lN vs $ for M stack
!thick solid line" and H stack !thick dashed line". Asymptotics of the
localization length l !thin straight lines", the short wavelength
asymptotic !thin dotted line #Eq. !29"$ and the long wavelength
asymptotics—thin solid line for the M stack #Eq. !36"$ and a thin
dashed line for the H stack #Eq. !44"$.
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FIG. 3. !Color online" Transmission length lN vs $ for a M stack
of N=103 !thick solid line", 105 !thick dashed line" and 107 !thick
dotted line" layers showing both numerical simulations and the
WSA theory. The long-wave asymptotics for the localization length
#Eq. !36"$ and the ballistic length #Eq. !33"$ are shown respectively
in the thin solid and dashed lines respectively.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.

10
-2

10
0

10
2

λ

10
2

10
4

10
6

10
8

lT

LH/RH structure, N = 10
9
, 1 realiz.

LH/RH structure, N = 10
3

LH/RH structure, N = 10
5

LH/RH structure, N = 10
7

RH/RH structure, N = 10
4

FIG. 3 (color online). Characteristic length lT vs ! for Q $
0:25. The inset shows the legend for M- and H stack spectra. The
fitted straight line is lT ' 5:1!6 (6). To facilitate comparison of
the single realization (Fig. 2) and ensemble averaged calcula-
tions, l" for the M stack of Fig. 2 is also plotted on this graph.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.
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the single realization (Fig. 2) and ensemble averaged calcula-
tions, l" for the M stack of Fig. 2 is also plotted on this graph.
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background (free space), are nj!
!!!!!!!
"!

p !"#1$"j" i#%
and Zj !

!!!!!!!!!!!!!
!j="j

q
! 1=#1$ "j " i#% with the choice of

sign corresponding to RH and LH slabs, respectively. We
assume that all layers have identical thickness d and we
make use of dimensionless variables, measuring all lengths
in units of d. The total length of the stack is thus N, the
number of layers.

First, we study lossless systems (# ! 0) and notice that
when our structure is periodic (Q ! 0), it is transparent at
all frequencies since there is no impedance mismatch at
any boundary. That is, there are no forbidden bands in the
spectrum of the structure and, therefore, disorder in the
refractive index of the layers provides the only physical
mechanism for wave localization. Interestingly, the intro-
duction of thickness disorder to such a refractively unper-
turbed system conserves its complete transparency at all
frequencies, irrespective of the strength of the disorder, a
consequence of layer impedance matching.

In this Letter, we study the properties of the dimension-
less localization length l, defined as the reciprocal of the
Lyapunov exponent $ [1,3],

 $ & l'1 ! lim
N!1

%N

N
! ' lim

N!1
lnjTNj
N

; (1)

where %N is the natural logarithm of the magnitude of a
‘‘zero-current’’ (fixed at the input) solution of the corre-
sponding dynamical equations, and TN is the transmission
amplitude of a random stack of N layers. Because of the
self-averaging of the Lyapunov exponent, the numerator in
the final term of Eq. (1) can be replaced by its ensemble
average value. We thus introduce two lengths,

 l%#N% ! N
%N

; and lT#N% ! ' N
hlnjTNji

: (2)

The former is calculated for any single realization, while
the latter is computed by averaging its denominator over
many random configurations. For a sufficiently long stack,
both lengths almost coincide and practically do not change
with further increases in system length. If these length
scales are much smaller than the total length of the struc-
ture, i.e., l%, lT ( N, then either can be used to character-
ize the genuine localization length.

To calculate l% and lT , we use recurrence relations
derived from the transfer matrix method [19]. For any
random realization, we find TN from the recurrence rela-
tions for the stack transmission and reflection amplitudes,

 Tj !
Tj'1tj

1' Rj'1rj
; Rj ! rj $

Rj'1t2j
1' Rj'1rj

; (3)

and then calculate lT#N% (2). Here, Rj and Tj denote
reflection and transmission amplitudes of a j layer stack,
enumerated from j ! 1 at the rear through to j ! N at the
front, and with layer j characterized by reflection and

transmission amplitudes rj and tj which are functions of
nj, Zj, and the phase change across the layer, &j.

To calculate l%, it is convenient to choose pairs of
adjacent LH and RH layers as the basic building block.
Then,

 

1

l%
! 1

N

XN=2

m!1

lnjT #m%
22 $ 'm'1T

#m%
21 j; (4)

where T #m%
ik denote elements of the transfer matrix [17,19]

for layer pair m, expressed in terms of Zj, nj, and &j, while
the dynamical variable 'm satisfies

 'm ! T #m%)
22 'm'1 $T #m%)

21

T #m%
22 $T #m%

21 'm'1

; '0 ! 1: (5)

A similar procedure may also be used to calculate a single
realization of lnjTNj, used in the calculation of lT .
Accordingly, these two approaches complement each other
well and, as should be expected, the results for l% and lT
agree very closely and coincide in the region where both
represent the genuine localization length.

Our results, summarized in Figs. 2 and 3, reveal a
number of interesting and unexpected features. These
show the wavelength dependence of l% and lT over various
random configurations for the disorder Q ! 0:25. The
solid line in Fig. 2 corresponds to l% for propagation in a
M stack for a single realization of N ! 109 layers, while
the dashed line is for the corresponding H-stack. Figure 3
depicts lT for three different M stacks of N ! 107, 105, 103

layers (from top to bottom) and the same quantity for a H
stack of N ! 104 layers. In all cases, hlnjTNji, in the
denominator of Eq. (2), is averaged over 104 realizations,
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FIG. 2 (color online). Characteristic length l% vs wavelength (
for Q ! 0:25 and N ! 109 layers; solid line is for the M stack,
while the dashed line is for the corresponding (normal) H stack.
The vertical lines at ( ! 0:1, 1 delimit the short-, intermediate-,
and long-wavelength regimes.
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sufficient to achieve graphical accuracy. As can be seen
from Figs. 2 and 3, for ! & 10, both l" and lT are smooth
functions (the former due to self-averaging) which are
(a) essentially identical, (b) much smaller than the length
of the sample N, and (c) independent of N. These thus
represent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs. 2 and 3, we see that, in the short-wavelength
regime (! ! 1), the localization length of the M stack
remains constant [15–18], while for 0:5 & ! & 1, it ex-
hibits oscillations similar to that seen in disordered H
stacks [18]. However, for long-wavelengths, ! * 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l / !2, applicable to disordered H
stacks, the localization length of a M stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0:01 " Q " 0:3) revealing that

 l"; lT / !6: (6)

