The Abdus Salam

International Centre
(CTP for Theoretical Physics @)

2472-17

Advanced Workshop on Nonlinear Photonics, Disorder and Wave Turbulence

15-79 July 2013

Passive scalar transport in peripheral regions of random flows

V. Lebedev

Landau Institute for Theoretical Physics
Russia

Strada Costiera, 11 - 34151 - Trieste - Italy « Tel. +39 0402240111 « Fax. +39 040224163 « sci_info@ictp.it « www.ictp.it
ICTP is govemned by UNESCO, IAEA, and ltaly, and it is a UNESCO Category 1 Institute



ICTP, Trieste, July 19

Passive scalar transport in peripheral
regions of random flows

A. Chernykh and V. Lebedev

Advanced workshop on Nonlinear Photonics,

Disorder and wave turbulence



ICTP, Trieste, July 19

How to extract gold particles from
sand?

A. Chernykh and V. Lebedev

Advanced workshop on Nonlinear Photonics,

Disorder and wave turbulence



We acknowledge contributions of the following
persons

S. Belan — Landau Institute
M. Chertkov — Los Alamos NL
K. Turitsyn — MIT

S. Vergeles — Landau Institute



We have in mind dust or chemicals on a
surface contacted with turbulent atmosphere
or silt on a river bottom. And we are
Interested in their transport to bulk through
the turbulent laminar sublayer. T he diffusivity
of the particles is assumed to be weak so
that turbulence plays the main role in the

transport away from the surface.



The transport is described in terms of
the pollutant concentration 6. For small
concentrations the equation for 6 Iin an

external flow is linear:
00 + vV = kKV20

where v is the flow velocity and & is
the diffusion coefficient. The coefficient

IS assumed to be small, kK K v.



In bulk the mixing time is estimated as
A1 where )\ is the Lyapunov exponent,
Irrespective to the sk value. However, the
Mmixing time near walls is sensitive to the

rk value, it can be estimated as \/v/xk A7 1.
Besides, the velocity correlation time is
estimated as A\~ ! even near the wall. Thus,
the velocity can be treated as short correlated

In time for our purposes.



If the velocity is short correlated then
closed equations can be derived for the

passive scalar correlation functions

Fnlt,ry,...,rn) = <9(t, r1)...0(t, rn)> :

obtained by averaging over times larger
than the velocity correlation time. Let
us stress that the situation is strongly

anisotropic.



One derives the following equations

&L 2
m=1
n

+ X X 9ma |Dap(rm, i) O0kpFul |
m,k=1 af
where the object D is expressed via the

pair velocity correlation function as

Dog(ri,mo) = [ dt (va(t,r1)vg(0,72)) .



A z-dependence of the eddy diffusion tensor
components can be found directly from
the proportionality laws vg,vy o< z and

vy X 22, Say,

. . 2 2
DZZ(ma Y, 21,4, Y, 22) — MZ1 %D,

where 1 is a constant characterizing strength
of the velocity fluctuations in the peripheral

region.



The equation for the first moment is
01(0) = 02 |n2"0:(0)| + K02 (0) ,

Comparing two terms in RHS, one finds

a characteristic diffusion length

o = (/1) /%,

The quantity determines the thickness

of the diffusion boundary layer.



We are interested mainly in the passive
scalar transport through the region z >
ry, where the passive scalar is carrying
from the diffusive boundary layer to bulk.
T here we arrive at the proportionality law

(0) oc 273,

that gives the decaying rate of the average
0 as z grows.



What about higher moments of 67 If diffusion

IS negligible outside the diffusive boundary
layer then

010 = —vVo — &5(9”) o —’UV(@”).

T herefore we arrive at the conclusion
that

(O™ x 273,

as well |



However, numerics shows that at z > 7y

the moments are characterized by the

exponents np
(0") oc 27,

different from 3! That implies that diffusion
IS relevant at the scales. How it can be?

To answer the question we turn to numerics.



hamin

lT

25

20

1
Lo
i

10 -



One can define the passive scalar correlation
length [ (along the wall), that can be
found by balance of the molecular and

the eddy diffusion along the wall:

|~ Jk/p 271

The quantity is of order of ry; at z ~ ry;

and diminishes as z grows.



To exclude the effect of the molecular
diffusion, we introduce an integral of the

passive scalar field
O(t,z) = A_lfda; dy 0(t,z,y,z),

where A is the area of the surface and z
IS its separation from the wall. Obviously
(©) x z73. What about high-order moments?



Assuming that the passive scalar correlation
length is smaller than the velocity one,

we can derive
(O™ = u [24822 + 4nz30, + 4n(n — 1)22] (@") .

The equation leads to the scaling

(O™ o 27 5n, Cn = 2n—1/24+\/2n +1/4.



Obviously, ¢, > 3. What does it mean?
That means that only a small part of
the tongues reaches (for a finite time)
Infinity delivering an amount of particles
to bulk. And the particle flux to bulk
IS related to such events. Typically, the
tongue is pulled upto some finite z and
then goes back, tilts and nestles upto the

diffusive boundary layer.



We conducted Lagrangian simulations where
dynamics of a large number of particles
subjected to flow advection and Langevin
forces is examined. The set of the particles

IS used instead of the passive scalar field

6, that can be treated as density of the
particles. A big advantage of the approach

IS its applicability to a number of space
dimensions d.



In our scheme a particle trajectory o(t)

obeys the equation

Oro = v(t, 0) + x (1),

where the first term represents the particle
advection and the second term represents
the Langevin force. The variables x are
independent for different particles whereas

the velocity is the same.
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To establish principal qualitative features
of the process, we perform mainly 2d simulations.
The setup is periodic in x and the velocity
IN majority of runs was

21X - 2mx\ L
Vp = 2 (51 COS - &o Sin ) :
L T
21X 21X
2 .
— sin cos —— |,
Vz < (gl T 52 T )

where &1 and &> are independent random
functions of time.
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Numerics reveal deviations of the scaling
exponents from the analytical predictions
that are related to an existence of long
correlations along the wall that can be
produced by the multi-fold structures. That
leads to increasing moments in comparison
with the short correlated case. That is

why the scaling exponents are smaller

than the theoretical values.



The deviations naturally diminish as d
grows. However, the effect is a consequence

of the artificial fact that the velocity correlation
length coincides with the size system.

Let us consider d = 2 and make the
velocity correlation length smaller than

L by using a mixture of the ninth and

the eleventh harmonics. Then we arrive

at a good agreement with numerics.
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Inertial particles are governed by the equation

d
Td—r: +u=v+E&.
Here, v is the particle velocity, v Is the
flow velocity, ¢ is Langevin force and r

IS the particle relaxation time associated

with its inertial properties.



If the diffusion is neglected then the equation
for the one-particle probability density is

Orp = —udzp + Ou(up) + 2*05p,

where we put pw = 7 = 1. We will be
looking for stationary distribution of the
probability density that corresponds to
zero probability flux to z-infinity:

/j_ozo du up = 0.



For uw < z the equation iIs reduced to
Ou(up) + 2*92p = 0,

that have the solution
_6exp u2
X Z — | .
P D24

It is realized at z < 1 since u ~ z2.



For w > z the equation iIs reduced to
udzp = z4(95,0.

After the self-similar substitution p =
272ap(¢) where &€ = u/2°/3 we obtain

R 4+ (5/3)¢2R + 5agh = 0.

It can be solved in terms of the confluent

hypergeometric function.



Both asymptotics are zero if

1
a=——+4+n—5/6.
6

Then at large negative u: p o |u|~5/2.
At large positive u

exp 5u3
X — :
P Q22

Highly non-symmetric distribution.
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