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Experimental motivation 



Optics : Transverse Localization Scheme 
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Wave  Equation 

+ 
- Scalar and Time harmonic 

- slow variations of index of refraction 

- slowly varying amplitude solution 
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Suggested by De Raedt, Lagengijk & de Vries (PRL 1987) 









Hyper Transport of Light  (experimental results) 

17corrZ mm 1.22corrZ mm 1corrZ mm 0.9corrZ mm

400 m



Theory 

How are the details  and structure of noise reflected in transport? 

Interest in spreading to high  momentum 

 

Is spreading of waves similar to the one of  

particles? 

  



Theory for Particles in 1D 

Interest in spreading to high  momentum 

 

Wave nature is probably not important. 
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Natural to use Fourier expansion in optics and in atom optics 
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Chirikov Resonances 
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No overlap 



 A phase-space, x'=x-p , for two overlapping resonances. The double arrows indicate 
the region of the resonances. Resonances (1)  and (2)  overlap. Different colors 
(shades) describe different trajectories. The horizontal black solid and dashed lines, 
designate the edges of the resonance chains. The initial conditions were uniformly 
distributed on the p  axis (x(t=0)=0).  The system was integrated up-to t=10^4  
(dimensionless variables). 



Chaos, correlations decay 

 

Diffusion in momentum modeled by a Fokker-Planck 

Equation 

Random walk between resonances 



Decay of Correlations and the 

Fokker-Planck Equation 
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Stationary and translation   invariant 

Continuum limit 

Fourier Transform of potential correlation function=Power spectral density  
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Assume rapid decay of correlations.  

 

In the regime where correlation important, acceleration negligible 

 

Therefore in correlation functions  
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Universality Classes 
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What happens in the asymptotic limit of large velocity? 
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2. Class 2 
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3. Class 3  Singular correlations 
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N=200

N=100

Theory

         as a function of t . Dashed gray line are numerical solution of the equation of 
motion for H for 1000  initial conditions taken from a Gaussian distribution and averaged 
over 10 realizations of the potential, V . Different shades and styles of lines designate 
different N  (see legend). The solid thick line is the numerical solution of the Fokker-
Planck equation.  

2p

1D-wide distribution of the initial conditions 

Distribution of Fourier components of the potential 

uniform 



Dispersion relations 

In some cases there is a relation   k
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Optics potentials 
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Higher dimensions  
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 Same as previous figure, but for a two-dimensional system, for N=800  and parameters 
commonly used in the experiment. 

2D –Gaussian distribution of the Fourier components 

Of the potential  



When does the onset of 

fluctuations of the potential take 

place?   

On short distances  
xl

And short time scales  
tl

Fluctuations not important and motion is uniform acceleration 

 



A log-log plot of average squared velocity as a function of time for one 
dimensional system with an optical  potential and a uniform distribution of 
wave-numbers over a segment. The blue dots represent the result of the 
Monte-Carlo solution averaged over 20  realizations and the black solid line is 
the numerical solution of the Fokker-Planck equation for the velocity. The 
dashed black and red lines are guides for the eye with the corresponding 
slopes of 2 , 1 and 0. The initial condition was a narrow distribution of 
velocities for the Fokker-Planck and x=v=0  for the Monte-Carlo calculation. 
The parameters used for this simulation are, V0=1e-4 , kr=0.1 . 



A log-log plot of average squared velocity as a function of time for one 
dimensional system with an optical  potential and a Gaussian distribution of 
wave-numbers over a disk. The blue dots represent the result of the Monte-
Carlo solution averaged over 20  realizations and the black solid line is the 
numerical solution of the Fokker-Planck equation for the velocity. The dashed 
black ines are guides for the eye with the corresponding slopes of 2 ,1. The 
initial condition was a narrow distribution of velocities for the Fokker-Planck 
and x=v=0  for the Monte-Carlo calculation. The parameters used for this 
simulation are, V0=1e-2 , kr=0.1 . 



A log-log plot of average squared velocity as a function of time for a two 
dimensional system with a cosine potential and a uniform distribution of 
wave-numbers over a disk. The blue dots represent the result of the Monte-
Carlo solution averaged over 20  realizations and the black solid line is the 
numerical solution of the Fokker-Planck equation for the velocity. The dashed 
black  lines are guides for the eye with the corresponding slopes of 2 ,2/5. The 
initial condition was a narrow distribution of velocities for the Fokker-Planck 
and x=v=0  for the Monte-Carlo calculation. The parameters used for this 
simulation are, V0=1e-2 , kr=0.1 . 



A log-log plot of average squared velocity as a function of time for a two 
dimensional system with an optical potential and a uniform distribution of 
wave-numbers over a disk. The blue dots represent the result of the Monte-
Carlo solution averaged over 20  realizations and the black solid line is the 
numerical solution of the Fokker-Planck equation for the velocity. The dashed 
black ines are guides for the eye with the corresponding slopes of 2 ,2/5. The 
initial condition was a narrow distribution of velocities for the Fokker-Planck 
and x=v=0  for the Monte-Carlo calculation. The parameters used for this 
simulation are, V0=1e-2 , kr=0.1 . 



Comparison Between Particles and Waves  

1d 
| |mA A

For particles  for spectrally bounded potentials: 

 

no hyper-transport for d=1 

 

spectral hyper-transport d>1 

 

no hyper-transport in space for d>1 

 

  



Fokker-Planck vs. numerics of both particles and 

waves 

Log-log plots of the velocity and the position second moments vs. time in dimensionless 
units. Solid black line is the Fokker-Planck approximation, blue circles are Monte-Carlo of 
particles. Red solid line is a simulations for waves. Black dashed lines are guides for the 
eye. The parameters are the same as used in the experiment. 
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0.1,5 10, 0.1,i xA v    



410 ,0.0228 0.07, 0.1i xA v    



410 ,0.0228 0.07, 0.1i xA v    



summary 

1. A formula for the diffusion coefficient in momentum in 

terms of the distribution function of the Fourier 

components of the potential was developed. Natural 

for potentials used in optics and atom optics  
2. Classification into Universality classes and 

Identification of new classes.  
3. Identification of the uniform acceleration 

regime for short time.  

4. Asymptotically particles agree with waves in 

present calculations (d=1) 

 



For particles  for spectrally bounded potentials: 

 

no hyper-transport for d=1 

 

spectral hyper-transport d>1 

 

no hyper-transport in space for d>1 

 

  

Spreading 



Open problems 

1. Identification of regimes that are not 

uniform acceleration where Fokker—

Planck fails 

2. An analytic theory for spreading in 

coordinate space. 

3. Is there a regime of high momentum 

where waves spread in a way 

fundamentally different from particles? 

 


