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Experimental motivation



Optics : Transverse Localization Scheme

Suggested by De Raedt, Lagengijk & de Vries (PRL 1987)

Wave Equation
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<4 | - slow variations of index of refraction
- slowly varying amplitude solution
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Transport and Anderson localization in disordered
two-dimensional photonic lattices

Tal Schwartz!, Guy Bartal', Shmuel Fishman' & Mordechai Segew!
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Figure 1| Transverse localization scheme. a, A probe beam entering a ts 121 _
disordered lattice, which is periodic in the two transverse dimensions (x and
y) but invariant in the propagation direction (z). In the experiment described 10k T i
here, we use a triangular (hexagonal) photonic lattice with a periodicity of &
11.2 um and a refractive-index contrast of ~5.3 X 10~ ", The lattice is induced g 8| o L
optically, by transforming the interference pattern among three plane waves ¥ *
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Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices

Yoav Lallini,"* Assaf Ax-'idan,' Francesca Pl.’}zzi,2 Marc Smel,2 Roberto l‘ﬂu::rrandl::rtli,3
Demetrios N. Christodoulides,” and Yaron Silberberg’
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Direct observation of Anderson localization of matter-waves in a controlled
disorder

Juliette Billyj, Vincent JDSSEJ, Zhanchun Zuoj, Alain Bernardj, Ben Hambrechtj, Pierre Luganj, David Clément],
Laurent Sanchez-Palencia', Philippe Bouyer' & Alain Aspect’

!Laboratoire Charles Fabry de I'Institut d'Optigue, CNRS and Univ. Paris-Sud, Campus Polytechnique, RD 128, F-
91127 Palaiseau cedex, France
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er Transport of Light (experimental results

Localization Diffusion ?
Slow variations Fast variations
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Theory

How are the details and structure of noise reflected in transport?

Interest in spreading to high momentum

Is spreading of waves similar to the one of
particles?



Theory for Particles in 1D

Interest in spreading to high momentum

_ _ mass=1
Wave nature is probably not important.

V2

H=—+V (Xt
5 +V (1)

Natural to use Fourier expansmn in optics and in atom optics
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Chirikov Resonances
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Dominant energy transfer at resonance, points where phase is statinary
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No overlap
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A phase-space, x'=x-p , for two overlapping resonances. The double arrows indicate
the region of the resonances. Resonances (1) and (2) overlap. Different colors
(shades) describe different trajectories. The horizontal black solid and dashed lines,
designate the edges of the resonance chains. The initial conditions were uniformly

distributed on the p axis (x(t=0)=0). The system was integrated up-to t=10"4
(dimensionless variables).




Random walk between resonances

Chaos, correlations decay

Diffusion in momentum modeled by a Fokker-Planck
Equation



Decay of Correlations and the
Fokker-Planck Equation
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Correlation Function K(Xl, tl’ Xz,tz) — <F (X11t1) F (XZ’tZ )>

Stationary and translation invariant
Continuum limit
S (k, a))

Fourier Transform of potential correlation function=Power spectral density
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Assume rapid decay of correlations.

In the regime where correlation important, acceleration negligible

X =X, :V(tl_tZ)

Therefore in correlation functions

Diffusion coefficient
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Fokker Planck equation




Universality Classes

First  d=l

D(v) =7 dkk?S (k,kv)

What happens in the asymptotic limit of large velocity?

1. Main class: define k' = kv
for V —>00
D)= D, =| dk'k”*S(0,K')
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Hyper-transport
For white noise  \/ ~ tllz



2. Class 2 Sum for potential

4]
truncated as is the case in many Vres — M < VnaX
experiments in optics and atom optics m k —
m

S(k,w)=0  awlk>v,,
D(v) =7 [ dkk®S (k,kv)

D(v)=0 v>v__ ballistic

Note, the correlation function may be infinitely differentiable.



3. Class 3 Singular correlations

D(v) =7 [ dkk®S (k,kv)

S(k,w):h(k,hj
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Examples:
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- n>3
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Also possible, Taylor expansion starts from
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1D-wide distribution of the initial conditions
Distribution of Fourier components of the potential

uniform

—N=300
——N=200
——N=100

— Theory

(P°) as a function of t . Dashed gray line are numerical solution of the equation of
motion for H for 1000 initial conditions taken from a Gaussian distribution and averaged
over 10 realizations of the potential, V . Different shades and styles of lines designate
different N (see legend). The solid thick line is the numerical solution of the Fokker-

Planck equation.



