

2472-10

Advanced Workshop on Nonlinear Photonics, Disorder and Wave Turbulence

15 - 19 July 2013

Review of optical turbulence in focusing and defocusing media

N. Vladimirova University of New Mexico, USA

Optical turbulence

N. Vladimirova

NSE turbulence Defocusing NSE Focusing NSE Conclusion References

Review of optical turbulence in focusing and defocusing media

N. Vladimirova

July 2013

Optical turbulence

N. Vladimirova

NSE turbulence Defocusing NSE Focusing NSE Conclusion References

Many thanks to

Evgenii A. Kuznetsov Gregory Falkovich Pavel Lushnikov Alexander Korotkevich

for explaining the foundations of the field

References cited in this talk are incomplete and subjective.

Nonlinear Schrödinger equation

$$i\psi_t + \nabla^2 \psi \pm |\psi|^2 \psi = 0$$

describes the evolution of a temporal envelope of a spectrally narrow wave packet, independent of the origin of the waves and the nature of the nonlinearity

Benney & Newell (1967) — general settings Zakharov (1968) — deep water waves Hasegawa & Tappert (1973) — optical fibers

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation

Why universal? Why optical? Collapses Cascades Modulational inst. Why turbulence?

Defocusing NSE

Focusing NSE

Conclusion

Why universal?

Linear wave:

Nonlinearity:

$H = H_2 + H_4 = H_2 + \int T_{1234} a_1 a_2 a_3^* a_4^* \,\delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4) d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 d\mathbf{k}_4$

Rewrite
$$rac{\partial a_k}{\partial t} + i\omega a_k = -i rac{\partial H_4}{\partial a_k^*}$$
 for the envelope, $a_k(t) = e^{-i\omega_0 t} \psi(q,t)$,

$$\frac{\partial \psi_q}{\partial t} - i\omega_0 \psi_q + i\omega(q)\psi_q = -iT \int \psi_1^* \psi_2 \psi_3 \,\delta(\mathbf{q} + \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$$

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation

Why universal? Why optical? Collapses Cascades Modulational inst.

Defocusing NSE

Focusing NSE

Conclusion

Why universal?

$$irac{\partial\psi_q}{\partial t}+\omega_0\psi_q-\omega(q)\psi_q=T\int\psi_1^*\psi_2\psi_3\,\delta(\mathbf{q}+\mathbf{q}_1-\mathbf{q}_2-\mathbf{q}_3)d\mathbf{q}_1d\mathbf{q}_2d\mathbf{q}_3$$

Assume $\omega = \omega(k)$ and expand for small **q**

$$\omega(q) = \omega_0 + q_i \left(\frac{\partial \omega}{\partial k_i}\right)_0 + \frac{1}{2} q_i q_j \left(\frac{\partial^2 \omega}{\partial k_i \partial k_j}\right)_0 = \omega_0 + v q_{\parallel} + \frac{1}{2} \left(\omega'' q_{\parallel}^2 + \frac{v}{k_0} q_{\perp}^2\right)$$

Back to *r*-space $(\mathbf{k}_0 \parallel \hat{\mathbf{z}})$:

Rescale ψ and spatial coordinates:

$$i\psi_t + \nabla^2 \psi \pm |\psi|^2 \psi = 0$$

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses Cascades Modulational inst. Why turbulence?

efocusing NSE

ocusing NSE

Conclusior

Why optical?

$$\frac{1}{c^2} \left(\epsilon E \right)_{tt} - \nabla^2 E = 0$$

Stationary envelope: $E = \frac{1}{2}\psi(x, y, z)e^{ikz-i\omega t}$, with $\omega = \frac{kc}{\sqrt{\epsilon_0}}$. Kerr nonlinearity: $\epsilon = \epsilon_0 + \epsilon_2 |E|^2 = \epsilon_0 + \epsilon_2 |\psi|^2$.

$$\frac{1}{c^2}(i\omega)^2(\epsilon_0 + \epsilon_2|\psi|^2)\psi - \left[\nabla^2\psi + 2ik\psi_z - k^2\psi\right] = 0$$

Neglecting $\frac{\partial^2\psi}{\partial z^2}$ and using $kx \to x$, $\frac{1}{2}kz \to z$, and $\psi|\frac{\epsilon_2}{k\epsilon_0}|^{\frac{1}{2}} \to \psi$

$$i\psi_z + \nabla_{\perp}^2 \psi + T |\psi|^2 \psi = 0,$$
 with $T = \pm 1$

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses Cascades Modulational inst. Why turbulence?