Thus, the inclusion of left-handed metamaterial layers in
the disordered stack substantially suppresses Anderson
localization in the long-wavelength limit—the essential
difference between M and H stacks being the much weaker
interference in M stacks, attributable to a lack of phase
accumulation over the sample, due to the cancellation of
phase across alternating LH and RH layers.

For ! * 10, l" and lT are quite different, with l" exhib-
iting giant, irregular oscillations (Fig. 2) that appear in all
realizations. At such wavelengths, the stack is not suffi-
ciently long for self-averaging, needed for l" to attain its
(nonrandom) limit. In contrast, the length lT is smooth
even for ! * 10, due to ensemble averaging (2). Here,

however, lT does not represent the genuine localization
length since it is larger than N, the total length of the
system. Nevertheless, in this ballistic transport regime, lT
is still a physically meaningful quantity. Here, the trans-
mittance jTNj2 is close to unity, exhibits strong relative
fluctuations in 1# jTNj2, and has an average value [2,20]
of hjTNj2i $ 1# 2N=lbal, where the ballistic length lbal is
much larger than N.

For H stacks, it follows that lT $ #N=%hlnjTNji& ' lbal
(2), coinciding with the same length that occurs in the
localization limit, lT%! N&. That is, the transmission prop-
erties of a normal stack, in both the localized and ballistic
regimes, are characterized by a single length scale, pro-
portional to !2. In contrast, and somewhat surprisingly, the
long-wavelength properties of mixed stacks are described
by two different characteristic lengths: the localization
length, proportional to !6, and the ballistic length, propor-
tional to !2 (See Fig. 3).

In addition to the differences in the behavior of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their reso-
nance properties. Figure 4 presents a single realization of
jTNj2 as a function of ! for an M stack (dashed line) of
N $ 103 layers, and for the corresponding H stack (solid
line). From this, we see that the disordered H stack exhibits
resonances over the entire spectrum, while there are no
resonances for the M stack for ! * 4. While this, at first,
may be unexpected, it is just a further manifestation of the
lack of phase accumulation over the length of the system:
for this realization, the accumulated wave phase in the
mixed stack did not exceed #=2. This behavior is repli-
cated over all realizations and is consistent with our earlier
observation that, for mixed media, much longer stacks are
required to cause localization.

We have also studied localization in M stacks that
include absorption, present in all real metamaterials.
Here, the attenuation of the field is attributable to both
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FIG. 4 (color online). Transmittance jTj2 vs ! for a single
realization (Q $ 0:25, N $ 103). Solid: normal H stack, dotted:
M stack.
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0:25. The inset shows the legend for M- and H stack spectra. The
fitted straight line is lT ' 5:1!6 (6). To facilitate comparison of
the single realization (Fig. 2) and ensemble averaged calcula-
tions, l" for the M stack of Fig. 2 is also plotted on this graph.
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=0.001 !top curve" to Qd=0.01 !bottom curve". In all cases,
the number of layers N=108 is longer than the transmission
length, guaranteeing that Fig. 14 represents the genuine lo-
calization length l.

We have also found that the anomalous dependence l
!"6 !or with higher power" is extremely sensitive to the
alternation of left- and right-handed layers. To demonstrate
this, we consider an M stack of length N=104, in which each
subsequent layer is chosen with equal probability to be either
right or left handed. Figure 15 shows the transmission length
spectrum for this case, which is almost the same for both the
H stacks and M stacks. The only difference is a fairly modest
suppression of localization, which occurs within the wave-
length interval 0.5#"#2.5. This result confirms that it is
the additional correlation between left-handed and right-
handed layers in the alternating stack which is responsible
for the suppression of localization.

C. Effects of losses

In this section, we study the transmission through layered
media with absorption, which is characteristic of real

metamaterials. In this case, the exponential decay of the field
is due to both Anderson localization and absorption,27,36 and
in some limiting cases, it is possible to distinguish between
these contributions.

For an M stack with weak fluctuations of the refractive-
index, weak thickness disorder and weak absorbtion, the
WSA theory in the limits of short or long waves leads to the
well-known formula

1
latt

=
1
lN

+
1

labs
,

where lN is the disorder-induced transmission length in the
absence of absorption, and the absorption length is

labs =
"

2$%
. !65"

For short wavelengths, lN
−1 is a constant given by Eqs.

!29", !33", and !36", while for long wavelengths, in either the
localized or ballistic regimes, its contribution is proportional
to "−2 and thus is negligibly small in comparison with the
contribution due to losses, which is always proportional to
"−1. Accordingly, at both short and long wavelengths, the
attenuation length coincides with the absorption length #Eq.
!65"$, with disorder contributing significantly to the attenua-
tion length only in some intermediate wavelength region,
provided that the absorption is sufficiently small.

The results of the numerical calculations shown in Fig. 16
completely confirm the theoretical predictions presented
above. For weak absorption %=10−4, the direct simulation
and WSA theory give exactly the same result !solid curve in
Fig. 16". Over a reasonably wide wavelength range, 10−1

&"&103, disorder contributes significantly to the attenua-
tion. For such a stack, the characteristic wavelengths are
"1!N"=47 and "2!N"=265, implying that the contribution of
disorder is significant in all regions, from the short wave-
length part of the localized regime to the long wavelength
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FIG. 14. !Color online" Localization length l vs wavelength "
for a M-stack with Q'=0.25 and Qd=0.001, 0.005, and 0.01 !from
top to bottom".
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ity to be of R or L type. The stacks in both calculations are of the
same size, N=104.
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=0.001 !top curve" to Qd=0.01 !bottom curve". In all cases,
the number of layers N=108 is longer than the transmission
length, guaranteeing that Fig. 14 represents the genuine lo-
calization length l.

