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We report a numerical study, supplemented by phe-
nomenological explanations, of “energy condensa-
tion” in forced 2D turbulence in a biperiodic box.
Condensation is a finite size effect which occurs after
the standard inverse cascade reaches the size of the
system. It leads to emergence of a coherent vortex
dipole. We show that the time growth of the dipole
is self-similar, and it contains most of the injected
energy, thus resulting in an energy spectrum which
is markedly steeper than the standard k−5/3 one.
Once the coherent component is subtracted, how-
ever, the remaining fluctuations have a spectrum
close to k−1. The fluctuations decay slowly as the
coherent part grows.



A big difference between 2D and 3D turbulence is
the generation of large scale structures from small
scale motions. This occurs because, if pumped at in-
termediate scales, the 2D Navier–Stokes equations
favor energy transfer to larger scales (Kraichnan
1967, Leith 1968, Batchelor 1969), a phenomenon
known as an inverse cascade. The essential differ-
ence with 3D turbulence is the presence of a second
inviscid invariant, in addition to energy, the enstro-
phy. Stirring the 2D flow leads to emergence of two
cascades. Enstrophy cascades from the forcing scale,
l, to smaller scales (direct cascade) while energy cas-
cades from the forcing scale to larger scales (inverse
cascade). Viscosity dissipates enstrophy at the Kol-
mogorov scale, η, which is much smaller than l when
the Reynolds number is large.



The energy cascade is blocked by a frictional dissi-
pation (usually due to friction between the fluid and
substrate) after a transient in time quasi-stationary
regime. Then a stationary turbulence is established.
Applying Kolmogorov phenomenology KLB theory
predicts an energy spectrum scaling as k−3 in the
direct cascade, and as k−5/3 in the inverse cascade.
The KLB spectra imply that velocity fluctuations
at a scale r are

δvr ∼ ε1/3l−2/3r, δvr ∼ (εr)1/3,

in the direct and inverse cascade ranges respectively.
Here ε is energy flux and l is pumping length. KLB
theory is confirmed by simulations (Boffetta, Celani,
and Vergassola, 2000; Boffetta 2006) and exper-
iments (Kellay and Goldburg 2002; Bruneau and
Kellay, 2005), where a sufficient range of scales was
available to form the cascades.



If the frictional dissipation is weak (the system
size exceeds the friction length) then the energy
accumulation at large scales should occur (Kraich-
nan), then the standard KLB theory does not apply.
Simulations of Smith and Yakhot (1993, 1994) and
Borue (1994) and experiments of Paret and Tabel-
ing (1998), Jin and Dubin (2000) and Shats, Xia,
and Punzmann (2005) show that large scale accu-
mulation of energy is observed, indeed, if conditions
permit the energy to reach the system size.



A traditional motivation for studying 2D turbu-
lence is its structural and phenomenological simi-
larity to quasi-geostrophic turbulence in planetary
atmospheres. Recent interest specifically in the con-
densate state, however, was sparked by experimen-
tal (Shats, Xia, and Punzmann, 2005) and numeri-
cal (Molenaar, Clercx, and van Heijst 2004) observa-
tions of large scale coherent vortices associated with
energy condensation in forced, bounded flows. Shats
et. al. noted that 2D spectral condensation is con-
nected to the L-H (confinement) transition in mag-
netically confined plasmas which is often described
by quasi-2D dynamics.



We solved the incompressible forced Navier–Stokes
equations with hyperviscous dissipation in 2D:

∂tu + (u · ∇)u + ∇p = ν∆8u + f

∇ · u = 0. (1)

The domain is a doubly-periodic box of size, L =
2π. The forcing, f , injects velocity fluctuations and
energy at an intermediate scale l with energy in-
jection rate ε. Let us stress that there is no term
representing friction in our equations.



First one observes formation of the inverse cascade.
One clearly sees a transition at t∗ from the spectrum
k−5/3 to scaling steeper than k−5/3, that is numer-
ically close to k−3. This exponent does not signify
a cascade in the KLB sense. The energy flux to
large scales remains constant with respect to k be-
fore and after t∗. By contrast, the k−3 enstrophy
cascade of KLB involves fluctuating vortices across
many scales. Fluctuations play a relatively minor
role in the overall energy balance with the majority
of the energy absorbed into the condensate. They
contain more of the enstrophy, but they decay in
amplitude as the condensate grows so that the flow
becomes more and more coherent as time passes.



The total vorticity is equal to zero. Therefore the
only possibility to store the energy at the box size
is in spacial separation where domains with positive
and negative vorticity appear. Coherent vortices are
formed in the regions. The process can be illustrated
by a sequence of snapshots for the vorticity field (red
and blue colors designate different signs of the vor-
ticity). The coherent part of the flow has almost no
fluctuations and, if it is removed, the steeper than
k−5/3 scaling disappears entirely. The fluctuation
spectrum appears to be close to k−1. Thus the steep
spectrum has no relation to fluctuations, it is a con-
sequence of the Fourier transform of the condensate
(coherent flow).



One observes ∝
√
t growth of the maximum value

of the coherent part of vorticity with time. Further-
more, simulations show the global growth ∝

√
t of

the coherent velocity profile. The law ∝
√
t is natu-

rally explained by the energy accumulation injected
at the constant rate, ε, by forcing. In the hyperbolic
region one estimates the coherent velocity as

√
εt.

The mean velocity profile within the vortex is al-
most perfectly circular. To a good precision higher
order harmonics are suppressed relative to the ze-
roth order one. The velocity profile deduced from
the simulations fits, is ∝ r−ξ, where ξ ≈ 0.25, in
the range, L � r � l, and thus the vortex core is
roughly l. We plot r−1.25 profiles for two different
forcing scales to check that the profile is insensitive
to it.