Defocusing NSE

Focusing NSE

Conclusion

Collapses in focusing NSE

Integrals of motion
$$\begin{split} N &= \int |\psi|^2 \, d^D r \\ \mathcal{H} &= \int \left(|\nabla \psi|^2 - \frac{1}{2} |\psi|^4 \right) \, d^D r \end{split}$$

Within the packet

$$\begin{split} |\psi|^2 &\sim N/L^D \\ \mathcal{H} &\sim NL^{-2} - N^2 L^{-D} \end{split}$$

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses

Cascades Modulational inst. Why turbulence?

Defocusing NSE

Focusing NSE

Conclusior

$$i\psi_t + \nabla^2 \psi + |\psi|^2 \psi = 0$$

Zakharov & Kuznetsov (1986)

Cascades of turbulence

 $\begin{aligned} \mathcal{H} &= \int \omega_k |a_k|^2 d\mathbf{k} \\ N &= \int |a_k|^2 dk \\ N_1 &+ N_3 = N_2 \\ \omega_1 N_1 &+ \omega_3 N_3 = \omega_2 N_2 \end{aligned}$

 $N_1 = N_2 \frac{\omega_3 - \omega_2}{\omega_3 - \omega_1} \approx N_2$ $N_3 = N_2 \frac{\omega_2 - \omega_1}{\omega_3 - \omega_1} \ll N_2$

 $\omega_1 N_1 \ll \omega_2 N_2$ $\omega_3 N_3 \approx \omega_2 N_2$

Dyachenko, Newell, Pushkarev, & Zakharov (1992)

Optical turbulence

N. Vladimirova

NSE turbulence

IS equation Why universal? Why optical? Collapses

Cascades Modulational inst

efocusing NSE ocusing NSE onclusion

Modulational instability

$$i\psi_t = -\frac{1}{2}\omega''\nabla^2\psi + T|\psi|^2\psi$$

Exact solution (condensate):

$$\Psi = \sqrt{N_0} e^{-iTN_0 t}$$

For small perturbation $\psi := \Psi + \psi$,

$$i\psi_t = -\frac{1}{2}\omega''\nabla^2\psi + 2TN_0\psi + T\Psi^2\psi^* + O(|\psi|^2).$$

In k-space, using $(\psi^*)_k = \psi^*_{-k}$,

$$i\frac{d}{dt}\psi_{k} = (\frac{1}{2}\omega''k^{2} + 2TN_{0})\psi_{k} + T\Psi^{2}\psi_{-k}^{*},$$

$$-i\frac{d}{dt}\psi_{-k}^{*} = (\frac{1}{2}\omega''k^{2} + 2TN_{0})\psi_{-k}^{*} + T\Psi^{2}\psi_{k}.$$

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses Cascades **Modulational inst.** Why turbulence?

Defocusing NSE

Focusing NSE

Conclusion

Modulational instability

Looking for the solution in the form

$$\psi_k = \alpha e^{-i(TN_0 + \Omega_k)t}$$
 and $\psi_{-k}^* = \beta e^{i(TN_0 - \Omega_k)t}$,

rewrite the system as

$$\begin{pmatrix} \frac{1}{2}\omega''k^2 + TN_0 - \Omega_k & T\Psi^2 \\ T\Psi^{*2} & \frac{1}{2}\omega''k^2 + TN_0 + \Omega_k \end{pmatrix} \begin{pmatrix} \alpha \ e^{-iTN_0t} \\ \beta \ e^{iTN_0t} \end{pmatrix} = 0$$

Bogoliubov dispersion relation:

$$\Omega_k^2 = \omega^{\prime\prime} T N_0 k^2 + \tfrac{1}{4} \omega^{\prime\prime\,2} k^4$$

Instability: $\omega'' T < 0$ (focusing nonlinearity).