Dispersion relations

In some cases there is a relation C()(k)
k2

Often a)(k) —
2

X

e_r
k 2
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Higher dimensions d >1

Chirikov resonance condition is satisfied even if boundson @ And k

Since V.k = ()

Diffusion tensor
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Main universality class much more robust than for d p— 1
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Same as previous figure, but for a two-dimensional system, for N=800 and parameters
commonly used in the experiment.




When does the onset of
fluctuations of the potential take
place?

On short distances Ix

And short time scales It

Fluctuations not important and motion is uniform acceleration



A log-log plot of average squared velocity as a function of time for one
dimensional system with an optical potential and a uniform distribution of
wave-numbers over a segment. The blue dots represent the result of the
Monte-Carlo solution averaged over 20 realizations and the black solid line is
the numerical solution of the Fokker-Planck equation for the velocity. The
dashed black and red lines are guides for the eye with the corresponding
slopes of 2, 1 and 0. The initial condition was a narrow distribution of
velocities for the Fokker-Planck and x=v=0 for the Monte-Carlo calculation.
The parameters used for this simulation are, VO=1e-4 , kr=0.1 .
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A log-log plot of averag{e squared velocity as a function of time for one
dimensional system with an optical potential and a Gaussian distribution of
wave-numbers over a disk. The blue dots represent the result of the Monte-
Carlo solution averaged over 20 realizations and the black solid line is the
numerical solution of the Fokker-Planck equation for the velocity. The dashed
black ines are guides for the eye with the corresponding slopes of 2 ,1. The
initial condition was a narrow distribution of velocities for the Fokker-Planck
and x=v=0 for the Monte-Carlo calculation. The parameters used for this
simulation are, VO=1e-2, kr=0.1 .
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A log-log plot of average squared velocity as a function of time for a two
dimensional system with a cosine potential and a uniform distribution of
wave-numbers over a disk. The blue dots represent the result of the Monte-
Carlo solution averaged over 20 realizations and the black solid line is the
numerical solution of the Fokker-Planck equation for the velocity. The dashed
black lines are guides for the eye with the corresponding slopes of 2 ,2/5. The
initial condition was a narrow distribution of velocities for the Fokker-Planck
and x=v=0 for the Monte-Carlo calculation. The parameters used for this

simulation are, VO=1e-2 , kr=0.1 .
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A log-log plot of average squared velocity as a function of time for a two

dimensional system with an optical poténtial and a uniform distribution of

wave-numbers over a disk. The blue dots represent the result of the Monte-

Carlo solution averaged over 20 realizations and the black solid line is the

numerical solution of the Fokker-Planck equation for the velocity. The dashed

black ines are guides for the eye with the corresponding slopes of 2 ,2/5. The

initial condition was a narrow distribution of velocities for the Fokker-Planck

and x=v=0 for the Monte-Carlo calculation. The parameters used for this
simulation are, VO=1e-2 , kr=0.1



For particles for spectrally bounded potentials:
no hyper-transport for d=1
spectral hyper-transport d>1

no hyper-transport in space for d>1

Comparison Between Particles and Waves

d=1
[ An = A
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Log-log plots of the velocity and the position second moments vs. time in dimensionless
units. Solid black line is the Fokker-Planck approximation, blue circles are Monte-Carlo of
particles. Red solid line is a simulations for waves. Black dashed lines are guides for the
eye. The parameters are the same as used in the experiment.
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A=10" N =100,v__ =0.1,A =0.1.
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summary

A formula for the diffusion coefficient iIn momentum in
terms of the distribution function of the Fourier

components of the potential was developed. Natural
for potentials used in optics and atom optics
Classification into Universality classes and
|dentification of new classes.

|dentification of the uniform acceleration
regime for short time.

Asymptotically particles agree with waves in
present calculations (d=1)



Spreading
For particles for spectrally bounded potentials:
no hyper-transport for d=1

spectral hyper-transport d>1

no hyper-transport in space for d>1



Open problems

1. Identification of regimes that are not
uniform acceleration where Fokker—
Planck fails

2. An analytic theory for spreading In
coordinate space.

3. Is there a regime of high momentum
where waves spread in a way
fundamentally different from particles?



