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Nonlinear medium 

Self-focusing (collapse) of laser beam 

Laser beam 

Singularity point 

- 2D Nonlinear Schrödinger Equation. 

- amplitude of light 



- Hamiltonian:  

-optical power (in optics) or number  

    of particles (in quntum mechanics) 

Conserved Integrals:  

Nonlinear Schrödinger Equation 



Mean square width:  

Virial theorem1:  

Singularity formation: 

1S.N.Vlasov, V.A Petrishchev, and V.I. Talanov (1971) 



Collapse turbulence in Nonlinear Schrödinger  

                          Equation (NLS)  

- viscosity coefficient 

- forcing 

Particular case: a=0 and s=0 – NLS with two-photon absorbtion 

Forcing 
Dissipation 



Collapse turbulence (multiple filamentation or Rogue 

waves) in 2D Nonlinear Schrödinger Equation 

1P.M. Lushnikov and N. Vladimirova, Optics Letters 35, 1695 (2010). 
2Y. Chung and P.M. Lushnikov, Phys. Rev E, 84, 036602 (2011). 

 



Statistical steady state with forcing in 2D 



Black curve –  

Red curve – number of particles  

Zoom in 



Collapse turbulence of Nonlinear Schrödinger Equation 

in 2D (Lushnikov and Vladimirova, 2010)  

Probability density 



No forcing case D=2: initial random Gaussian field  at 

t=0 quickly evolves for t>0 into non-Gaussian 

random field with power law tails of PDF 

Initial random Gaussian field 

Forced limit 



Spacehomogeneous solution 

Modulational instability 

Forcing either deterministic  

 

or stochastic 



Fluctuations of the background 

Correlation length                    is well estimated by  

Spatial correlation function is universal for all parameters after rescaling 

Fit to Gaussian form 

2D 



Temporal correlation function is also universal for all  

parameters after rescaling in units of correlation time: 

                    2D 



Universality of the probablity density function (PDF) 



Universality of multiple collapses in rescaled variables  vs.  

nonrescaled variables  

 
2D 



Individual collapse 

Where           is the ground state soliton solution 

is the slow function of t 



Contribution to PDF from individual collapse 

is the slow function of t 



PDF from many collapses 

Where                                                  is the probability 

to have collapse with maximum amplitude above     

Contribution to PDF from individual collapse 



Numerical PDF for 

1D: 

2D: 

expect 



Probability to have collapse with maximum amplitude above 

from optimal background fluctuations 

2D 

- 1/h 

- numerics 



Probability to have collapse with maximum amplitude above 

combined with contribution from single collapse vs. full numerical PDF1 

2D 

1P.M. Lushnikov and N. Vladimirova, Optics Letters, 35, 1967 (2010). 



Critical collapse of 2D 

Nonlinear Schrödinger Equation:  

Self-similar solution near singularity 

1G. Fraiman (1985); M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987); 

  A. Dyachenko, A. Newell, A. Pushkarev and V.E. Zakharov (1992). 

Soliton solution of NLS: 

LogLog law1: 



A little of history of 2D NLS collapse  
- 1962 G.A. Askaryan: Self-focusing of laser beam 

- 1964 R.Y. Chiao, E. Garmire and C.H. Townes: self-trapping of laser beam, 

Townes soliton, collapse above threshold 

- 1970 V.I. Talanov: lens transform 

- 1971  S.N.Vlasov, V.A Petrishchev, and V.I. Talanov: Virial theorem and exact 

proof of collapse formation  

- 1985  E.A. Kuznetsov and S.K. Turitsyn: conformal symmetry and Noether 

theorem 

- 1985   G. Fraiman : “almost” log-log scaling of collapse 

- 1987  M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem: log-log scaling of 

collapse  

- 1992  A. Dyachenko, A. Newell, A. Pushkarev and V.E. Zakharov: collapse 

turbulence 

- 1993  V.M. Malkin: collapse in terms of the excess of number of particles above 

critical 

- 2006  F. Merle and P. Raphael: exact proof of existence of log-log scaling 



But simulations failed to confirm log-log law in a convincing way1 

although the exact proof of the existence of log-log scaling was given2  

1See e.g.: N.E. Kosmatov, V.F. Shvets and V.E. Zakharov (1991);  

 G. D. Akrivis, V.A. Dougalis, O.A. Karakashian, and W.R. McKinney (2003). 

2F. Merle and P. Raphael (2006).  

  

Example of NLS simulations: 

 
L(t) depends on initial conditions 



Singularity Formation in Keller-Segel Model                  

of  Bacterial Aggregation 



Reduced Keller-Segel equation 

 

Also describes the collapse of the Brownian gas 

of self-gravitating particles (    is density and  

is the gravitational potential). 

- bacterial density 
- concentration of chemoattractant 



Collapse classification for Keller-Segel eqn 

D<2 – global existence of solution 

D=2 – critical collapse 

D>2 – supercritical collapse 

For D=2 critical number of cells Nc =8

For N>Nc  positive-definite quantity 

Turns to zero in a finite time which means formation 

of collapse 

M.P. Brenner, P. Constantin, L.P. Kadanoff et. al. (1999). 



D=2. Self-similar collapsing solution of Keller-Segel equation1: 

Much bigger correction to               compare with LogLog 

in NLS! 
1P.M. Lushnikov, Phys. Lett. A (2010). S.I. Dejak, P.M. Lushnikov, Y.N. Ovchinnikov, and   

  I.M. Sigal. Physica D  241 1245-1254 (2012). 

