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We have in mind dust or chemicals on a

surface contacted with turbulent atmosphere

or silt on a river bottom. And we are

interested in their transport to bulk through

the turbulent laminar sublayer. The di�usivity

of the particles is assumed to be weak so

that turbulence plays the main role in the

transport away from the surface.



The transport is described in terms of

the pollutant concentration θ. For small

concentrations the equation for θ in an

external �ow is linear:

∂tθ + v∇θ = κ∇2θ ,

where v is the �ow velocity and κ is

the di�usion coe�cient. The coe�cient

is assumed to be small, κ� ν.



In bulk the mixing time is estimated as

λ−1 where λ is the Lyapunov exponent,

irrespective to the κ value. However, the

mixing time near walls is sensitive to the

κ value, it can be estimated as
√
ν/κ λ−1.

Besides, the velocity correlation time is

estimated as λ−1 even near the wall. Thus,

the velocity can be treated as short correlated

in time for our purposes.



If the velocity is short correlated then

closed equations can be derived for the

passive scalar correlation functions

Fn(t, r1, . . . , rn) = 〈θ(t, r1) . . . θ(t, rn)〉 ,

obtained by averaging over times larger

than the velocity correlation time. Let

us stress that the situation is strongly

anisotropic.



One derives the following equations

∂tFn = κ
n∑

m=1
∇2
mFn

+
n∑

m,k=1

∑
αβ
∂mα

[
Dαβ(rm, rk)∂kβFn

]
,

where the object D is expressed via the

pair velocity correlation function as

Dαβ(r1, r2) =
∫ ∞
0
dt 〈vα(t, r1)vβ(0, r2)〉 .



A z-dependence of the eddy di�usion tensor

components can be found directly from

the proportionality laws vx, vy ∝ z and

vz ∝ z2. Say,

Dzz(x, y, z1;x, y, z2) = µz2
1z

2
2 ,

where µ is a constant characterizing strength

of the velocity �uctuations in the peripheral

region.



The equation for the �rst moment is

∂t〈θ〉 = ∂z
[
µz4∂z〈θ〉

]
+ κ∂2

z 〈θ〉 ,

Comparing two terms in RHS, one �nds

a characteristic di�usion length

rbl = (κ/µ)1/4.

The quantity determines the thickness

of the di�usion boundary layer.



We are interested mainly in the passive

scalar transport through the region z �
rbl, where the passive scalar is carrying

from the di�usive boundary layer to bulk.

There we arrive at the proportionality law

〈θ〉 ∝ z−3 ,

that gives the decaying rate of the average

θ as z grows.



What about higher moments of θ? If di�usion

is negligible outside the di�usive boundary

layer then

∂tθ = −v∇θ → ∂t(θ
n) = −v∇(θn).

Therefore we arrive at the conclusion

that

〈θn〉 ∝ z−3 ,

as well !



However, numerics shows that at z � rbl

the moments are characterized by the

exponents ηn

〈θn〉 ∝ z−ηn,

di�erent from 3! That implies that di�usion

is relevant at the scales. How it can be?

To answer the question we turn to numerics.
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One can de�ne the passive scalar correlation

length l (along the wall), that can be

found by balance of the molecular and

the eddy di�usion along the wall:

l ∼
√
κ/µ z−1.

The quantity is of order of rbl at z ∼ rbl
and diminishes as z grows.



To exclude the e�ect of the molecular

di�usion, we introduce an integral of the

passive scalar �eld

Θ(t, z) = A−1
∫
dx dy θ(t, x, y, z) ,

where A is the area of the surface and z

is its separation from the wall. Obviously

〈Θ〉 ∝ z−3. What about high-order moments?



Assuming that the passive scalar correlation

length is smaller than the velocity one,

we can derive

∂t〈Θn〉 = µ
[
z4∂2

z + 4nz3∂z + 4n(n− 1)z2
]
〈Θn〉 .

The equation leads to the scaling

〈Θn〉 ∝ z−ζn, ζn = 2n−1/2+
√

2n+ 1/4 .



Obviously, ζn > 3. What does it mean?

That means that only a small part of

the tongues reaches (for a �nite time)

in�nity delivering an amount of particles

to bulk. And the particle �ux to bulk

is related to such events. Typically, the

tongue is pulled upto some �nite z and

then goes back, tilts and nestles upto the

di�usive boundary layer.



We conducted Lagrangian simulations where

dynamics of a large number of particles

subjected to �ow advection and Langevin

forces is examined. The set of the particles

is used instead of the passive scalar �eld

θ, that can be treated as density of the

particles. A big advantage of the approach

is its applicability to a number of space

dimensions d.



In our scheme a particle trajectory %(t)

obeys the equation

∂t% = v(t, %) + χ(t),

where the �rst term represents the particle

advection and the second term represents

the Langevin force. The variables χ are

independent for di�erent particles whereas

the velocity is the same.
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To establish principal qualitative features

of the process, we perform mainly 2d simulations.

The setup is periodic in x and the velocity

in majority of runs was

vx = z

ξ1 cos
2πx

L
+ ξ2 sin

2πx

L

 L
π
,

vz = z2
ξ1 sin

2πx

L
− ξ2 cos

2πx

L

 ,
where ξ1 and ξ2 are independent random

functions of time.
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Numerics reveal deviations of the scaling

exponents from the analytical predictions

that are related to an existence of long

correlations along the wall that can be

produced by the multi-fold structures. That

leads to increasing moments in comparison

with the short correlated case. That is

why the scaling exponents are smaller

than the theoretical values.



The deviations naturally diminish as d

grows. However, the e�ect is a consequence

of the arti�cial fact that the velocity correlation

length coincides with the size system.

Let us consider d = 2 and make the

velocity correlation length smaller than

L by using a mixture of the ninth and

the eleventh harmonics. Then we arrive

at a good agreement with numerics.
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Inertial particles are governed by the equation

τ
du

dt
+ u = v + ξ.

Here, u is the particle velocity, v is the

�ow velocity, ξ is Langevin force and τ

is the particle relaxation time associated

with its inertial properties.



If the di�usion is neglected then the equation

for the one-particle probability density is

∂tρ = −u∂zρ+ ∂u(uρ) + z4∂2
uρ,

where we put µ = τ = 1. We will be

looking for stationary distribution of the

probability density that corresponds to

zero probability �ux to z-in�nity:
∫ +∞
−∞ du uρ = 0.



For u� z the equation is reduced to

∂u(uρ) + z4∂2
uρ = 0,

that have the solution

ρ ∝ z−6 exp

− u2

2z4

 .
It is realized at z � 1 since u ∼ z2.



For u� z the equation is reduced to

u∂zρ = z4∂2
uρ.

After the self-similar substitution ρ =

z−5ah(ξ) where ξ = u/z5/3 we obtain

h′′+ (5/3)ξ2h′+ 5aξh = 0.

It can be solved in terms of the con�uent

hypergeometric function.



Both asymptotics are zero if

a = −
1

6
+ n→ 5/6.

Then at large negative u: ρ ∝ |u|−5/2.

At large positive u

ρ ∝ exp

−5

9

u3

z5

 .
Highly non-symmetric distribution.
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