We have also found that the anomalous dependence l
!"6 !or with higher power" is extremely sensitive to the
alternation of left- and right-handed layers. To demonstrate
this, we consider an M stack of length N=104, in which each
subsequent layer is chosen with equal probability to be either
right or left handed. Figure 15 shows the transmission length
spectrum for this case, which is almost the same for both the
H stacks and M stacks. The only difference is a fairly modest
suppression of localization, which occurs within the wave-
length interval 0.5#"#2.5. This result confirms that it is
the additional correlation between left-handed and right-
handed layers in the alternating stack which is responsible
for the suppression of localization.

C. Effects of losses

In this section, we study the transmission through layered
media with absorption, which is characteristic of real

metamaterials. In this case, the exponential decay of the field
is due to both Anderson localization and absorption,27,36 and
in some limiting cases, it is possible to distinguish between
these contributions.

For an M stack with weak fluctuations of the refractive-
index, weak thickness disorder and weak absorbtion, the
WSA theory in the limits of short or long waves leads to the
well-known formula

1
latt

=
1
lN

+
1

labs
,

where lN is the disorder-induced transmission length in the
absence of absorption, and the absorption length is

labs =
"

2$%
. !65"

For short wavelengths, lN
−1 is a constant given by Eqs.

!29", !33", and !36", while for long wavelengths, in either the
localized or ballistic regimes, its contribution is proportional
to "−2 and thus is negligibly small in comparison with the
contribution due to losses, which is always proportional to
"−1. Accordingly, at both short and long wavelengths, the
attenuation length coincides with the absorption length #Eq.
!65"$, with disorder contributing significantly to the attenua-
tion length only in some intermediate wavelength region,
provided that the absorption is sufficiently small.

The results of the numerical calculations shown in Fig. 16
completely confirm the theoretical predictions presented
above. For weak absorption %=10−4, the direct simulation
and WSA theory give exactly the same result !solid curve in
Fig. 16". Over a reasonably wide wavelength range, 10−1

&"&103, disorder contributes significantly to the attenua-
tion. For such a stack, the characteristic wavelengths are
"1!N"=47 and "2!N"=265, implying that the contribution of
disorder is significant in all regions, from the short wave-
length part of the localized regime to the long wavelength
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FIG. 14. !Color online" Localization length l vs wavelength "
for a M-stack with Q'=0.25 and Qd=0.001, 0.005, and 0.01 !from
top to bottom".
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FIG. 15. !Color online" Transmission length lN vs wavelength "
for the H stack with R layers !dashed line" and an M stack !solid
line" in which each subsequent layer is chosen with equal probabil-
ity to be of R or L type. The stacks in both calculations are of the
same size, N=104.
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FIG. 16. !Color online" Attenuation length latt and absorption
length labs vs wavelength " for an M stack with disorder Q'=0.25,
Qd=0.2 and length N=104. The upper solid line displays the !iden-
tical" simulation and WSA results for %=10−4; the lower solid line
presents numerical results while the dashed line displays WSA re-
sults for the same absorption value. Absorption lengths #Eq. !65"$
for both %=10−4 and %=10−2 are shown by dotted straight lines.
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=0.001 !top curve" to Qd=0.01 !bottom curve". In all cases,
the number of layers N=108 is longer than the transmission
length, guaranteeing that Fig. 14 represents the genuine lo-
calization length l.

We have also found that the anomalous dependence l
!"6 !or with higher power" is extremely sensitive to the
alternation of left- and right-handed layers. To demonstrate
this, we consider an M stack of length N=104, in which each
subsequent layer is chosen with equal probability to be either
right or left handed. Figure 15 shows the transmission length
spectrum for this case, which is almost the same for both the
H stacks and M stacks. The only difference is a fairly modest
suppression of localization, which occurs within the wave-
length interval 0.5#"#2.5. This result confirms that it is
the additional correlation between left-handed and right-
handed layers in the alternating stack which is responsible
for the suppression of localization.

C. Effects of losses

In this section, we study the transmission through layered
media with absorption, which is characteristic of real

metamaterials. In this case, the exponential decay of the field
is due to both Anderson localization and absorption,27,36 and
in some limiting cases, it is possible to distinguish between
these contributions.

For an M stack with weak fluctuations of the refractive-
index, weak thickness disorder and weak absorbtion, the
WSA theory in the limits of short or long waves leads to the
well-known formula

1
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where lN is the disorder-induced transmission length in the
absence of absorption, and the absorption length is
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. !65"

For short wavelengths, lN
−1 is a constant given by Eqs.

!29", !33", and !36", while for long wavelengths, in either the
localized or ballistic regimes, its contribution is proportional
to "−2 and thus is negligibly small in comparison with the
contribution due to losses, which is always proportional to
"−1. Accordingly, at both short and long wavelengths, the
attenuation length coincides with the absorption length #Eq.
!65"$, with disorder contributing significantly to the attenua-
tion length only in some intermediate wavelength region,
provided that the absorption is sufficiently small.