Bogoliubov (1947)

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses Cascades **Modulational inst.** Why turbulence?

Defocusing NSE

Focusing NSE

Conclusion

Why turbulence?

- Wide energy spectra; cascades
- Statistical description
- High probability of extreme events (intermittency)
- Coherent structures condensate or collapses
- Steady (with damping/forcing) or decaying

Optical turbulence

N. Vladimirova

NSE turbulence

NS equation Why universal? Why optical? Collapses Cascades Modulational inst. Why turbulence?

Defocusing NSE

Focusing NSE

Conclusion

References

The rest of this talk is restricted to steady NSE turbulence in 2D.

Defocusing nonlinear Schrödinger equation

$$i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{f}\psi$$

Condensate

$$\Psi = \sqrt{N_0} \exp(-iN_0 t)$$

Notation:

$$N = \overline{|\psi|^2}$$

$$N_0 = |\overline{\psi}|^2$$

$$n = N - N_0 = \int |\psi_k|^2 d^2k$$

We consider large condensate

 $N_0 \gg n$

Statistically quasi-steady

$$t\sim 10^4~\gg~rac{1}{\omega}\sim 10^{-3}$$

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Conclusion

Onset of condensate

t = 100: $N_0 = 58$, n = 160

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate

Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSI

Conclusion

Phase transitions: breakdown of symmeries

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSI

Conclusion

Phase transitions: breakdown of symmeries

- ► Higher condensate ⇒ more ordered system
- Long-range orientational, short-range positional order

Optical turbulence

N. Vladimirova

What happens at even larger N?

Vladimirova, Derevyanko, & Falkovich (2012)

Effect of forcing

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries **Effect of forcing** Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusion

Instability-driven force

$$i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{f}\psi$$

Random force

$$i\psi_t + \nabla^2 \psi - |\psi|^2 \psi = i\hat{F}$$

Small perturbations

Compare quadratic and cubic terms in Hamiltonian

$$\begin{array}{lll} \langle \mathcal{H}_2 \rangle &=& \Omega_k n = N_0^{1/2} k n \\ \langle \mathcal{H}_3 \rangle &=& \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} V_{123} \langle \psi_{k_1} \psi_{k_2} \psi_{k_3}^* \rangle \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3) \\ &\simeq& \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} |V_{123}|^2 n_1 n_2 \, \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3) \delta(\Omega_1 + \Omega_2 - \Omega_3) \\ &\simeq& \frac{|V|^2 n^2 c}{k^3} \frac{k}{c} \simeq \frac{n^2 k}{N_0^{1/2}} \end{array}$$

Effective nonlinearity parameter is small,

$$\frac{\mathcal{H}_3}{\mathcal{H}_2} \simeq \frac{n}{N_0}.$$

But: weak turbulence assumes random phases.

Angle of interaction: $k/c \sim k/\sqrt{N_0}$, where $c = \sqrt{2N_0}$.

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusion

Angle of interaction

Arch grows in k-space from the condensate to a preset mode, \mathbf{k}_0 . Arch equation:

$$\begin{aligned} \omega(k_0) &= \omega(k) + \omega(|\mathbf{k}_0 - \mathbf{k}|) \\ \omega^2(k) &= 2N_0k^2 + k^4 \end{aligned}$$

Angle of interaction:

$$\phi_{max} \approx \frac{k}{\sqrt{3N_0/2}} \sim \frac{k}{c}$$

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusion

Phase coherence

n_k

$$2\phi_0 - \phi_k - \phi_{-k} = \pi$$

Optical turbulence

N. Vladimirova

Phase coherence

Three-wave model

Consider condensate interacting with two waves

$$\psi_{\pm k} = \sqrt{n} \exp(\pm ikx + iN_0t + i\phi_{\pm k})$$

with $\theta = 2\phi_0 - \phi_k - \phi_{-k}$.