     



L(t) 
 

                L(t)  from   

          numerics with   

      different masses                                           

 

                 L(t)  from                

           2010 analytic                                     

 

Comparison with numerics for Keller-Segel equation: 



Here 

Corrected L(t) scaling1: 

1S.A. Dyachenko, P.M. Lushnikov and N. Vladimirova,  AIP Conf. Proc. 1389, 709-712 (2011); 

 S.A. Dyachenko, P.M. Lushnikov and N. Vladimirova,  Nonlinearity (2013). 

 



Numerics vs. analytic up to O(1/x) terms (S. Dyachenko, P. Lushnikov and  

                                                                                     N. Vladimirova, 2011): 

 

 

                L(t)  from   

          numerics with   

      different masses                                           

 

.  .  .  .  .    L(t)  from                

           2010 analytic                                     

                

               L(t)  from                

                up to  

            O(1/x) terms 

 



Numerics vs. analytic up to O(1/x2) terms 

 

                L(t)  from   

          numerics with   

      different masses                                           

 

.  .  .  .  .   L(t)  from                

           2010 analytic                                     

                

               L(t)  from                

                up to  

           O(1/x2) terms 

 



Numerics vs. analytic up to O(1/x3) terms 

 

                L(t)  from   

          numerics with   

      different masses                                           

 

.  .  .  .  .   L(t)  from                

           2010 analytic                                     

                

               L(t)  from                

                up to  

           O(1/x3) terms 

 



But simulations failed to confirm log-log law in a convincing way1 

although the exact proof of the existence of log-log scaling was given2  

1See e.g.: N.E. Kosmatov, V.F. Shvets and V.E. Zakharov (1991);  

 G. D. Akrivis, V.A. Dougalis, O.A. Karakashian, and W.R. McKinney (2003). 

2F. Merle and P. Raphael (2006).  

  

Example of NLS simulations: 

 
L(t) depends on initial conditions 



Can we develop perturbation theory 

for 2D NLS collapse beyond log-log 

scaling? 

 

 

 Answer is Yes 



Blow-up variables 

and lens transform 

where                            - adiabatically slow small parameter 

Looking for solution in the form 

Start from the review of the standard theory 



In adiabatic approximaiton of slow  
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Approximation through ground state soliton 
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- has the imaginary part because of slow dependence of     on       :  

Also we need to make sure that      has only outgoing waves for 

In analogy with Gamov   -decay theory introduce nonself-adjoint 

problem   

where        can be determined from the balance of the norm of V 

as 



Basic ordinary differential equation (ODE) system  

of the standard theory: 

Asymptotic solution near collapse time tc  : 

1G. Fraiman (1985); M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987); 

  A. Dyachenko, A. Newell, A. Pushkarev and V.E. Zakharov (1992); V. F. Malkin (1993). 



But simulations failed to confirm log-log law in a convincing way1 

although the exact proof of the existence of log-log scaling was given2  

1See e.g.: N.E. Kosmatov, V.F. Shvets and V.E. Zakharov (1991);  

 G. D. Akrivis, V.A. Dougalis, O.A. Karakashian, and W.R. McKinney (2003). 

2F. Merle and P. Raphael (2006).  

  

Example of NLS simulations: 

 
L(t) depends on initial conditions 



Modifying the standard theory 

L(t) is not universal but     

( ) is universal: 



Look at 

as the Schrödinger equation with the effective potential U: 

 

 

 

and complex eigenvalue E: 

2 turning points      and     of WKB: 



Solution near  

8 10 12 14 16 18 20

-0.002

0.002

0.004

0.006

0.008

V0

|V| V0 to the left from 

 

                |V| - from numerics 

                   V0 – soliton with 

                   R  –  ground state     

            soliton with 



Oscillating tail is given by the linear combination of confluent 

hypergometric functions of the first and second kinds: 

Here                                  is determined by the asymptotic 

of ground state soliton 

Matching asymptotics and using WKB give 

Asymptotics of complex solution 



Introducing the number of particles to the left of the second turning point 

and balancing the flux of particles through that point 

New basic ODE system 

Here 



Returning to previous Figure 

L(t) is not universal but     

( ) is universal: 



Finding asymptotic of a new basic ODE system 



Using            from the inversion of previous expression and 

inverting that equation  



Asymptotic of new basic ODE system1 

1 P.M. Lushnikov, S.A. Dyachenko and N. Vladimirova, Phys. Rev. A (2013). 



Simulations vs. analytic 



Simulations vs next order analytic  

Solid – numerics 

Dashed - analytics 
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Simulations vs. analytic – larger interval starting from 

the initial Gaussian pulse 

Solid – numerics 

Dashed - analytics 



Conclusion 
- Strong turbulence in NLS is determined by near singular collapses.  

  Background fluctuations seed collapse. Relation between amplitude and  

  correlation length of these fluctuations is universal. Tails of PDF for          

  are dominated by the strong turbulence in NLS is determined by near singular  

  collapses.  

 
-Self-similar solution of Nonlinear Schrödinger equation 

 

- Nonperturbative modification of standard leading order loglog scaling allows  

  detailed numerical verification of self-similar solution. New analytical scaling  

  is in excellent agreement with simulations for amplitudes only 3 times above  

  the initial laser pulse amplitude 

 

- Standard loglog scaling dominates only for  amplitudes above  

                      100
  

               10                                     Googol  

         10                  =        10                       =   Googolplex 


