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e The Majda-McLaughlin-Tabak model
e Instability of wave turbulence

e Energy transfer by radiating pulses



Majda-McLaughlin-Tabak (MMT) model

for weakly nonlinear waves

(iZ —L)w(x,t) = M(x, t)|o(x, )2

e complex wave amplitude ¥(x, t)
e linear operator L exp(ikx) = wy exp(ikx),

e dispersion wy = /| k.

(Fourier modes a; = [*/ /21/1 x, t) exp(—ikx)dx/v/2m
Large system size L with periodic boundary conditions)

A.J. Majda, D.W. McLaughlin, E.G. Tabak, J. Nonlinear Sci. 6, 9 (1997),



Conserved quantities of the MMT equation

e Hamiltonian or 'energy’

L/2
E = Yywrlac?+(0/2) [, 0] dx
e waveaction
N = Ylal?

e momentum
P o= Yika?



Dispersion w = k? vs. w = /||
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) modulational instability for the nonlinear Schrodinger equation
) modulational instability for MMT with k > g

c) instability for MMT with k ~ ¢

d) radiating quasisolitons for MMT
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Instability by short modulations for A =1

e Monochromatic wave ¢ = (1) + da) exp(ikx)

e Modulation da = da exp(igx) + da_ exp(—igx)

e Instability near g ~ 5k /4.
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Rescaled wavenumbers:
e carrier wave k — k/A4,
e modulation § = q/A*

100



Damped and driven MMT equation

Driving force

at moderate wavenumbers 10p}damPing

Damping at high

and at low wavenumbers 10
Nk = <|ak|2>

! 0.01 0.1 1 k
A = —1: Kolmogorov-Zakharov spectrum N ~ k=1

— wave turbulence

A =1: Steeper spectrum Ny ~ k=125

— unknown mechanism of turbulence



Contour plot of regions with high amplitudes:
Switching the sign A = —1 fromto A =1

A=-1 A=1

0 ¢ 2000

Wave turbulence - Coherent structures



Envelope equation for wave turbulence

Ensemble average (u(x, t)u*(x +r,t)) depends on x

Slow spatial variations of the waveaction

N(k,x,t) = /(u(x, t)u*(x +r,t)) exp(ik - r)dr

Kinetic equation is extended by a Vlasov term
ON 00N 0L ON

ot Tokox  ox ok = M

Nonlinear by the renormalized frequency

ok, x, t) = w +2)\/N(p,x, £)dp



Breaking of the spatial homogeneity symmetry

of wave turbulence

e Linearization N(k,x, t) = No(k) + AN(k,x, t)
o Kolmogorov-Zakharov spectrum Ny (k)
e Modulation AN(k,x, t) = a(k)exp(iK - x — iQt)

Stability:
e \>0:
- unstable in one dimension ~ negative Landau damping
- no instability in two dimensions
e \<O0:
- no instability



Growth of correlations for A = 1; decay for A = —1
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e time evolution of the correlation
|k, K, )2 = [(Ak(t) Ar (8121 (A(0) A (0)) 2 with
K = 67/2048 for an ensemble of 400,000 trajectories

e initial conditions contain a small correlation on top of a KZ
spectrum



Formation of coherent structures for A = 1:

A gas of solitary waves

N

Pattern of solitary waves ('pulses’) with high positive
or negative momenta



Quasisolitons for g < ki,

e slow modulation by the envelope ¢(**)(x, t)
P(x, t) = ¢ (x, t) exp(ikmx — iwmt)
e soliton solution

oD (x, t) = qv/—wll, exp(iwing®t/2)sech(q(x — w,t))




Narrow pulse with g ~ ki,

e Shape of a pulse

W) = g\ /amkn 2 F(0) exp(icr) exp(i2t)

Ox=q, 0t = —qv,
ax = km, oy = —kmv



Pulses emerge from the instability at g ~ kn,
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e The pulse-speed decays
e The pulse emits radiation



e The pulse narrows in

A radiating pulse
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real space - g increases

e The number of loops increases - k,, increases



Time-average of an evolving pulse is MMT-like

0.1 Ikl 1

e Pulse in k-space at three different times

e Time-average spectrum <\aff)|2> ~ k=129



Radiation: Resonant driving of linear waves
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driving force by the pulse:

with
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T = o= [ 2o DD exp(—ikx)dx



Doppler-shifted phase frequency Ny = Q + kv

k1M //

X/

kTES km k

Resonance A, = wy
at kres ~ _(\/§ - ]-)2km



Evolution of energy and momentum

Balance of dE(2@) and dP(29) for the radiation:
dP(rad) _ k dN(rad)

dE (rad) /‘k dN(rad

Balance of energy dE(f) = —dE(r2d)

and momentum dP(") = —dP("29) of the pulse:

dE(f)(N(f)jp(f)(/\/(f))) 2 dp(f)(/\/(f))
( dN() ) - dNd

N) decays in time
E(F) ~ N(’r)\/i1 decays

P~ NOVE3 i creases




e Radiation driven by a pulse:
13y — Wya, = ‘Tk‘ exp(—/'/\t)

e Time-dependent pulse frequency with linear chirp
approximation A(t) ~ wy + At
e Amplitude of radiation

|ak|2 ~ TE\/ |km|/i‘m

after the driving frequency A(t) has moved
through resonance



The spectrum of the pulses

Driving force Ty ~ q2k,,_79/4

Speed of a pulse in k-space: Ky ~ q3l<,,773/2
Wave action of a pulse N(f) ~ qk,;3/2

Spectrum:

(22,2 ~ N/
~ q_2
~ kBV2-5)/2-V2) k129

~



Analytic solution of the MMT spectrum

e Solve coupled equations for pulse and radiation

e Time-average of the pulse yields the spectrum

<‘a5(pulse)‘2>time ~ k72+1/\/§ ~ k7129




Conclusions

e Spatial homogeneity of wave turbulence spontaneously broken

e Transfer of energy by radiating pulses

B.R., A.C. Newell, V.E. Zakharov, PRL 103, 074502 (2009);
A.C. Newell, B.R., V.E. Zakharov, PRL 108, 194502 (2012);
B.R., A.C. Newell, PLA 377, 1260 (2013)