Hamiltonian:

$$H = 2k^2n + \frac{1}{2}N^2 + 2n(N - 2n)(1 + \cos\theta) + n^2$$

Equations of motion:

$$\dot{n} = 2n(N-2n)\sin\theta$$

$$\dot{\theta} = 2k^2 + 2(N-3n) + 2(N-4n)\cos\theta$$

Stability points:

$$\theta = \pi, \quad n = -\frac{1}{2}k^2 \Rightarrow \text{unphysical}$$

 $\theta = 0, \quad n = (4N + k^2)/14 \Rightarrow \text{too high } n$

Falkovich (2011), Miller, Vladimirova & Falkovich (2013)

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence

Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusion

Predictions of three-wave model

$$\dot{n} = 2n(N-2n)\sin\theta$$

$$\dot{\theta} = 2k^2 + 2(N-3n) + 2(N-4n)\cos\theta$$

For $n \ll N$:

- \blacktriangleright the system spends most of its time around $\theta=\pi$ state
- the frequency of oscillations $2\Omega \approx 2\sqrt{2Nk^2 + k^4}$
- the amplitude $a \equiv \sqrt{n(t)}$ exhibits complicated cusped shape

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model

Model predictions Modes in turbulence Collective oscillations

ocusing NSE

Individual modes in turbulence

In turbulence, $n \ll N$ condition is well satisfied.

As predicted:

- \blacktriangleright the system spends most of its time around $\theta=\pi$ state
- the frequency of oscillations approaches $2\Omega = 2\sqrt{2Nk^2 + k^4}$
- the amplitude $a \equiv \sqrt{n(t)}$ exhibits complicated cusped shape

However:

The 3-wave model cannot grasp closed trajectories with $\theta \approx \pi$.

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusio

Collective oscillations

- The system periodically oscillates around a steady state.
- Turbulence and condensate exchange a small fraction of waves.
- The condensate imposes the phase coherence between the pairs of counter-propagating waves (anomalous correlation).
- Collective oscillations are not of a predator-prey type; they are due to phase coherence and anomalous correlations.

N. Vladimirova

NSE turbulence

Defocusing NSE

Onset of condensate Spectral symmetries Effect of forcing Small perturbations Angle of interaction Phase coherence Three-wave model Model predictions Modes in turbulence Collective oscillations

Focusing NSE

Conclusion

Focusing nonlinear Schrödinger equation

$$i\psi_t + \nabla^2 \psi + |\psi|^2 \psi = 0$$

 $i\psi_t + (1 - i\epsilon a)\nabla^2 \psi + (1 + i\epsilon c)|\psi|^2 \psi = i\epsilon b\psi$

Can we explain the statistics of a turbulent field with statistics and properties of individual collapses?

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE

PDF of $|\psi|$ Catastrophic collapse Lens transform Loglog bridged! Collapse stabilization Rescaling and (a+2c) ODE model Collapse in turbulence $F(hmax) \rightarrow pdf(\psi)$ PDF of $|\psi|$

Conclusio

Distribution of $|\psi|$ in the field

Notation: $h \equiv |\psi|$, $h_{avg} = \langle |\psi| \rangle \propto \sqrt{N}$, $N = \int |\psi|^2 d^2 r$.

Turbulent background:

- ▶ is well described by h_{avg}
- what determines h_{avg}?

Collapse contribution:

- ▶ power-law (?) for $h \gg h_{avg}$
- depend on a, c but not b

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSI

 $\begin{array}{l} \mathsf{PDF} \ \mathsf{of} \ |\psi| \\ \mathsf{Catastrophic collapse} \\ \mathsf{Lens transform} \\ \mathsf{Loglog bridgell} \\ \mathsf{Collapse stabilization} \\ \mathsf{Rescaling and (a+2c)} \\ \mathsf{ODE model} \\ \mathsf{Collapse in turbulence} \\ \mathsf{F}(h_{\max}) \rightarrow pdf(\psi) \\ \mathsf{PDF of } \|\psi\| \end{array}$

Conclusio

Catastrophic collapse

Townes soliton, $\psi = \frac{1}{L}e^{i\omega t}R(\rho)$, with $\rho = \frac{r}{L}$, $\omega = \frac{1}{L^2}$

$$i\psi_t + \nabla^2 \psi + |\psi|^2 \psi = 0 \qquad \Rightarrow \qquad R'' + \frac{1}{\rho}R' = R - R^3.$$

Unstable: if $N > N_c$, the soluton blows up in finite time, t_c . Collapsing solution is self-similar and rescales to Townes soliton. Lens transform maps $t_c \to \infty$.

