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And now for something completely different ... Fibonacci and Optics?



Stripe Patterns



Hexagons (and Stripes)
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Convection and Megalithic Art



Convection Patterns
Fluid cools by losing heat through the surface

Heat input
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Competitors: , |/cy| = k|/cy| o

Rolls/ Stripes w = cos(x) (k0 == 1)

Squares w = cos(x) + cos(y)

f *

Hexagons w = cos(x) + COS(-T>X + + cos(-lx



compete

Quadratic interaction (strongest near onset)

When do• fc\, k2i k3 = /ci + k2 all have length

Quadratic interactions favor hexagons



Plant Patterns (Fibonacci)





What is Phyllotaxis?
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Microscopic Formation



Microscopic Formation of Phylla
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Explanations

Teleological, the "whys", final cause or primary reason.
X is so in order that Y ...
Tigers have stripes to better camouflage.
Phylla are positioned to optimize access to nutrients, light..

Mechanistic, the "hows", cause or secondary reason.
Physical (differential growth induced compressive stresses)
and biochemical (uniform auxin concentration instability)
processes leading to patterned states ...



D'Arcy Wentworth Thompson
(1860-1942)

Polymath, son of a Professor of Classics at Galway, grandson of a
highwayman, an immigrant to Botany Bay, and author of 'On
Growth and Form' one goal of which was

../to show that a certain mathematical aspect of morphology ... is
helpful, nay critical to the proper study and comprehension of
growth and form.'

He also has a jaundiced eye for and takes aim at excessive reliance
on teleological explanations ...



Ideological

Hofmeister Rules (1868)

1. The meristem is axisymmetric.

2. Primordia form in a generative annulus on the periphery
of the apex.

3. New primordia form at regular time intervals.

4. Primordia move radially away from the apex.

5. Each new primordium forms in the least crowded spot left
by the existing primordia.

Van Iterson (1907)
Snow and Snow (1952)
Levitov (1991)
Douady and Couder (1996)
Atela, Gole and Hotton (2003)



Atela, Gole and Hotton
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Patterns on Plants
It is our suggestion that patterns on plants near the growth shoots
have much in common with patterns in planar geometries.

They arise as instabilities.

They have a preferred length scale.

Like hexagons in planar geometries, quadratic interactions
reflecting the breaking of 'up-down' symmetries play important
roles.

But, there are also important differences arising from the way in
which they are made, annulus by annulus, in a generative region
surrounding the meristem. This leads to planforms which, as a
function of radius, alternate between rhombi and hexagons and
whose maxima lie on families of spirals enumerated by Fibonacci
sequences.



The Mechanistic Approach

What are the underlying physical processes?

Biomechanics: Green (1998) suggests that the formation of
phylla may be due to a bucking instability caused by internal
compressive stress on the surface of the plant.

Biochemistry: Meyerowitz (2006) and Traas (2003) suggest
that phylla are induced by the plant hormone auxin, whose
transport is controlled by a PIN1 protein.

Near the onset of instability, the governing equations of both
processes take the same form!

JL = uu-
ot



w(r, a, t) Surface normal deformation, /(r, a, t) Airy Stress tensor fluctuation
g(r, a, f) Growth/auxin concentration fluctuation (continuum limit)

[Reinhardt, yeyerowitz, Traas et alj
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Microscopic Formation of Phylla
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What We Monitor?

u(r,0,t) = J2 um(r,t)exp(-im6)
meX

um(r,i) =amexp(i(j)m)

• am{r) - amplitude of mode m.

• ^mif) - local radial wavenumber.
• e(r) - local energy density

• rj(r) - local packing efficiency.

• v(r) - local front speed.
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Maximum Amplitudes

8 13 21 34 55 89
circumferential wavenumber (m)



Self-Similarity

For my G T, we find for all r that

= amy+1 (rep)

•(r) = -£mj+1(r(p)

where cp = limm;+i/my = (\/5 + l ) /2 .
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The Amplitude Invariant Curve
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Lattice Geometry
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Open Challenges and Opportunities

1. Pushed pattern forming fronts and optimal strategies

2. Invariants and self-similarities: Quo Venitis? ...

3. Universality of Fibonacci patterns ...

4. Other plant patterns? ...

5. "Fibonacci rules" in 3D shell geometries ...