The results of the numerical calculations shown in Fig. 16
completely confirm the theoretical predictions presented
above. For weak absorption %=10−4, the direct simulation
and WSA theory give exactly the same result !solid curve in
Fig. 16". Over a reasonably wide wavelength range, 10−1

&"&103, disorder contributes significantly to the attenua-
tion. For such a stack, the characteristic wavelengths are
"1!N"=47 and "2!N"=265, implying that the contribution of
disorder is significant in all regions, from the short wave-
length part of the localized regime to the long wavelength
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FIG. 14. !Color online" Localization length l vs wavelength "
for a M-stack with Q'=0.25 and Qd=0.001, 0.005, and 0.01 !from
top to bottom".
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FIG. 15. !Color online" Transmission length lN vs wavelength "
for the H stack with R layers !dashed line" and an M stack !solid
line" in which each subsequent layer is chosen with equal probabil-
ity to be of R or L type. The stacks in both calculations are of the
same size, N=104.
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FIG. 16. !Color online" Attenuation length latt and absorption
length labs vs wavelength " for an M stack with disorder Q'=0.25,
Qd=0.2 and length N=104. The upper solid line displays the !iden-
tical" simulation and WSA results for %=10−4; the lower solid line
presents numerical results while the dashed line displays WSA re-
sults for the same absorption value. Absorption lengths #Eq. !65"$
for both %=10−4 and %=10−2 are shown by dotted straight lines.
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numerical calculation !red solid line" and the analytic form
!long dashed blue curve". The expectation that Eq. !15"
would serve as a good interpolation formula for the transmis-
sion length in the short- and long-wave regions, as antici-
pated in Sec. III A, is borne out by the results of Fig. 7. The
short-wave !dashed dotted line" asymptotic form in Eq. !29"
and the long-wave !black dashed line" asymptotic form in
Eq. !57", respectively, coincide with the numerical results for
!"1 and 200"!. In the intermediate region 1"!"200,
however, the theoretical description underestimates the ac-
tual transmission length since the WSA is no longer valid for
the chosen, supercritical angle of incidence. For p polariza-
tion, the results are qualitatively the same but with the dis-
crepancy at the intermediate wavelengths even more pro-
nounced.

C. Mixed stacks with refractive-index disorder

In our earlier paper,23 we demonstrated that at normal
incidence a disordered mixed stack, with only refractive-
index disorder, could substantially suppress Anderson local-
ization. Indeed, the suppression is so strong that even the
usual quadratic dependence on wavelength #i.e., O!!2"$ of
the localization length at long wavelengths was shown to
change to O!!6". In contrast, the introduction of the thick-
ness disorder in combination with the refractive-index disor-
der induces strong localization at long wavelengths with the
localization length returning to its expected quadratic depen-
dence on wavelength.24 In this section, we consider the ef-
fects of polarization on long-wavelength localization in
M-stacks.

Figure 8 displays transmission-length spectra for a mixed
stack with only refractive-index disorder for an angle of in-
cidence of #=30°. Four curves are displayed: for p-polarized
light and a stack of length N=106 !dashed doted cyan curve"
and for s-polarized light and three stacks of lengths N=105

!solid red curve", N=107 !dashed green curve", and N=8
$108 !blue curve". There is a striking difference between the
two polarizations: in the case of p-polarized light, there is

strong localization at long wavelengths !!"102" with the
localization length showing O!!2" dependence; in contrast,
the localization length for s-polarized light is much larger
and shows the O!!6" dependence as occurs for normal inci-
dence. Note that for s polarization, the localization regions in
Fig. 8 are bounded from above by the wavelength limits !
"5, 9, and 12 for stacks of length N=105, 107, and 8$108,
respectively.

This asymmetry between the polarizations suggests that
the suppression of localization is due not only to the suppres-
sion of the phase accumulation but also to the vector nature
of the electromagnetic wave. Because of the symmetry of
Maxwell’s equations between the electric and magnetic
fields, it is to be expected that for a model in which there is
disorder in the magnetic permeability !with %= &1" the situ-
ation will be inverted with localization for p-polarized waves
being suppressed and with s polarization showing strong lo-
calization.

In concluding this section, we emphasize that the delicate
phenomenon of the suppression of localization occurs only
for refractive-index disorder and that the introduction of any
thickness disorder leads to the strong localization !see Sec.
IV B 1 and Ref. 24".

V. TRANSMISSION LENGTH AS A FUNCTION OF THE
INCIDENCE ANGLE

A. Homogeneous stacks

We next consider the angular dependence of the transmis-
sion length of a homogeneous stack for a given wavelength.
As in earlier simulations, we work with the parameters Q'

=0.1, Qd=0.2, and N=106. Figure 9 displays the transmis-
sion length as a function of the angle of incidence # for both
s and p polarizations. In each panel !upper: !=0.1, lower:
!=10", the solid red curve displays the results of the numeri-
cal simulation while the blue dashed line corresponds to the
WSA analytic form in Eq. !22" with the top and bottom sets
being for p and s polarizations, respectively.

10!2 10!1 100 101 102 103 104 105
10!2

100

102

104

106

108

1010

Λ

lN

FIG. 7. !Color online" Transmission length versus ! for a
M-stack in s-polarized light with Q'=0.1, Qd=0.2, and N=104, and
for the supercritical incidence angle #=75°. Red solid curve: nu-
merical simulations; blue dashed curve: analytic form in Eq. !15".
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FIG. 8. !Color online" Transmission length lN versus ! for a
M-stack with Q'=0.25, Qd=0, and #=30° for p-polarized light
!cyan dashed dotted curve, N=106" and s-polarized light !red solid
curve, N=105; green dashed curve, N=107; and blue dotted curve,
N=8$108".
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numerical calculation !red solid line" and the analytic form
!long dashed blue curve". The expectation that Eq. !15"
would serve as a good interpolation formula for the transmis-
sion length in the short- and long-wave regions, as antici-
pated in Sec. III A, is borne out by the results of Fig. 7. The
short-wave !dashed dotted line" asymptotic form in Eq. !29"
and the long-wave !black dashed line" asymptotic form in
Eq. !57", respectively, coincide with the numerical results for
!"1 and 200"!. In the intermediate region 1"!"200,
however, the theoretical description underestimates the ac-
tual transmission length since the WSA is no longer valid for
the chosen, supercritical angle of incidence. For p polariza-
tion, the results are qualitatively the same but with the dis-
crepancy at the intermediate wavelengths even more pro-
nounced.