What is the functional form of L(t)?

Townes (1964), Talanov (1970)

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE PDF of $|\psi|$ Catastrophic collapse Lens transform Loglog bridged! Collapse stabilization Rescaling and (a+2c) ODE mode! Collapse in turbulence $F(h_{max}) \rightarrow pdf(\psi)$ PDF of $|\psi|$

Conclusion

Lens transform

In slow variables, $\rho = \frac{r}{L}$ and $\tau = \int L^{-2}(t')dt'$, look for solution $\psi(r, t) = \frac{1}{L}V(\rho, \tau)e^{i\tau + i\gamma(\tau)\rho^2/4}$ $V(\rho, \tau)$ is real when $\gamma = LL_t$. Using $\beta \equiv -L^3L_{tt}$ we get,

$$\underbrace{V_{\tau}}_{\text{neglect}} + \nabla^2 V + V^3 - V + \frac{1}{4}\beta \rho^2 V = 0.$$

 β is the measure of excess of N over critical, $\nu(\beta)$ is the loss rate. Using β as a small parameter,

$$L_{\tau\tau} - 2L_{\tau}^2/L = -\beta L$$
 small scales
 $\beta_{\tau} = -\nu(\beta)$ large scales

Loglog scaling at $t
ightarrow t_c$

$$L \sim \left[\ln \ln \frac{1}{t_c-t}\right]^{-\frac{1}{2}} (t_c-t)^{\frac{1}{2}}$$

Talanov (1970), Zakharov (1972), Kuznetzov & Turitzin (1985) Fraiman (1985), LeMesurier, Papanicolaou, Sulem & Sulem (1988)

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE PDF of $|\psi|$ Catastrophic collapse Lens transform Loglog bridged! Collapse stabilization Rescaling and (a+2c) ODE model Collapse in turbulence $F(h_{max}) \rightarrow pdf(\psi)$

Conclusion

Loglog and early evolution bridged!

Optical turbulence

N. Vladimirova

Loglog law: $t \rightarrow t_c$. Adiabatic approximation, $\beta = const$: short times or small β .

New approximation for $\nu(\beta)$ accounts for initial excess of N and bridges early evolution and loglog asymptotics.

Malkin (1993), Fibich (1996), Lushnikov, Dyachenko, Vladimirova (2013)

Collapses with stabilization

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE

 $\begin{array}{l} \mathsf{PDF} \text{ of } \left[\psi\right] \\ \mathsf{Catastrophic collapse} \\ \mathsf{Lens transform} \\ \mathsf{Loglog bridged!} \\ \textbf{Collapse stabilization} \\ \mathsf{Rescaling and } (a+2c) \\ \mathsf{ODE model} \\ \mathsf{Collapse in turbulence} \\ \mathsf{F}(h_{\max}) \rightarrow pdf(\psi) \\ \mathsf{PDF of } \left[\psi\right] \end{array}$

Conclusion

References

 $i\psi_t + (1 - i\epsilon a)\nabla^2 \psi + (1 + i\epsilon c)|\psi|^2 \psi = i\epsilon b\psi$

Growth: $L \propto (t_c - t)^{\alpha}$, $\alpha \approx \frac{1}{2}$, rate depends on *a* and *c*. Decay: $L \propto (t - t_c)^{-1}$, Talanov solution, unstable.