C. Mixed stacks with refractive-index disorder

In our earlier paper,23 we demonstrated that at normal
incidence a disordered mixed stack, with only refractive-
index disorder, could substantially suppress Anderson local-
ization. Indeed, the suppression is so strong that even the
usual quadratic dependence on wavelength #i.e., O!!2"$ of
the localization length at long wavelengths was shown to
change to O!!6". In contrast, the introduction of the thick-
ness disorder in combination with the refractive-index disor-
der induces strong localization at long wavelengths with the
localization length returning to its expected quadratic depen-
dence on wavelength.24 In this section, we consider the ef-
fects of polarization on long-wavelength localization in
M-stacks.

Figure 8 displays transmission-length spectra for a mixed
stack with only refractive-index disorder for an angle of in-
cidence of #=30°. Four curves are displayed: for p-polarized
light and a stack of length N=106 !dashed doted cyan curve"
and for s-polarized light and three stacks of lengths N=105

!solid red curve", N=107 !dashed green curve", and N=8
$108 !blue curve". There is a striking difference between the
two polarizations: in the case of p-polarized light, there is

strong localization at long wavelengths !!"102" with the
localization length showing O!!2" dependence; in contrast,
the localization length for s-polarized light is much larger
and shows the O!!6" dependence as occurs for normal inci-
dence. Note that for s polarization, the localization regions in
Fig. 8 are bounded from above by the wavelength limits !
"5, 9, and 12 for stacks of length N=105, 107, and 8$108,
respectively.

This asymmetry between the polarizations suggests that
the suppression of localization is due not only to the suppres-
sion of the phase accumulation but also to the vector nature
of the electromagnetic wave. Because of the symmetry of
Maxwell’s equations between the electric and magnetic
fields, it is to be expected that for a model in which there is
disorder in the magnetic permeability !with %= &1" the situ-
ation will be inverted with localization for p-polarized waves
being suppressed and with s polarization showing strong lo-
calization.

In concluding this section, we emphasize that the delicate
phenomenon of the suppression of localization occurs only
for refractive-index disorder and that the introduction of any
thickness disorder leads to the strong localization !see Sec.
IV B 1 and Ref. 24".

V. TRANSMISSION LENGTH AS A FUNCTION OF THE
INCIDENCE ANGLE

A. Homogeneous stacks

We next consider the angular dependence of the transmis-
sion length of a homogeneous stack for a given wavelength.
As in earlier simulations, we work with the parameters Q'

=0.1, Qd=0.2, and N=106. Figure 9 displays the transmis-
sion length as a function of the angle of incidence # for both
s and p polarizations. In each panel !upper: !=0.1, lower:
!=10", the solid red curve displays the results of the numeri-
cal simulation while the blue dashed line corresponds to the
WSA analytic form in Eq. !22" with the top and bottom sets
being for p and s polarizations, respectively.
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FIG. 7. !Color online" Transmission length versus ! for a
M-stack in s-polarized light with Q'=0.1, Qd=0.2, and N=104, and
for the supercritical incidence angle #=75°. Red solid curve: nu-
merical simulations; blue dashed curve: analytic form in Eq. !15".
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FIG. 8. !Color online" Transmission length lN versus ! for a
M-stack with Q'=0.25, Qd=0, and #=30° for p-polarized light
!cyan dashed dotted curve, N=106" and s-polarized light !red solid
curve, N=105; green dashed curve, N=107; and blue dotted curve,
N=8$108".
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in µ-near-zero (MNZ) materials, with µ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or µ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model

ε(f ) = 1 −
f 2

ep − f 2
e

f 2 − f 2
e + iγf

, (1)

A B A B

N N!1

! ! !

d j

2m 2m!1

! ! !
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FIG. 1. (Color online) The geometry of the model. θ denotes the
angle of incidence from free space.

µ(f ) = 1 −
f 2

mp − f 2
m

f 2 − f 2
m + iγf

. (2)

Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and µ̄(f ) = 〈µ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

µ(fmp) = µ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m ! 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <
f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < µ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <
fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −µ∗(f ), respectively,
where ε(f ) and µ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in µ-near-zero (MNZ) materials, with µ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or µ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model
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µ(f ) = 1 −
f 2

mp − f 2
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f 2 − f 2
m + iγf

. (2)

Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and µ̄(f ) = 〈µ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

µ(fmp) = µ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m ! 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <
f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < µ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <
fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −µ∗(f ), respectively,
where ε(f ) and µ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in µ-near-zero (MNZ) materials, with µ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or µ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model

ε(f ) = 1 −
f 2
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FIG. 1. (Color online) The geometry of the model. θ denotes the
angle of incidence from free space.
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Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and µ̄(f ) = 〈µ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

µ(fmp) = µ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m ! 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <
f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < µ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <
fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −µ∗(f ), respectively,
where ε(f ) and µ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in µ-near-zero (MNZ) materials, with µ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or µ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model

ε(f ) = 1 −
f 2
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FIG. 1. (Color online) The geometry of the model. θ denotes the
angle of incidence from free space.

µ(f ) = 1 −
f 2
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m + iγf

. (2)

Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and µ̄(f ) = 〈µ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

µ(fmp) = µ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m ! 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <
f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < µ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <
fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −µ∗(f ), respectively,
where ε(f ) and µ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in µ-near-zero (MNZ) materials, with µ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or µ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model

ε(f ) = 1 −
f 2
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FIG. 1. (Color online) The geometry of the model. θ denotes the
angle of incidence from free space.

µ(f ) = 1 −
f 2

mp − f 2
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m + iγf
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Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and µ̄(f ) = 〈µ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

µ(fmp) = µ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m ! 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <
f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < µ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <
fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −µ∗(f ), respectively,
where ε(f ) and µ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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m! 8.78, for N¼ 1012. This shows that the question about a
genuine value of exponent m still remains open.

Consider now the long-wave behavior of the localization
length in the presence of dispersion. In Fig. 18(a) the trans-
mission length spectrum is plotted in the case of normal inci-
dence for a small permittivity disorder Qe¼ 0.5#10$2. One
can immediately observe significant (up to four orders of
magnitude) suppression of localization in the frequency
region 10.50 GHz< f< 10.68 GHz. However, this suppres-
sion seems to have nothing in common with the observed
above anomalous enlightening. Indeed, in this case localiza-
tion length grows with increasing frequency, while in the
previous studies43–45 similar growth was observed with
increasing incident wavelength. This is demonstrated in Fig.
8(b), where the same transmission length spectrum is plotted
as a function of free space wavelength. Thus, the localization
length decreases by four orders of magnitude, manifesting as
an enhancement, rather than suppression, of localization
with increasing wavelength.

Although at first look these findings are in sharp contrast
with the previous ones, they are correct and physically
meaningful. In the model studied earlier43–45 the wavelength
of incident radiation largely coincided with the wavelength
inside each layer. In dispersive medium considered here
these two wavelengths differ substantially. Accordingly, in
Fig. 18(c) we plot transmission length as a function of wave-
length within the stack and obtain results that are very simi-
lar to those in Refs. 43–45. To emphasize this similarity we
have plotted the transmission length spectrum for three dif-
ferent stack lengths: N¼ 105, 106, 107. It is easily seen that
the suppression of localization in the dispersive media is
qualitatively and quantitatively similar to that predicted in
Ref. 43. The corresponding exponent m of anomalous
enlightening estimated with the help of these results is
m! 8.2.

Enhanced suppression of localization exists in the
strictly periodic alternative M-stacks with a constant layer
thickness and only refractive index disorder. In other words,
in mixed stacks having constant layer thickness the dielectric
permittivity disorder alone is not sufficiently strong to local-
ize low-frequency radiation in a standard way. There are
many ways to violate these conditions. It is possible to add
thickness fluctuations43,44 or magnetic permeability fluctua-
tions,46 or to introduce a small difference between two con-
stant thicknesses of R- and L-layers, or not to change any
parameter but rearrange randomly the same numbers N/2 of
R- and L-layers.44 Each such violation immediately destroys
anomalous suppression of localization and restores the stand-
ard long-wave asymptotic value l ! k2.

Analytical results obtained above in Sec. 3 survive in
the dd! 0 limit and predict l ! k2 as the asymptotic value.
However, a more detailed investigation shows that WA in its
form (Eqs. (2.18) and (2.19)) fails in this limit.44

As was mentioned above, localization length ln exhibits
qualitatively the same behavior as transmission length lT. At
the same time, its calculation is simpler than that of lT. The
Lyapunov exponent in minimally disordered M-stacks was
calculated in Ref. 52 using some version of the method
described in Refs. 2, 41, 42, and 58 and at the end of Sec.
2.2. The remaining part of this Subsection contains slightly
modified details and results of this calculation.52

Consider an electromagnetic wave of frequency x¼ ck
in an infinite array comprised of two types of lossless alterna-
tive a and b layers of equal dimensionless thickness Dj¼ 1
with random dielectric permittivities. Enumerate the layers so
that the jth layer occupies the interval j$ 1% z< j and choose
all odd layers of a type and all even of b type. For
an alternative array, it is natural to choose an elementary
cell composed of two adjacent layers as the main basic
element of the array.43,52 The nth cell occupies interval
2n$ 2% z< 2n and consists of (2n – 1)-th and 2n layers of
type a and b, correspondingly. Each layer is characterized by
its type a(b), magnetic permeability la¼ 1 (lb¼61), refrac-
tive index !a(n) (!b(n)), impedance Za(n)¼ 1/!a(n) (Zb(n)
¼61/!b(n)), and wave number ka,b¼ k!a,b of the wave.

Within such a model, two systems are considered: the
H-array, when both a and b layers are made of righthanded
materials, and the M-array, where a layers are of right-
handed material, while b layers are of left-handed material.
We emphasize that on the contrary to the H-stack notion,

FIG. 18. (Ref. 46) (a) Transmission length lT vs. frequency f for a mixed
stack with N¼ 107 layers (top dotted blue curve), and only dielectric permit-
tivity disorder. The bottom curves on all the panels (a, b, c) are for a stack
with N¼ 107 layers with both permittivity and permeability disorder (the
cyan, solid curve displays simulation results, while the dashed, black curve
is for the analytical prediction); (b) is the same as (a), but plotted as a func-
tion of free space wavelength k0, while on panel (c) we plot transmission
length as a function of the averaged wavelength inside the stack normalized
to the thickness of the layer, for N¼ 107 layers (blue dotted top curve),
N¼ 106 layers (dashed green curve) and for N¼ 105 layers (red solid curve),
respectively.
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m! 8.78, for N¼ 1012. This shows that the question about a
genuine value of exponent m still remains open.

Consider now the long-wave behavior of the localization
length in the presence of dispersion. In Fig. 18(a) the trans-
mission length spectrum is plotted in the case of normal inci-
dence for a small permittivity disorder Qe¼ 0.5#10$2. One
can immediately observe significant (up to four orders of
magnitude) suppression of localization in the frequency
region 10.50 GHz< f< 10.68 GHz. However, this suppres-
sion seems to have nothing in common with the observed
above anomalous enlightening. Indeed, in this case localiza-
tion length grows with increasing frequency, while in the
previous studies43–45 similar growth was observed with
increasing incident wavelength. This is demonstrated in Fig.
8(b), where the same transmission length spectrum is plotted
as a function of free space wavelength. Thus, the localization
length decreases by four orders of magnitude, manifesting as
an enhancement, rather than suppression, of localization
with increasing wavelength.