Talanov (1970)

Rescaled evolution: (a + 2c) similarity

Growth and saturation of a collapse is controlled by a + 2c combination. From direct integration of NSE,

 $N_t = -2\epsilon(aH_k - 2cH_p - bN),$ where $H_k + H_p = H.$

For critical collapse: $\psi = e^{i\omega t}u(r)$, $H_k = -H_p = \omega N_c$, $\omega = h^2$

$$N_t = -2\epsilon(a+2c)h^2N_c$$

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE

 $\begin{array}{l} \mathsf{PDF} \ \mathsf{of} \ | \ \psi \ | \\ \mathsf{Catastrophic collapse} \\ \mathsf{Lens transform} \\ \mathsf{Loglog bridgel!} \\ \mathsf{Collapse stabilization} \\ \mathsf{Rescaling and (a+2c)} \\ \mathsf{ODE model} \\ \mathsf{Collapse in turbulence} \\ \mathsf{F}(\mathsf{hmax}) \rightarrow \mathit{pdf}(\psi) \\ \mathsf{PDF} \ \mathsf{of} \ | \ \psi \ | \end{array}$

Conclusio

ODE model for collapse saturation

Optical turbulence

N. Vladimirova

ODE model

 $k_1 \approx 6.76 \epsilon (a + 2c), \ k_2 \approx 2.01 \epsilon a, \ k_3 \approx 0.01 \epsilon a.$

 k_1 term describes first order effects well; Data suggest: $k_2 \approx -37\epsilon(a+2c)$ instead of original $k_2 \approx 2\epsilon a$.

Fibich & Levy (1998)

Universality of collapses in turbulence

Optical turbulence

Connecting PDF of $|\psi|$ to frequency of collapses

- Assume similarity among collapses, $h \sim (t_c t)^{-\frac{1}{2}}$.
- Left: frequency of collapses with $h > h_{max}$ per unit area.
- Right: solid lines show $F(h_{max})$; points show 0.012 $h^5 P(h)$.
- Conclude that PDF in the field $P(h) \sim h^{-5}F_{\max}(h)$.

Lushnikov & Vladimirova (2010)

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE

PDF of $|\psi|$ Catastrophic collapse Lens transform Loglog bridged! Collapse stabilization Rescaling and (a+2c) ODE model Collapse in turbulence $F(h_{max}) \rightarrow pdf(\psi)$ PDF of $|\psi|$

Conclusion

Distribution of $|\psi|$ in the field

A lot about focusing NSE turbulence not understood yet:

- universality of the backgound
- how collapes are seeded
- how breaking of collapses contribute to turbulence
- how saturation parameters affect the system

Optical turbulence

N. Vladimirova

NSE turbulence

Defocusing NSE

Focusing NSE

 $\begin{array}{l} \mathsf{PDF} \text{ of } \left[\psi\right] \\ \mathsf{Catastrophic collapse} \\ \mathsf{Lens transform} \\ \mathsf{Loglog bridgel!} \\ \mathsf{Collapse stabilization} \\ \mathsf{Rescaling and (a+2c)} \\ \mathsf{ODE model} \\ \mathsf{Collapse in turbulence} \\ \mathsf{F}(h_{\max}) \rightarrow pdf(\psi) \\ \mathsf{PDF of } \left[\psi\right] \end{array}$

Conclusion

Conclusion

- The nonlinear Schrödinger equation is a universal model, describing a spectrally narrow wave packet.
- Focusing and defocusing nonlinearities exhibit different behavior.
- In 2D, focusing nonlinearity results in collapses.
- In 2D, defocusing nonlinearity results in condensate.
- Interaction of either collapses or condensate with background turbulence is nontrivial.
- The study of NSE turbulence has just begun...

N. Vladimirova

NSE turbulence Defocusing NSE Focusing NSE

Conclusion

References (books and reviews)

- V. E. Zakharov, V. S. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence, Springer, 1992
- C. Sulem, P.L. Sulem, The Nonlinear Schrdinger Equation: Self-Focusing and Wave Collapse, Springer, 1999
- G. Fibich and G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrdinger equation in critical dimension, SIAM Journal on Applied Mathematics, 60, 183-240, 1999
- J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, 2010
- G. Falkovich *Fluid mechanics (a short course for physicists)*, Cambridge University Press, 2011

Optical turbulence

N. Vladimirova

NSE turbulence Defocusing NSE Focusing NSE Conclusion