Although at first look these findings are in sharp contrast
with the previous ones, they are correct and physically
meaningful. In the model studied earlier43–45 the wavelength
of incident radiation largely coincided with the wavelength
inside each layer. In dispersive medium considered here
these two wavelengths differ substantially. Accordingly, in
Fig. 18(c) we plot transmission length as a function of wave-
length within the stack and obtain results that are very simi-
lar to those in Refs. 43–45. To emphasize this similarity we
have plotted the transmission length spectrum for three dif-
ferent stack lengths: N¼ 105, 106, 107. It is easily seen that
the suppression of localization in the dispersive media is
qualitatively and quantitatively similar to that predicted in
Ref. 43. The corresponding exponent m of anomalous
enlightening estimated with the help of these results is
m! 8.2.

Enhanced suppression of localization exists in the
strictly periodic alternative M-stacks with a constant layer
thickness and only refractive index disorder. In other words,
in mixed stacks having constant layer thickness the dielectric
permittivity disorder alone is not sufficiently strong to local-
ize low-frequency radiation in a standard way. There are
many ways to violate these conditions. It is possible to add
thickness fluctuations43,44 or magnetic permeability fluctua-
tions,46 or to introduce a small difference between two con-
stant thicknesses of R- and L-layers, or not to change any
parameter but rearrange randomly the same numbers N/2 of
R- and L-layers.44 Each such violation immediately destroys
anomalous suppression of localization and restores the stand-
ard long-wave asymptotic value l ! k2.

Analytical results obtained above in Sec. 3 survive in
the dd! 0 limit and predict l ! k2 as the asymptotic value.
However, a more detailed investigation shows that WA in its
form (Eqs. (2.18) and (2.19)) fails in this limit.44

As was mentioned above, localization length ln exhibits
qualitatively the same behavior as transmission length lT. At
the same time, its calculation is simpler than that of lT. The
Lyapunov exponent in minimally disordered M-stacks was
calculated in Ref. 52 using some version of the method
described in Refs. 2, 41, 42, and 58 and at the end of Sec.
2.2. The remaining part of this Subsection contains slightly
modified details and results of this calculation.52

Consider an electromagnetic wave of frequency x¼ ck
in an infinite array comprised of two types of lossless alterna-
tive a and b layers of equal dimensionless thickness Dj¼ 1
with random dielectric permittivities. Enumerate the layers so
that the jth layer occupies the interval j$ 1% z< j and choose
all odd layers of a type and all even of b type. For
an alternative array, it is natural to choose an elementary
cell composed of two adjacent layers as the main basic
element of the array.43,52 The nth cell occupies interval
2n$ 2% z< 2n and consists of (2n – 1)-th and 2n layers of
type a and b, correspondingly. Each layer is characterized by
its type a(b), magnetic permeability la¼ 1 (lb¼61), refrac-
tive index !a(n) (!b(n)), impedance Za(n)¼ 1/!a(n) (Zb(n)
¼61/!b(n)), and wave number ka,b¼ k!a,b of the wave.

Within such a model, two systems are considered: the
H-array, when both a and b layers are made of righthanded
materials, and the M-array, where a layers are of right-
handed material, while b layers are of left-handed material.
We emphasize that on the contrary to the H-stack notion,

FIG. 18. (Ref. 46) (a) Transmission length lT vs. frequency f for a mixed
stack with N¼ 107 layers (top dotted blue curve), and only dielectric permit-
tivity disorder. The bottom curves on all the panels (a, b, c) are for a stack
with N¼ 107 layers with both permittivity and permeability disorder (the
cyan, solid curve displays simulation results, while the dashed, black curve
is for the analytical prediction); (b) is the same as (a), but plotted as a func-
tion of free space wavelength k0, while on panel (c) we plot transmission
length as a function of the averaged wavelength inside the stack normalized
to the thickness of the layer, for N¼ 107 layers (blue dotted top curve),
N¼ 106 layers (dashed green curve) and for N¼ 105 layers (red solid curve),
respectively.
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m! 8.78, for N¼ 1012. This shows that the question about a
genuine value of exponent m still remains open.

Consider now the long-wave behavior of the localization
length in the presence of dispersion. In Fig. 18(a) the trans-
mission length spectrum is plotted in the case of normal inci-
dence for a small permittivity disorder Qe¼ 0.5#10$2. One
can immediately observe significant (up to four orders of
magnitude) suppression of localization in the frequency
region 10.50 GHz< f< 10.68 GHz. However, this suppres-
sion seems to have nothing in common with the observed
above anomalous enlightening. Indeed, in this case localiza-
tion length grows with increasing frequency, while in the
previous studies43–45 similar growth was observed with
increasing incident wavelength. This is demonstrated in Fig.
8(b), where the same transmission length spectrum is plotted
as a function of free space wavelength. Thus, the localization
length decreases by four orders of magnitude, manifesting as
an enhancement, rather than suppression, of localization
with increasing wavelength.

Although at first look these findings are in sharp contrast
with the previous ones, they are correct and physically
meaningful. In the model studied earlier43–45 the wavelength
of incident radiation largely coincided with the wavelength
inside each layer. In dispersive medium considered here
these two wavelengths differ substantially. Accordingly, in
Fig. 18(c) we plot transmission length as a function of wave-
length within the stack and obtain results that are very simi-
lar to those in Refs. 43–45. To emphasize this similarity we
have plotted the transmission length spectrum for three dif-
ferent stack lengths: N¼ 105, 106, 107. It is easily seen that
the suppression of localization in the dispersive media is
qualitatively and quantitatively similar to that predicted in
Ref. 43. The corresponding exponent m of anomalous
enlightening estimated with the help of these results is
m! 8.2.

Enhanced suppression of localization exists in the
strictly periodic alternative M-stacks with a constant layer
thickness and only refractive index disorder. In other words,
in mixed stacks having constant layer thickness the dielectric
permittivity disorder alone is not sufficiently strong to local-
ize low-frequency radiation in a standard way. There are
many ways to violate these conditions. It is possible to add
thickness fluctuations43,44 or magnetic permeability fluctua-
tions,46 or to introduce a small difference between two con-
stant thicknesses of R- and L-layers, or not to change any
parameter but rearrange randomly the same numbers N/2 of
R- and L-layers.44 Each such violation immediately destroys
anomalous suppression of localization and restores the stand-
ard long-wave asymptotic value l ! k2.

Analytical results obtained above in Sec. 3 survive in
the dd! 0 limit and predict l ! k2 as the asymptotic value.
However, a more detailed investigation shows that WA in its
form (Eqs. (2.18) and (2.19)) fails in this limit.44

As was mentioned above, localization length ln exhibits
qualitatively the same behavior as transmission length lT. At
the same time, its calculation is simpler than that of lT. The
Lyapunov exponent in minimally disordered M-stacks was
calculated in Ref. 52 using some version of the method
described in Refs. 2, 41, 42, and 58 and at the end of Sec.
2.2. The remaining part of this Subsection contains slightly
modified details and results of this calculation.52

Consider an electromagnetic wave of frequency x¼ ck
in an infinite array comprised of two types of lossless alterna-
tive a and b layers of equal dimensionless thickness Dj¼ 1
with random dielectric permittivities. Enumerate the layers so
that the jth layer occupies the interval j$ 1% z< j and choose
all odd layers of a type and all even of b type. For
an alternative array, it is natural to choose an elementary
cell composed of two adjacent layers as the main basic
element of the array.43,52 The nth cell occupies interval
2n$ 2% z< 2n and consists of (2n – 1)-th and 2n layers of
type a and b, correspondingly. Each layer is characterized by
its type a(b), magnetic permeability la¼ 1 (lb¼61), refrac-
tive index !a(n) (!b(n)), impedance Za(n)¼ 1/!a(n) (Zb(n)
¼61/!b(n)), and wave number ka,b¼ k!a,b of the wave.

Within such a model, two systems are considered: the
H-array, when both a and b layers are made of righthanded
materials, and the M-array, where a layers are of right-
handed material, while b layers are of left-handed material.
We emphasize that on the contrary to the H-stack notion,

FIG. 18. (Ref. 46) (a) Transmission length lT vs. frequency f for a mixed
stack with N¼ 107 layers (top dotted blue curve), and only dielectric permit-
tivity disorder. The bottom curves on all the panels (a, b, c) are for a stack
with N¼ 107 layers with both permittivity and permeability disorder (the
cyan, solid curve displays simulation results, while the dashed, black curve
is for the analytical prediction); (b) is the same as (a), but plotted as a func-
tion of free space wavelength k0, while on panel (c) we plot transmission
length as a function of the averaged wavelength inside the stack normalized
to the thickness of the layer, for N¼ 107 layers (blue dotted top curve),
N¼ 106 layers (dashed green curve) and for N¼ 105 layers (red solid curve),
respectively.
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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nonzero, and for weak disorder the term in Eq. (3.55) con-
taining //r2 prevails over the others. Therefore, phase distri-
bution within the main order of perturbation theory is
uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)
and using Eqs. (3.52) and (3.53) one gets

1=ln $ c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this
result yields asymptotic values

ln %
k2

p2r2
; k& 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over
the interval ['Q!, Q!] considered in Sec. 3, it exactly coin-
cides with the long-wave asymptotic value Eq. (3.20) of
localization length l.

A principally different situation emerges for the M-
array. In this case the Bloch phase Eq. (3.54) is exactly zero.
As a result, W(h)¼'U(h)U0(h) in Eq. (3.53), and Eq. (3.55)
leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ' sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical
expressions (3.56) and (3.57) and data obtained by the itera-
tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one
needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and
(3.57) results in zero Lyapunov exponent51 in the main (sec-
ond order) approximation(r2. Therefore, the Lyapunov expo-
nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in
q(h) is rather cumbersome because of huge technical com-
plexity.51 The crucial step which enables authors of Ref. 52
to resolve the problem is the following. It is known that
essential calculation difficulties are often related to non-
proper selection of dynamic variables. To understand how
these variables should be chosen, let us analyze the numeri-
cal data displayed in Fig. 19. The b-panel in this figure dem-
onstrates that the trajectory (i.e., the sequence of points (Qn,
Pn)) has the form of a fluctuating ellipse specified by an
angle with respect to the axes, and by fixed aspect ratio. This
results in strongly nonuniform phase distribution (d-panel in
Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-
tory transforms into a fluctuating circle. Then, one can
expect that the distribution of a new phase Hn in the consid-
ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S
with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

' sin s
ffiffiffi
g
p

cos s
ffiffiffi
g
p

""""""

""""""
;

where the angle s describes rotation of the axes in S-space,
with further rescaling of the axes due to free parameter g. In
new coordinates the expressions (3.45) and (3.51) conserve
their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
'1
; ~Sn ¼ eNn

cos Hn

sin Hn

# $
: (3.58)

Now the distribution q(H) for the new phase H can be found
starting from the quadratic expansion of Eq. (3.48) with new
coefficients Eq. (3.58) and /¼ 0,

Hnþ1 'Hn ¼ ½gaðnÞ ' gbðnÞ+VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s' uÞsin 2H

þ g
2
½u' sinu cosð2s' uÞ+½cos 2H' 1+

' 1

2g
½uþ sin u cosð2s' uÞ+½cos 2Hþ 1+: (3.60)

The stationary Fokker–Plank equation corresponding to the
H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

% &
¼ 0:

From this equation one gets that the phase distribution is uni-
form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating
circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.
((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid
circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-
array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an
H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.
((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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Fokker-Planck equation !
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Left-handed layers suppress localization of electromagnetic 
waves in multilayered stack. In special case of the layers with  
the same thickness and random only dielectric constant, 
such a suppression leads to an anomalously enhanced 
transmission in the long-wave region.

At the long wave localization region, the localization length 
of a mixed alternating stack determined by reciprocal 
Lyapunov exponent differs from that determined by 
transmission decrement.

Conclusions
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Thank you for attention!
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